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Abstract. Different types and sizes of micro- and nanopar-
ticles have been synthesized and developed for numerous
applications. It is crucial to characterize the particle sizes.
Traditional dynamic light scattering, a predominant method
used to characterize particle size, is unable to provide depth
resolved information or imaging functions. Doppler vari-
ance optical coherence tomography (OCT) measures the
spectral bandwidth of the Doppler frequency shift due to the
Brownian motion of the particles utilizing the phase-
resolved approach and can provide quantitative information
about particle size. Spectral bandwidths of Doppler fre-
quency shifts for various sized particles were quantified
and were demonstrated to be inversely proportional to the
diameter of the particles. The study demonstrates the phase-
resolved Doppler variance spectral domain OCT technique
has the potential to be used to investigate the properties of
particles in highly scattering media. © The Authors. Published by

SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution

or reproduction of this work in whole or in part requires full attribution of the origi-
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Various types of micro- and nanoparticles in different sizes have
recently been employed in optical, electronic, and magnetic
devices.1–7 Nanoparticles, which are in the same size range as
biological macromolecules, proteins, and nucleic acids, have
attracted much attention in biological and biomedical applica-
tions.8 Nanoparticles have been used for biosensing, cellular
and in situ hybridization labeling, cell tagging and sorting,
point-of-care diagnostics, kinetic and binding studies, imaging
enhancement, and drug delivery.9 The physical and chemical
properties of these particles have a strong correlation with the
particle size.7 Currently, dynamic light scattering (DLS), which
utilizes the intensity correlation function of scattered light, has
been predominantly used to determine the size of micro- and
nanoparticles.10 Recently, DLS has been further developed to
extend its application to strongly scattering media.11–15 How-
ever, traditional DLS cannot provide imaging functions.10 Low
coherence interferometry (LCI) assisted DLS has been devel-
oped based on slow time domain and spectral analyzing method,
providing limited depth range with stationary11 or limited refer-
ence path length delay.12–14 Optical coherence tomography
(OCT), a noninvasive and high resolution imaging modality,
has been used to detect scattering signals from samples in real
time utilizing Michelson’s interferometer principle.16–18 Dif-
ferences in diffusion with micro- and nanoparticles were dem-
onstrated by employing not only time domain-OCT but also
spectral domain-OCT (SD-OCT) that is based on the power
spectrum of the temporal fluctuations of the OCT magnitude.19

Phase-resolved Doppler OCT (PR-D-OCT) has been developed
by combining OCT with Doppler velocimetry for blood flow
imaging.20 We have further developed PR-D-OCT into phase-
resolved Doppler variance OCT (PR-DV-OCT) and reported the
applications of PR-DV-OCT for mapping vasculature as well as
for quantifying transverse flow velocity.21 Interestingly, the
Doppler variance method is not sensitive to bulk-motion, and
the Doppler variance method can be used without correcting
the bulk-motion, making it possible for in vivo imaging.22

Since the Brownian motion will broaden the spectral bandwidth
of the Doppler frequency shift (Doppler bandwidth), PR-DV-
OCT, which measures the Doppler bandwidth, will be affected
by the Brownian motion and has a strong correlation with par-
ticle size.23 In this study, we report on quantification of particle
size with a phase-resolved Doppler variance SD-OCT system.
Spectral bandwidths of Doppler frequency shift for micro- and
nanoparticles in various sizes were demonstrated to be inversely
proportional to the diameter of the particles. This technique will
be a testbed to explore the potential phase-resolved Doppler
variance SD-OCT applications to study the properties of par-
ticles in highly scattering media.

Brownian movement is not due to external forces but results
from the bombardment of the dispersed particles. The diffusion
coefficient can be determined from the Einstein-Stokes equation
and is represented by

D ¼ KBT
6πηr

; (1)

whereKB is Boltzmann’s constant (1.38 × 10−23 m2 kg s−2 K−1),
T is absolute temperature, η is viscosity, and r is the radius of the
spherical particle.24 The spectral bandwidth (Bd) of the scattered
light from particles has a Lorentz distribution with a half-width
at half maximum (FWHM) of the spectrum25

Bd ¼ q2D: (2)
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The q is defined in terms of the scattering geometry as

q ¼ 4πn
λ

sin
θ

2
; (3)

where n is the refractive index, λ is the wavelength of the inci-
dent radiation in vacuum, and θ is the scattering angle. For a
Gaussian optical beam, the full width at 1∕e of maximum spec-
trum amplitude Doppler bandwidth (B1∕e) can be calculated as
the inverse of the transit time by the particles passing through
the focusing area:26

B1∕e ¼
1

T
¼ V sin θ

w
; (4)

where V is the flow velocity and w is the effective waist diameter
of the probe beam in the focal area, which represents the transit
length of moving Brownian motion of particles.

The Doppler bandwidth can also be represented by the spec-
tral bandwidth:21

B1∕e ¼ ðπ∕8ÞBd: (5)

For a Gaussian optical beam, standard deviation (σ) and Doppler
bandwidth have the following relationship:

B1∕e ¼ 4σ: (6)

By combining Eqs. (2), (5), and (6), σ can be represented by

σ ¼ πq2D
32

: (7)

The Doppler bandwidth can be represented by

B1∕e ¼
πq2KBT
48πηr

: (8)

Therefore, the Doppler bandwidth is linearly proportional to 1∕r
for the constant viscosity and temperature in a colloidal solution.

The schematic diagram of the SD-OCT system is shown in
Fig. 1. The light source is a super luminescent diode (Superlum
D890-HP, Russia) with a center wavelength of 890 nm and a
FWHM of 150 nm. The laser output is split by an 80/20 coupler
with 80% of the power directed to the reference arm and 20% to
the sample arm. The interference signal was detected by a home-
made high performance spectrometer with the CCD line scan
camera operating at 20 kHz. The measured system sensitivity
was 100 dB at zero imaging depth and dropped to 91 dB at 2 mm
with the integration time of the CCD camera set at 50 μs. The
axial and lateral resolutions of the system were 3.5 and 15 μm,
respectively. The phase stability of the system was measured to
be 0.48 milliradians. Two-dimensional and 3D images were
achieved by using a 3D galvo scanner. DV-OCT imaging for
each particle sample was acquired under the same conditions.

Polystyrene particles in various sizes (81, 202, 350, 485,
and 752 nm in diameter) at an approximately 2.6% solid (w∕v)
in deionized (DI) water concentration (Polyscience, Inc.,
Warrington, Pennsylvania) were used without further modifica-
tion. Gold nanoparticles (Au NPs) in different sizes (18, 33, 52,
and 126 nm in diameter) were synthesized by following the pub-
lished protocol with slight modifications.15,27 The mean diam-
eter of Au NPs was characterized by using a DLS particle
analyzer (Zetasizer Nano series- ZEN 3600, Malvern Instru-
ments, Worcestershire, UK). The mean size of each particle
sample was obtained from at least 10 repeated measurements
and further compared with the observed morphology under a
transmission electron microscopy. Concentrations of Au NPs

in different sizes were calculated using the UV/vis spectroscopic
method as reported previously.28 The concentrated Au NPs in
sizes of 18, 33, 52, and 126 nm in diameter, respectively, by
30 min centrifugation at 13,200, 9,000, 8,000, and 4,000 rpm
in room temperature were resuspended in DI water at a concen-
tration of 175 μg∕mL. Before the OCT imaging, all particles
were sonicated for at least 20 s to be homogeneous. Then,
one hundred microliters of colloidal solution of Au NPs and
polystyrene particles were dropped in a 96 well plate and incu-
bated at room temperature for 3 h to equilibrate the temperature
to minimize the fluctuation of Brownian motion by temperature.
Spectrometer-based Fourier domain OCTwas used for DV-OCT
imaging. Raw data was processed and quantified within a 200
by 50 pixels area under the vertex of the colloidal particle sur-
face for 5 consecutive images and averaged with nonzero data
containing pixels.

The amplitude of the DV-OCT signal per averaged pixels
shown in Fig. 2 increased as the size of the particles decreased
due to the faster Brownian motion for polystyrene particles,
which is in good agreement with Eq. (8). The penetration depth
decreased as the size of the polystyrene particle increased
because of stronger scattering from larger particles. Au NPs of
small sizes showed low frequency of pixel numbers in DV-OCT
images because the scattering signal was much weaker for Au
NPs of smaller sizes. However, each nonzero pixel of DV-OCT

Fig. 1 Schematic diagram of spectrometer-based Fourier domain opti-
cal coherence tomography system.

Fig. 2 DV-OCT images for different sizes of polystyrene particles and
gold nanoparticles (Au NPs); σ is the standard deviation of the Doppler
spectrum.
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images of Au NPs showed a higher Doppler bandwidth in Au
NPs of smaller sizes due to faster Brownian motion. The
DV-OCT images of polystyrene and Au NPs were quantified by
the averaged standard deviation of phase differences over 5 con-
secutive images. For each image, the standard deviation was cal-
culated by averaging three distinct areas covering 200 by 50
nonzero data containing pixels. Interestingly, Fig. 3 shows that
the Doppler bandwidth is inversely proportional to the particle
diameter due to the size-dependent Brownian motion of particles
at a constant temperature regardless of micro- and nanoparticles.

In conclusion, various sizes of polystyrene and Au NPs were
imaged with PR-DV-OCT, and the images were quantified in
terms of Doppler bandwidth. The broadening spectral band-
width of the Doppler frequency shift of particles is inversely
proportional to the particle diameter. While the data presented
is in the context of colloidal solution, the relationship between
the bandwidth broadening of Doppler frequency and particle
sizes can potentially serve as a framework to image and quantify
micro- and nanoparticle-based optical contrast agents in highly
scattering, biologically relevant media.
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