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Abstract. Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on
a homogeneous model of the head are known to introduce significant contamination from extracerebral layers.
More complex models have been proposed and occasionally applied to in vivo data, but their performances have
never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain
NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two differ-
ent geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to
the subject’s head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical
properties from simulated time-resolved data of the adult head. We show that both geometries provide better
results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy,
linearity, and cross-talk from extracerebral layers. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Various continuous-wave (CW),1–5 frequency-domain (FD),6–14

and time-domain (TD)15–19 near-infrared spectroscopy (NIRS)
approaches offer the ability to determine the absolute absorption
and scattering coefficients of biological tissue. The retrieved
optical absorption measured at multiple wavelengths allows
quantification of different chromophores’ concentrations within
the tissue. For brain imaging, the robust assessment of cerebral
blood volume (CBV) and oxygenation, derived from the mea-
sure of hemoglobin concentrations in the brain, is essential for
reliable cross-sectional and longitudinal studies of health, dis-
ease, and disease progression.8,9,19–22

Continuous-wave methods, such as broadband or hyperspec-
tral approaches originally proposed more than 15 years ago,2

require spatially1 or spectrally2–5 resolved information in
order to disentangle the contributions from tissue absorption
and scattering. The frequency-domain multidistance (FDMD)
approach based on a homogeneous model6 has been extensively
validated with Monte Carlo simulations,14 phantoms,6,12 and
animal models.11,13 It has been successfully applied to the mon-
itoring of brain oxygenation and metabolism in healthy and
brain-injured infants.8,9,20 Time-resolved approaches are gener-
ally based on the nonlinear fit of temporal point spread functions
(TPSFs). They have been validated with Monte Carlo simula-
tions and phantoms,15,23,24 and have been applied to monitor
developmental cerebral changes in infants.22 In adults, the
TD-NIRS technology has been applied to monitor variations
in brain oxygenation and blood volume during cardiopulmonary

bypass surgery25 or to detect vasospasms following subarach-
noid hemorrhage.21

Most of the in vivo studies mentioned above have relied on
a simple head model described as a homogeneous semi-infinite
medium.1,6–10,16,19–22,25,26 This model has shown promising
results in piglets and infants,5,8,9,11,20,22,27 but it is widely rec-
ognized that, in the case of the adult head, its oversimplifica-
tion causes strong contamination of the brain optical properties
by those of the extracerebral tissue. For the FDMD approach,
Franceschini et al.12 have shown, with simulations and phan-
tom measurements in a slab geometry, that when a superficial
layer thicker than ∼1 cm is present, the error on the retrieved
absorption of the second layer can exceed 50%. We have pre-
viously investigated with simulated data the performance of the
FDMD method on realistic head geometries at different ages.28

We showed that, while it provides accurate results in infants up
to 1 year of age (10 to 15% error), its application to adult heads
introduces large errors (20 to 45%). The FDMD method is
therefore not directly translatable to adult head measurements.
For a simple two-layer phantom geometry, Kienle et al. showed
that using the TD analytical solution of the diffusion equation
for a homogeneous medium induces strong contamination of
the second layer optical properties by those of the first
layer.17 Similarly, based on Monte Carlo simulations guided
by in vivo measurements on the adult forehead, Comelli et
al. showed that time-resolved data fitted with a homogeneous
model return absorption and reduced scattering coefficients
much closer to superficial layer values (scalp and skull)
than to those of deeper layers (white and gray matter).16 This
was further confirmed experimentally by Ohmae et al., who
compared baseline absolute measurement of CBV obtained
by positron emission tomography (PET) and by TD-NIRS.29
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While the two modalities showed good correlation, the PET
measures of CBV were 50% higher than those assessed by
TD-NIRS, which in turn were more similar to the PET measure
of scalp blood volume.

These results highlight the importance of developing more
realistic models of light propagation in the adult head. For this
purpose, the implementation of layered models instead of the
homogeneous geometry is becoming more and more common
in combination with the different NIRS approaches. Pucci et al.
combined the CW broadband approach with a two-layer model
in phantom data and retrieved the chromophore concentrations
in the second layer within a 10% error.4 Kienle et al. derived an
analytical solution to the diffusion equation in a two-layer
geometry for TD and FD.17 This TD approach has shown
improved results over the homogeneous model, as demon-
strated by Monte Carlo simulations on two-layer slabs, and lay-
ered phantom experiments.17 We have applied it to in vivo data
on the adult head, where it reported brain optical properties
distinct from that of the extracerebral layer.30 Paralleling the
TD approach, Hallacoglu et al. demonstrated the improvement
afforded by the FD two-layer geometry17 with Monte Carlo and
phantom data, and applied the technique to in vivo data
obtained on the adult head.31 However, in the few in vivo stud-
ies using a layered model of the adult head,30,31 there was no
validation of the retrieved brain values by complementary
modalities. More generally, the performances of the two-
layer analytical methods have only been assessed through sim-
ulations or phantom measurements on simple two-layer slab
geometries and not on realistic head structures. Since the
two-layer slab model remains a crude approximation of the
complex head structure, it could lead to significant errors
when employed on real human measurements. The accuracy
of the layer geometry on realistic human data still remains
to be evaluated.

Finally, a few more complex models of the adult head have
been proposed, including analytical solutions of the diffusion
equation or of the radiative transfer equation for multiple
layer slabs,32,33 finite difference modeling of light propaga-
tion in the true head anatomy of a subject obtained from a
magnetic resonance imaging (MRI) scan,34 and Monte Carlo
approaches35,36 in different geometries. Monte Carlo methods
provide the most accurate description of the forward problem,
but because of long computation times, they have rarely been
implemented in nonlinear fitting routines that require a new sim-
ulation for each iteration of the fitting process. Pifferi et al. pro-
posed a fitting routine based on Monte Carlo simulations in a
homogeneous medium.35 They used a library of TPSFs precom-
puted for a number of scattering coefficient values, which could
then be interpolated for any μs 0 value and scaled using the Beer-
Lambert law for any μa value. The method provided more accu-
rate fitting results than the analytical solution of the diffusion
equation but was limited to homogeneous semi-infinite or slab
media. Truly μs

0-scalable or white Monte Carlo methods have
been developed that enable postsimulation scaling of the scat-
tering coefficient, but they are currently limited to very simple
geometries, such as a homogeneous semi-infinite or slab
medium.36 While Monte Carlo approaches theoretically offer
flexibility in terms of head geometry, they were, in practice, lim-
ited to simple homogenous geometries for which a library of
Monte Carlo results could be computed ahead of time, in order
to avoid the long computation time required for Monte Carlo
simulations. However, with the advent of fast Monte Carlo

approaches based on graphical processing unit (GPU) compu-
tation,37,38 the use of numerical approaches to model the forward
problem of light propagation has become a viable alternative to
analytical solutions.

In summary, the CW-, FD-, or TD-NIRS estimations of the
adult brain optical properties based on a homogeneous model of
the head are known to introduce significant contamination from
extracerebral layers. More complex models have been proposed
and occasionally applied to in vivo data, but their performances
were never characterized on realistic head structures. Further-
more, the early implementation of Monte Carlo approaches has
been restricted to simple geometries and, therefore, has not
taken full advantage of the flexibility this modeling offers in
terms of geometry.

Therefore, the goals of the present study are twofold: (1) to
implement a flexible Monte Carlo-based fitting routine of TD-
NIRS data to retrieve the brain optical properties and (2) to char-
acterize its performance on realistic time-resolved adult head
data and compare them to the homogeneous analytical solution
of the diffusion equation. Multidistance TD data were generated
with a GPU-based Monte Carlo code at different locations over
the whole head on three subjects, including the frontal, parieto-
temporal, and occipital cortices. The simulated data were then
fitted with different models of light propagation and head geom-
etries. Specifically, we compared the homogeneous analytical
solution of the diffusion equation and Monte Carlo simulations
on two types of head geometries: a two-layer slab where the
thickness of the first layer can be fixed or estimated and a
generic atlas head registered to the subject’s scalp using super-
ficial landmarks. We characterized the performance of each fit-
ting approach in terms of relative error on the retrieved brain
absorption, linearity, and cross-talk from extracerebral tissue.
The present work is a continuation of our preliminary study,39

extended here to more head locations and more subjects,
and with a thorough characterization of the different fitting
approaches through new metrics.

2 Methods

2.1 Simulated Data

Realistic TD-NIRS datasets were generated using GPU-based
Monte Carlo simulations on adult heads whose structures were
obtained from MRI anatomical scans. Three subjects were
selected from a library of 32 head volumes, previously used
by Cooper et al. to validate the use of atlas-based image recon-
structions of functional data.40 We chose three subjects which
resulted in poor, average, and good performance in the func-
tional NIRS study. The head volumes were segmented using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu)41,42 into four tis-
sue types: extracerebral tissue (skin and skull), cerebrospinal
fluid (CSF), gray matter, and white matter. CSF, gray, and white
matters were subsequently combined into a single brain tissue
type. The details of the MRI scan preprocessing steps and of the
segmentation procedure have been previously described.40

Contrary to a previous study where we reported the perfor-
mance of the FDMD approach at one specific location on the
head,28 in the present work, we show a systematic characteriza-
tion of the TD-NIRS fitting methods at various locations over
the whole head. We defined three two-dimensional (2-D) arrays
of optodes with 1 cm spacing, to be placed over the frontal
(6 × 20 optodes), left parietotemporal (12 × 14), and occipital
(8 × 20) regions. For each array, four additional dummy optodes
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were defined to anchor the probe on a specific location on the
surface of the head. The probe was then wrapped onto the scalp
using an iterative, spring-relaxation algorithm that has been pre-
viously described by Cooper et al.40 The algorithm returns the
three-dimensional (3-D) coordinates of all optodes on the sur-
face of the head. The resulting probes wrapped on the head sur-
face of subject 1 are displayed in Fig. 1. Note that in a real-life
experiment, these coordinates could be obtained from 3-D digi-
tization of the optode locations with respect to superficial land-
marks on the scalp, such as 10–20 reference points.43

The true optical properties of the head were defined as fol-
lows. The reduced scattering coefficient was set to 10 cm−1 in
all tissue types. The CSF, gray, and white matters were com-
bined into a single brain tissue type. The brain absorption coef-
ficient was varied between 0.05 and 0.3 cm−1 in steps of
0.05 cm−1, while the absorption in the extracerebral layer (com-
bined scalp and skull) was set to 0.08, 0.1, or 0.2 cm−1. These
absorption properties were chosen to cover the broad range of
values reported in the literature over the 690- to 850-nm spectral
range.8,16,22,30,44 For each subject, and all three arrays of optodes,
we simulated time-resolved NIRS data with the GPU-based
code Monte Carlo eXtreme (MCX) developed by Fang et al.37

Each optode of a probe was set successively as a source, while
all other optodes from the same probe acted as detectors with
1 mm radius. For each source, we launched 109 photons,
which took <5 min on an NVIDIA C2050 Tesla GPU. A total
of 448 MCX simulations (one per optode location) were run in
parallel on a 16 GPU node cluster, for a total duration of <4 h

per subject. For each source, the MCX simulation returns a his-
tory file, which contains a list of all detected photons and their
individual partial path lengths in each tissue type.45 The result-
ing detected time-resolved fluence for any absorption coefficient
combination in the different tissue types can be computed from
this history file by applying the Beer-Lambert law, without
launching a new simulation. Note, however, that a set of differ-
ent scattering properties would require a different simulation.

To simulate a typical multidistance measurement setup, we
considered the TPSFs from one source and a line of four detec-
tors at 1, 2, 3, and 4 cm (see example on the middle panel of
Fig. 1). The resulting TPSFs were computed by integrating the
detected photons received over 50-ps-wide temporal bins. Note
that for each source, we recorded the photons detected on all
other optodes, but only four detectors were considered in the
fitting process. It is possible that different geometries would
be more advantageous and improve the performance of the

different fitting procedures, but we did not investigate this
aspect. For 109 photons launched at each source, the resulting
total numbers of detected photons were approximately 8 × 105,
1 × 105, 3 × 104, and 1 × 104 at 1, 2, 3, and 4 cm separations
(average over all subjects and all locations), with a correspond-
ing noise level at the peaks of the TPSF of 0.3%, 1.5%, 4%, and
7%, respectively. We used the MCX-generated TPSFs as the vir-
tual data without additional noise or convolution by an instru-
mental response function in order to estimate the performance of
the different fitting procedures in a best-case scenario.

2.2 Fitting Procedure

The simulated data for each source location (four TPSFs) were
fitted using a Levenberg-Marquardt algorithm for nonlinear iter-
ative least squares minimization (function lsqcurvefit from
MATLAB®, The MathWorks Inc., Natick, Massachusetts).
We applied the least square cost function to the square root
of the data to accentuate the relative weight of later delays.
The fitting parameters were the absorption coefficients of the
medium (one or two parameters depending on the model geom-
etry), the reduced scattering coefficient (one parameter), and one
scaling factor for each of the four source-detector separations.
As we will describe later, in the case of the two-layer slab, the
thickness of the first layer was not directly fitted for. Instead, we
looped through all fixed values of the thickness and estimated
the best value based on the minimal fit residual (defined as the
minimization cost function, i.e., the sum of squared differences
applied to the square root of the data). We fitted the TPSFs at the
four source-detector separations simultaneously. The fitting
range extended from 50% of the peak on the rising edge to
0.01% of the peak on the tail of each TPSF. We compared
different forward models of light propagation, namely the
analytical solution of the diffusion equation for a semi-
infinite homogeneous medium, and Monte Carlo simulations
of radiative transport for (1) a two-layer slab geometry with
varying thickness of the first layer and (2) a generic atlas head
geometry.

2.2.1 Analytical homogeneous model

We first fitted the data with the analytical solution of the diffu-
sion equation for a semi-infinite homogeneous medium, as is
most commonly employed in the literature. This serves as a
reference, and the performance of the other fitting approaches
will be quantitatively characterized relative to this model. We

Fig. 1 Three-dimensional view of the segmented head of subject 1, with the virtual arrays of optodes
wrapped onto the surface of the head, over the frontal, left, and occipital regions. The middle figure also
presents an example probe geometry at one optode location, consisting of one source and four detectors
in a row at ∼10, 20, 30, and 40 mm.
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used the expression first derived by Patterson et al.15 with an
extrapolated boundary condition as detailed by Kienle et al.23

The direct line source–detector distances (i.e., without taking
into account the head curvature) were rounded off to the closest
millimeter.

2.2.2 Monte Carlo models

While numerical approaches are slower than analytical ones,
GPU-based Monte Carlo methods have reduced the computa-
tion times by three orders of magnitude37,38 compared to tradi-
tional CPU-based numerical simulations, rendering it a viable
option for routine use in optical property fitting. Because the
history of each detected photon (i.e., its partial path length in
all tissue types) is saved, the detected fluence can be recomputed
at every iteration of the fitting process for a new set of absorp-
tion values45 without the need to launch a new Monte Carlo sim-
ulation. On the contrary, fitting for scattering coefficient values
requires either that a new simulation be run at each iteration of
the fitting process or that the result be obtained from a library of
prerun simulations for all possible scattering combinations.
For both geometries we implemented (two-layer slab and atlas
head), we generated a library of results for different scattering
values.

Monte Carlo fit on two-layer slab model. The two-layer
slab model provides a simple medium geometry to account for
the nonhomogeneous structure of the head in the absence of fur-
ther information. For this slab geometry, all simulations were
run beforehand, providing a library of data that are uploaded
during the fitting process. One advantage of this approach is
that the modeled geometry is independent of the true structure
of the subject, so that the library of Monte Carlo data is only
created once and can be used for any future subject.

We defined a large slab of lateral dimensions 180 mm by
180 mm and thickness 100 mm in order to minimize boundary
effects. The first 20 mm from the surface are split in 20 tissue
types, each one a layer of 1 mm. One source is located at the
center of the slab surface and 64 detectors of 0.5 mm radius are
located every 1 mm from 10 to 40 mm, along the x and y axes in
both directions. In the fitting process, the real source-detector
distances were therefore rounded to the closest multiple of
1 mm. The signals detected on detectors located at the same dis-
tance from the source (four of them) are subsequently averaged
to improve the signal-to-noise ratio (SNR). The reduced scatter-
ing coefficient is homogeneous across all layers and varied
homogeneously between 6 and 16 cm−1, in steps of 2 cm−1.
One MCX simulation with 109 photons was run for each μs

0.
Note that even though all layers were characterized by the
same absorption for the simulations, the absorption can be modi-
fied a posteriori in each layer since the path length traveled by
all detected photons has been recorded in a history file. We
therefore created a flexible library of resulting history files to
model a two-layer slab. The thickness of the superficial layer
and the absorption coefficients of the two layers, μa1 and
μa2, respectively, can be modified in the postprocessing of a sin-
gle Monte Carlo simulation result: we assign absorption μa1 to
the first N1 tissue types (layers) and absorption μa2 to the
remaining layers, thus creating a two-layer slab with a first
layer of thickness N1 mm. Using a homogeneous scattering
coefficient over the whole slab allows faster simulations and fit-
ting process. For a first layer thickness typical of real head
anatomy, the effect of the second layer μs

0 is negligible on

the resulting TPSF. We will review this assumption in more
detail in the Discussion section below.

Even though it is feasible, we did not fit for μa and μs 0 simul-
taneously in the Levenberg-Marquardt routine. Instead, we fix
the value of μs 0, fit for μa, record the resulting fit residual, and
repeat the process for all μs 0. We then select the μs 0 correspond-
ing to the lowest residual. For a fixed μs

0, the fit for μa takes
∼8 s because the large history file needs only be loaded
once. On the contrary, when fitting μa and μs

0 simultaneously,
a new history file needs to be uploaded at each iteration of the
nonlinear fit, each loading taking up ∼4 to 5 s. In the following
results, we looped through six values of μs 0 for the fits from 6 to
16 cm−1 in steps of 2 cm−1, for a total fitting time <1 min. Note
that we limited our search to six scattering values because our
goal here was to perform a time-consuming systematic study,
where ∼500 source locations and 18 absorption combinations
were fitted for, or a total of ∼10;000 individual fits per subject.
In the case of a real-life experiment, where only a few datasets
are recorded and need to be fit, a more refined search for the
optimal μs 0 can easily be implemented and would result in a
reasonable fitting time of a few minutes.

Monte Carlo fit on human brain atlas model. The use of a
template atlas head in place of the true subject’s anatomy has
shown great promises for reconstructing functional NIRS acti-
vation data.40,44,46 It allows the incorporation of a realistic brain
structure without the need for costly individual MRI scans. If the
optode locations have been registered with respect to specific
superficial landmarks, such as the 10–20 reference points, the
atlas head can be registered onto the subject’s head using these
superficial references, as was detailed in Singh et al.43 The opti-
cal reconstruction can then be performed on this registered atlas
with a known internal structure. Here we investigate the benefits
of translating this atlas approach to characterizing the baseline
optical properties of the brain. We are particularly interested in
investigating whether it is beneficial to employ a realistic
generic head structure, albeit not the true one, instead of a sim-
pler two-layer model in cases where the true structure of the
subject’s head is unknown.

We used the high-resolution Colin27 digital brain phantom
described by Collins et al.47 as the segmented atlas volume. This
anatomical atlas was first registered to each subject’s head using
an affine transformation of 33 superficial landmarks, from the
10–20 reference points of the atlas onto the corresponding 10–
20 reference points of each subject, using the method described
by Singh et al.43 In a real-case experiment, the coordinates of
these landmarks can be recorded using a 3-D digitizer. This
registration process also adjusts the probe on the registered
atlas surface. Monte Carlo simulations were then performed on
the registered atlas head using the transformed probe coordi-
nates. Similar to the data simulations, we segmented the atlas
head into two tissue types: intra- and extracerebral tissue.

As for the slab, we kept μs 0 homogeneous throughout the
head, assuming that the contribution of the brain’s scattering
is negligible, and we ran simulations for each optode and
each μs

0 between 6 and 16 cm−1 in steps of 2 cm−1. Unlike
the slab geometry, the atlas procedure requires new simulations
to be run for each new subject since the atlas structure first
undergoes an affine transformation to match the subject’s super-
ficial landmarks. Remember, however, that each simulation
takes only ∼5 min per scattering coefficient value. Therefore,
the creation of a subject-specific library takes only 1 h per
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source for 12 scattering values (or less if simulations are run on
parallel processors).

2.3 Performance Metrics of the Data Fitting

The performance of each fitting approach was characterized by
four metrics of the retrieved brain absorption coefficient: the
median relative error, the linearity (slope and R2), and the
cross-talk from extracerebral absorption. Each performance
metric was computed at individual optode locations, and we
present the median, 10-, 25-, 75-, and 90-percentiles over all
locations and all three subjects.

2.3.1 Relative error on brain absorption

At each location, we considered the retrieved brain absorption
for all 12 combinations of the true brain absorption varying
between 0.05 and 0.3 cm−1 in steps of 0.05 cm−1 and extrac-
erebral absorption of 0.1 or 0.2 cm−1. We then computed the
median of the absolute value of the relative error jμa;Retrieved −
μa;truej∕μa;True over all 12 values. This first metric characterizes
the accuracy we can expect on the absolute values of the
retrieved brain absorption.

2.3.2 Linearity

For extracerebral absorption fixed at 0.1 cm−1, and brain
absorption varying between 0.05 and 0.3 cm−1 in steps of
0.05 cm−1, we performed a linear fit of the retrieved brain
absorption coefficient and characterized the linearity by the
slope and the degree of freedom adjusted R2 of the linear fit.
The linearity metrics provide a measure of how accurately we
can detect changes in the brain absorption for constant extrac-
erebral contamination. Even if the retrieved absolute value for
brain absorption is inaccurate, it can nonetheless be useful to
detect relative changes accurately in individual subjects, for in-
stance, to look at variations over time during an intervention or
over several days during treatment.

2.3.3 Cross-talk

For each fixed value of the brain absorption between 0.05 and
0.3 cm−1, we computed the relative change in the retrieved brain
absorption for extracerebral absorption varying by 20% from 0.1
to 0.08 cm−1. The cross-talk is expressed as the corresponding
percent change in retrieved μa averaged over all brain absorption
values. We excluded from this computation cases where the
retrieved brain absorption reached the lower or upper fitting
boundaries (0.02 or 0.5 cm−1), which would artificially lead
to null cross-talk. This metric is important to characterize how
variations in the skin absorption will contaminate the retrieved
brain absorption.

3 Results
Figure 2 shows the fitting results for one source location on the
left probe of subject 2, for the extracerebral absorption set to
0.1 cm−1 and brain absorption varying between 0.05 and
0.3 cm−1 by steps of 0.05 cm−1. The homogeneous model
yields underestimated values for brain absorption, consistent
with high contamination by the lower extracerebral absorption.
The Monte Carlo fit based on the atlas geometry returns better
results. The absorption of the brain is slightly overestimated, but
shows good linearity with respect to the true values. Note that

this is not always the case and that at different locations the atlas
fit can retrieve under- or overestimated brain absorption. In the
case of the two-layer slab fit, the accuracy of the retrieved brain
absorption depends on the assumed thickness of the first layer.
The 6-mm layer results in highly underestimated absorption
(similar to the homogenous case), and at the other extreme,
the 14-mm layer yields highly overestimated brain absorption.
Interestingly, selecting the thickness that results in the smallest
residual for each fit (diamonds) yields good results, suggesting
that fitting for the extracerebral layer thickness is possible.

Figure 3 presents, for all three regions of one subject, the 2-D
maps of the median error on the retrieved extracerebral and brain
absorptions when applying the homogeneous model. The mag-
nitude of the error varies smoothly over the whole brain, with
regions of higher brain inaccuracy corresponding to regions of
better accuracy on the extracerebral absorption. This is most
probably due to the regionally varying thickness of extracerebral
tissue resulting in varying contamination.48 Notice, for instance,
how the error on the brain absorption is maximal (median 45%)
on the lower part of the frontal probe, where the brain is further
away from the scalp.

The overall performance of the different fitting approaches is
summarized in the box-and-whiskers plots of Fig. 4. The thick
horizontal line in each box represents the median, and the box
limits present the 25- and 75-percentiles of each metric over all
locations and all three subjects. The whiskers extend from the
10- to the 90-percentiles of the data. The smaller box plots on
the right of each plot show the performance for the individual
subjects. In the case of the Monte Carlo slab model, we show the
results for the thickness corresponding to the lowest fit residual,
i.e., when we estimate the extracerebral layer thickness based on
the goodness of individual fits (as represented by diamonds in
Fig. 2). The analytical homogeneous model yields the worst per-
formance as characterized by all metrics: the median error on
μa;Brain is ∼20%; linearity is poor with a median slope of 0.4
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Fig. 2 Example of fitting results for subject 2 at one probe location on
the left temporal region. The absorption coefficient in the extracerebral
layer was set at 0.1 cm−1, while the brain absorption varied between
0.05 and 0.3 cm−1. For the Monte Carlo based on the layered slab
geometry, the results of the fit for each thickness of the extracerebral
layer are presented. The diamonds show the retrieved absorption for
the thickness corresponding to the minimal residual.
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and low R2 of 0.92; and cross-talk is ∼8% for a 20% variation in
the extracerebral absorption.

The Monte Carlo approach on layered models improves all
metrics, both for the two-layer slab and for the atlas head geom-
etries. Accuracy is only moderately improved, from ∼20% error
with the homogeneous model down to ∼14 and 15% for the slab
and the atlas model, respectively. However, the linearity is more
dramatically improved with the layered geometries, both in
terms of slope (from 0.41 to 0.77 for the slab and 0.87 for

the atlas) and R2 of the linear fit (from 0.92 to ∼0.97 for both
the slab and the atlas). Finally, the cross-talk from extracerebral
layer is decreased from 7.8% with the homogeneous model
down to 5.5 and 4.7% for the slab and atlas geometries,
respectively.

The performance of the Monte Carlo approach on layered
models for both geometries (two-layer slab and atlas) varies
with subject (as can be seen on the smaller box plots of
Fig. 4), and within each subject with location (as illustrated

Fig. 3 Two-dimensional maps of the median error on the retrieved extracerebral and brain absorptions,
when applying the analytical solution of the diffusion equation for a homogeneous semi-infinite medium
on the simulated data for subject 1. Each pixel represents the median error computed at the correspond-
ing optode location over all combinations of μa;Extra-cerebral of 0.1 or 0.2 and μa;Brain varying between 0.05
and 0.3 cm−1 by steps of 0.05 cm−1.
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by large whiskers for each subject). For instance, in subject 1,
the use of the atlas is very advantageous (relative error and
cross-talk almost divided by two), while for subject 3, the homo-
geneous model results in good accuracy (14% error on average),
which is not improved by any of the Monte Carlo fitting. Note,
however, that linearity and cross-talk are improved in all cases.
While the linearity of the brain absorption is strongly increased
with the Monte Carlo methods (slope increasing from 0.4 to 0.8
and 0.9), it presents a relatively large interquartile range from
0.6 to 1.4, reflecting large variations between locations.
Similarly, we speculate that these variations are due to the
local head geometry, and more specifically to the thickness
of the extracerebral layer.

While we note relatively high variability between subjects, as
well as spatial variability over the head within each subject, we
did not observe systematic differences between the three probe
locations we studied (frontal, left, occipital, individual results
not shown). The forehead is a region of particular interest for
the characterization of baseline brain optical properties because
of the underlying prefrontal cortex involved in diverse cognitive
processes. Furthermore, it is unencumbered by hair, which facil-
itates measurements. We studied the results of the different fit-
ting approaches over a region of interest on the forehead, limited
to the four upper rows of the frontal optodes and leaving out the
three outer columns on each side of the probe (where more cur-
vature is likely to deteriorate the results). The performances of
all fitting approaches over this specific region were slightly bet-
ter than average, with medians of the relative error of 13.6%
(homogeneous), 11.8% (slab), and 14.2% (atlas). The corre-
sponding values for cross-talk were 5.5% (homogeneous), 4.0%
(slab), and 3.3% (atlas). The linearity was characterized by
slopes of 0.55 (homogeneous), 0.85 (slab), and 1.40 (atlas) and
R2 of fit of 0.95 (homogeneous), 0.98 (slab), and 0.97 (atlas).

4 Discussion

4.1 Benefits of Monte Carlo-Based Fitting Approach

Using the Monte Carlo fitting approach combined with a layered
model of the head (slab or atlas) improved the reconstruction
for all metrics compared with a homogeneous medium. The
improvement in terms of relative error is relatively modest,
leading to a reduction in the error of 30 to 25% on average
for slab and atlas, respectively. This value varies within each
subject depending on the location, as well as between subjects.
Cross-talk and linearity show a more dramatic improvement.
While accuracy in the absolute values is a requirement for com-
parison of brain parameters between subjects, cross-talk and lin-
earity are also essential parameters when measurements are to be
performed within one subject over time. In this case, higher
errors on the absolute values can be tolerated, provided that rel-
ative changes can be accurately detected with minimal contami-
nation by changes in extracerebral tissue. These results suggest
that it is beneficial to use a Monte Carlo-based approach com-
bined with a two-tissue-type model of the head when fitting
adult head data.

The benefits of the layered geometries, as well as the choice
of the best model, appear to be subject-dependent. For instance,
for subject 1, the two-layer slab reduces the average error by
∼50% (from 25% error with homogeneous down to 14 and
13%). In contrast, for subject 3, the use of the Monte Carlo
fitting does not improve the accuracy compared with a homo-
geneous model (error increasing slightly from 14 to 15%). Note

that both cross-talk and linearity are improved, nonetheless, for
subject 3. We postulate that the main contribution to this vari-
ability is the difference in the extracerebral layer thickness
between each subject and the atlas head. This would explain
why the two-layer slab, even though being a cruder representa-
tion of the head geometry and, in particular, ignoring its surface
curvature, can perform better than the atlas by allowing a vary-
ing thickness of extracerebral tissue. While we are not directly
fitting for the thickness of the extracerebral layer, we can esti-
mate it by selecting the fit of smaller residual over all thick-
nesses. A finer sampling of the first layer thickness and of
scattering coefficient values could easily be incorporated in
this procedure, but was not implemented here because it
would be too time-consuming in this systematic study. In our
ongoing work, we will investigate the option to combine ele-
ments of both models, for instance, by performing Monte Carlo
on ellipsoid-shaped medium with an extracerebral layer of vary-
ing thickness or by scaling the internal structure of the atlas
brain.

Note that the Monte Carlo approach proposed here in com-
bination with a layered slab or atlas head geometry could sim-
ilarly be applied to spatially and/or spectrally resolved CW-
NIRS data1–5 and to FD multiple-distance NIRS.6–14 We focused
this study on evaluating the method for TD-NIRS data, in com-
parison with the traditional homogeneous model. Comparing
the performance of this approach for different NIRS modalities
(CW, FD, and TD), incorporating realistic noise characteristic
for each technology, will require further studies beyond the
scope of the present manuscript.

4.2 Assumption of Homogeneous Scattering

For this study, we used a homogeneous scattering over the whole
medium in the reconstruction process (slab or atlas head). We
justify this assumption by the low sensitivity of TD-NIRS mea-
surements to the scattering coefficient of the bottom layer of a
two-layer medium for thicknesses typical of the adult brain (6
to 14 mm).

As a simple illustration, Fig. 5 shows the evolution of the
simulated TPSFs (Monte Carlo) for a source-detector separation
of 2 cm on a two-layer medium with a 1-cm-thick first layer, for
μa1 [Fig. 5(a)] or μa2 [Fig. 5(d)] varying between 0.05 and
0.40 cm−1, and μs1

0 [Figs. 5(b) and 5(c)] or μs2
0 [Figs. 5(e)

and 5(f)] varying between 4 and 20 cm−1. The effect of μa1
can be seen from early time delays [Fig. 5(a)], while μa2 affects
the slope of the TPSF at later delays [Fig. 5(d)]. Increasing μs1

0
shifts and broadens the TPSF [Figs. 5(b) and 5(c)], whereas the
effect of μs2 0 is very small for a low absorption of 0.1 cm−1

[Fig. 5(e)] and almost unnoticeable over the displayed five
orders of magnitude for a higher absorption of 0.2 cm−1

[Fig. 5(f)]. Furthermore, note that the range of scattering values
we studied (4 to 20 cm−1) is broader than that typically reported
in the literature. Similarly, we (data not shown) and others31,49

have observed that while TD or FD two-layer models enable
reasonable recovery of μa1, μa2, and μs1

0 on layered media,
in contrast, μs2 0 can only be estimated with high uncertainty
due to the low sensitivity of the TPSF to this parameter.

Using a homogeneous scattering coefficient over the whole
medium allows faster simulations and fitting. Recall that
each set of scattering coefficients requires a new simulation.
Scalable Monte Carlo methods have been proposed, where
the effect of a change in scattering on the detected fluence can
be computed with a single Monte Carlo simulation.50,51 This
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approach is, however, limited to small changes in scattering and,
in practice, is implemented to model sensitivity to scattering
changes but not its absolute value. Fully scalable Monte
Carlo, also known as white Monte Carlo, uses postprocessing
of temporal and spatial binning, but they currently require a
homogeneous infinite or semi-infinite model.36 Instead, we
used a library approach as was previously employed by different
groups.35 Sampling μs

0’ from 6 to 16 cm−1 by steps of 2 cm−1

required six simulations. Instead, if scattering is different
between the two layers, the numbers of simulations would
increase to 36 for a fixed layer thickness, or 180 combinations
for the thickness of the first layer varying between 6 and 14 mm
in 2-mm increments.

4.3 Limitations of the Present Study

4.3.1 Monte Carlo noise versus experimental noise

Using simulated data enables us to create realistic data for
known optical properties of the head. One limitation of this
approach is that we restricted the noise of the data to that inher-
ent to the Monte Carlo simulations. The Monte Carlo simula-
tions yielded photon counts of approximately 8 × 105,
1 × 105, 3 × 104, and 1 × 104 at 1, 2, 3, and 4 cm separations,
respectively (average over all subjects and all locations). The
corresponding noise level at the peak of each TPSF was approx-
imately 0.3%, 1.5%, 4%, and 7% of the signal. It is typical for in
vivo TD-NIRS experiments to report photon counts from 105 to

106 per TPSF for integration times varying from a few hundreds
of milliseconds to a few seconds.16,52,53 Since both Monte Carlo
noise and experimental shot noise vary as the square root of the
signal, our simulated SNR at 1 and 2 cm is realistic of exper-
imental conditions, while the Monte Carlo SNR at 3 and 4 cm is
lower than what is typically obtained in in vivo conditions.
However, the Monte Carlo SNR at long delays might be opti-
mistic compared to experimental conditions where other instru-
mental sources of noise, such as background noise arising from
dark counts and stray light, deteriorate the signal. In the inverse
problem, we fit the TPSF down to 0.01% of the peak, thus
assuming that experimental conditions permit the recording
of four orders of magnitude without reaching noise level. The
range of TPSF time delays we used (from 50% of the peak
on the rising edge to 0.01% of the peak on the tail) is typical
of what is presented in the literature.

In summary, the noise inherent to our Monte Carlo simula-
tions is similar to experimental conditions, but with differences
at large source-detector separations and long delay times. These
differences are likely to influence the uncertainty of the retrieved
absorption values, but we did not investigate the effects of differ-
ent noise levels or of different temporal ranges for the fitting,
which could be the subject of further work.

4.3.2 Head structure simplification

By using true head structures obtained from segmented MRI
scans, we were able to simulate data that are more realistic
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Fig. 5 Monte Carlo simulated temporal point spread functions (TPSFs) for a 20 mm source-detector
separation on a slab with a 10-mm-thick first layer. The absorption and reduced scattering coefficients
of each layer are varied independently to visualize their effect on the resulting TPSF. Upper row shows
the effect of the optical properties of the superficial layer: (a) varying absorption coefficient, (b) varying
scattering coefficient for μa ¼ 0.1 cm−1, (c) varying scattering coefficient for μa ¼ 0.2 cm−1. Lower row
shows the effect of the optical properties of the deep layer: (d) varying absorption coefficient, (e) varying
scattering coefficient for μa ¼ 0.1 cm−1, (f) varying scattering coefficient for μa ¼ 0.2 cm−1. The default
values are μa ¼ 0.1 cm−1 [(a), (b), (d), and (e)] or μa ¼ 0.2 cm−1 [(c) and (f)], and μs

0 ¼ 10 cm−1.
Absorption μa is varied from 0.05 to 0.40 cm−1 in steps of 0.05 cm−1, while reduced scattering μs

0 is
varied from 4 to 20 cm−1 in steps of 2 cm−1.
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than those obtained from homogeneous or two-layer slab geom-
etries, in particular, by taking into account the true head curva-
ture and the spatially varying thickness of extracerebral tissue.
However, our head model remains a simplification of the hetero-
geneity of real heads. In particular, we assumed homogeneous
scattering over the different head tissues. The skin and the differ-
ent bone layers were also combined into a single extracerebral
tissue type. Finally, we did not investigate the deterioration of
the fitting results when considering a low-absorbing and low-
scattering CSF layer. Further studies will require the description
of more tissue types with heterogeneous optical properties.

5 Conclusion
We implemented a Monte Carlo-based baseline optical property
fit of TD-NIRS data using either a two-layer slab geometry with
an extracerebral layer of varying thickness or an atlas head reg-
istered to the subject’s surface. We generated a library of Monte
Carlo data for the slab geometry, which can be used for any sub-
ject. For the atlas approach, new Monte Carlo sets need to be
created for each subject, which can be done in <1 h per source
with GPU-based computation. The fitting procedure itself takes
only a few minutes. The new approach was tested on extensive
datasets of simulated measurements realistic of the adult human
head, as opposed to previous studies relying on simulations or
phantom data in layered slabs. We found that both Monte Carlo–
based approaches offered improved performance compared to
the homogeneous solution in terms of accuracy (25% error
reduction), linearity (slope of 0.85 instead of 0.4), and cross-
talk (40% reduction). The best option (slab or atlas) seems to
be subject-dependent, suggesting the possibility of further
improvement based on a combined approach.
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