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Introduction

Abstract. The analysis of urinary stones is mandatory for the best management of the disease after the stone
passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an indi-
vidualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently
developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral
images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed
classification model yields >90% correct classification rate when compared to IR and is able to precisely locate
stone components within the structure of the stone with a 15 ym resolution. Due to the little sample pretreatment,
low analysis time, good performance of the model, and the automation of the measurements, they become
analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.19.12.126004]
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prepare a pellet or by using attenuated total reflectance (ATR),

The prevalence and incidence of stone disease, which affects up
to 12% of the population in developed countries, is increasing
worldwide." Therefore, an accurate description of the causes of
the disease is of major importance for the definition of the risk
profile of the patient. The metabolic disturbances experienced
by the patient and lifestyle factors are strongly related to the
type and composition of the resulting stone.>* Hence, this infor-
mation stands as a key diagnosis to determine the most suitable
treatment for each patient and reduce the high recurrence rate.
A better description of the underlying mechanisms could
improve the patient’s quality of life and strongly reduce the
important medical costs linked to urinary stones management.>®

The simplicity of the sample treatment, the low cost associ-
ated with the measurements, and the usefulness of the obtained
results have led infrared (IR) spectroscopy to become the refer-
ence method as well as the most widely used technique for uri-
nary stones characterization.” In addition, some quantification
methodologies based on IR spectroscopy have also been devel-
oped. In this regard, the most relevant bibliography describes
linear quantification models based on the calculation of the
ratio of single spectral bands (specific for each type of urinary
stone), so most of the information on the spectra is not used into
the calculations.®® Despite the popularity of IR analysis, it
also shows some limitations derived from the sample treatment.
Due to the need of grinding the sample for its analysis either to

*Address all correspondence to: Montserrat Lépez-Mesas, E-mail: monserrat
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the spatial dimension of the determination is lost.

The traditional alternative to IR for a space-defined charac-
terization of the stone is the optical microscopy approach,'®
which is usually linked to elemental analysis. A correct interpre-
tation of the results obtained by this methodology can bond the
stone to the different etiologic situations the patient has gone
through. The high detail of the results, though, is strongly de-
pendent on the analyst’s expertise and is also time-consuming.
Besides, this approach is not cost-effective for widespread use in
general clinical laboratory.

Despite its restrictions, the use of microscopy has allowed the
establishment of a correlation of the stone structure with the
etiological factors that led to its formation, which has been prop-
erly addressed in bibliography.'®'? Other high-resolution imag-
ing approaches have also indicated the relevance of a proper
description of the component distribution.’* As an example,
the location of carbonate apatite only in the core of calcium oxa-
late stones suggests the existence of a Randall plaque, a direct
result of renal tissue damage, which requires specific treatment.
Such degree of detail is efficiently achieved using imaging tech-
niques.'* Nowadays, hyperspectral imaging (HSI) techniques
are becoming the trend for diagnosis in many medical fields
and have been often applied to tissue analysis.'> HSI allows
the analysis of large datasets by the use of multivariate analysis
techniques.'® They have also been implemented for the analysis
of urinary stones by Pucetaite et al.'” and Piqueras et al.'®
The former experiment included a descriptive pixel-to-pixel
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analysis of only a few urinary stones, and at a lower resolution
compared with the work described here. The latter uses high-
precision equipment that yields excellent resolution results and
implements a chemometric model for the classification of pixels.
However, the measurement of the suggested IR maps requires,
naturally, a significant amount of time to be performed.

In a previous work, a novel methodology based on HSI was
developed.'® Because it allows the measurement of a spectrum
for each pixel of an image, it overcomes the issue concerning the
spatial definition. Hence, the identification of the components in
a urinary stone with a fully analyst-independent method was
possible. In that work, urinary stones could be classified into
groups according to their chemical composition and stone struc-
ture, as previously described in Refs. 10 and 20, and the results
were compared with those obtained from optical microscopy.
However, the results achieved were not directly comparable
to those coming from IR spectroscopy, because the classification
of the stones did not include the quantification or approximate
gradation of the chemical components. A new study involving
the reference and most commonly used method for the classi-
fication of urinary stones, IR spectroscopy, seems of high inter-
est to test the capability of this methodology for use in routine
analysis. This work describes the potential of the developed
near-infrared (NIR) HSI methodology for the automatized
analysis of urinary stones. It combines data analysis steps
already described in the literature, but focuses on a new appli-
cation that represents a clear advantage against the state of the
art in clinical laboratories.

The novelties of the work presented here are (1) to present a
novel methodology for the classification of urinary stones, based
on HSI, and giving pixel-to-pixel classification results; (2) com-
paring the performance of the newly designed methodology
with the reference technique, IR spectroscopy; (3) using a high-
resolution technique while keeping a high analysis speed; and
(4) posing the bases for the consideration of this methodology,
which is fast, inexpensive, and analyst independent, as an alter-
native to the reference technique.

2 Materials and Methods
21 Samples

A total of 200 samples of urinary stones were selected from a
library of more than 1400 units. The urinary stones were
obtained either from natural expulsion or surgical removal from
patients of the urology service at the Hospital Universitari de
Bellvitge, Barcelona (Spain). The samples underwent no other
treatment than ethanol and water rinsing for cleaning and con-
venient drying for their proper conservation. Note that in this
work, sample stands for a urinary stone (or various stones or
stone fragments) collected from a patient in a single episode.
If a sample consists of several pieces coming from the cleavage
of the stone, they are not considered independent. Any piece of
stone obtained directly from the patient (e.g., after a lithotripsy
treatment) or after cutting the stone for its analysis is considered
a fragment.

The selection criterion was to include the widest variability
within each class of stones in terms of structure and composition
considering both pure and mixed components. For the analysis
of the samples used to compare both methodologies, a few rep-
resentative fragments were used from each stone sample. The
methodology is intended to prove its efficacy for the analysis
of some fragments instead of selecting all the pieces. The
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fragments were chosen so that they were representative for
the structure of the whole stone (core components, surface
deposits, etc.).

The sample preparation differs for each of the analysis tech-
niques used in this work. Stone samples were selected using
microscopy as described in Sec. 2.2 and later analyzed using
IR (Sec. 2.3) and NIR-HSI (Sec. 2.4). Note that NIR-HSI mea-
surements were performed first because HSI is a nondestructive
technique.

Microscopy only required cutting the samples for the obser-
vation of the outer and inner parts of the stone.

For the measurement of the IR spectra of the samples, a rep-
resentative fragment of each sample was dried in an oven for
24 h at 40°C prior to the analysis. The sample was ground in an
Agatha mortar and 0.9 mg of the sample was then mixed with
0.3 g of KBr powder. A pellet was prepared by setting this mix-
ture under 10 Tm pressure in a manual press (Perkin Elmer,
MA, USA).

Different from IR, HSI is fundamentally a surface analysis
technique and requires a relatively flat surface for the measure-
ments. Reflectance spectra are measured, so an uneven surface
would lead to an important signal loss. All samples were cut
with a surgical knife, thus fulfilling the requirements of HSI
and allowing the acquisition of spectra from the inner part of
the stones, which usually carry important information related
to the stone history. Due to the characteristics of the technique,
the whole exposed surface was analyzed after placing the sample
on a plastic holder with the area of interest facing the detector.
For those samples in which the inner and outer parts were clearly
different, both were analyzed for better accuracy of the result.

2.2 Microscopy

Stereoscopic microscopy was used for the selection of samples
(training and test sets) prior to the IR and NIR-HSI measure-
ments, according to morphological features such as texture,
color, and structure. These features allow the achievement of
the sample selection criteria indicated in Sec. 2.1. Microscopy
analyses were performed as widely described in Refs. 10 and 11.

For those samples not clearly classified using optical micros-
copy, scanning electron microscopy was used since it allowed
the close visualization of the structure of the stones and the per-
formance of elemental analysis. The equipment used was a
JEOL JSM-6300 scanning electron microscope (Japan), coupled
to an Oxford Instruments Link ISIS-200 x-ray dispersive energy
spectrometer (UK).

Microscopy should be considered in this work as a support
methodology used for sample selection, because it only gives
qualitative information. The numerical comparison between IR
and NIR-HSI was done on all the samples and standards after
this selection step.

2.3 IR Methodology

IR spectroscopy has been used as reference methodology to test
the results of NIR-HSI. The main advantages of considering IR
as the standard are the robustness and wide acceptance of the
technique and the calculation of a numerical value for the sam-
ple composition. The IR spectra of the prepared pellets were
collected using an IR spectrometer Spectrum BX (Perkin
Elmer, MA, USA). The spectral range measured ran from 450
to 4400 cm™~! (which corresponds to a wavelength range from
~2200 to 22,000 nm), with a spectral resolution of 4 cm™.
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For the determination of the sample composition, a compari-
son of the measured spectra with those in Ref. 21 was done. This
collection of spectra considered pure compounds, combination
of two species, and even combinations of three components for
the common cases of calcium oxalate mono and dihydrate and
carbonate apatite, including different gradations for the amounts
of each component in a 10% (w/w) grading.

2.4 NIR-HSI Device and Architecture Setup

HSI technique, also known as chemical imaging, can be
regarded as the stacking of pictures of the same surface, each
of them taken at a different wavelength.?> This group of images
defines the so-called hypercube, a three-dimensional dataset that
is analyzed as a single image containing a full spectrum for each
pixel.* This technique, therefore, leads to the complete charac-
terization of every pixel of the image. Compared to IR, HSI
offers not only one spectrum per sample, but several hundreds
while consuming the same amount of time (a few seconds) for
the measurements.

The HSI device used was configured at DICMA, Sapienza—
Universita di Roma (Rome, Italy) and is precisely described in
the previous work.!® The main feature of the equipment is an
imaging spectrometer ImSpector™ N17E (Specim, Finland)
with a spatial resolution <15 um. The spectral resolution was
7 nm, covering the spectral range from 1000 to 1700 nm,
which yielded a total of 121 wavelengths (data points/spectrum)
measured. The spectrometer was coupled to a 50 mm lens with
an image resolution of 320 pixels. The software Spectral
Scanner™ v.2.3 (DV Optics srl, Italy) was used for the acquis-
ition, preprocessing, and visualization of the images. The reflec-
tance signal was calculated as a function of the calibrated black
and white limits.

It is interesting to note that both IR and NIR are included
within the IR spectral range but they do not overlap. The equip-
ment used for those measurements, therefore, gives spectrally
independent signals. This fact makes it clear that the chemical
properties (i.e., bond vibrations or rotations) observed for the
classification are different for each case. NIR represents an alter-
native spectroscopic approach, which offers results comparable
to IR, yet requires little sample pretreatment.

When using HSI, the radiation penetration depth is defined as
the depth at which the incident light is reduced by 99%. It varies,
in fact, according to sample characteristics, surface attributes,
and investigated wavelengths (depth is lower when wavelength
increases). In this study, this magnitude can be estimated as 10
to 20 um.

The pixel resolution is much smaller than the size of any uri-
nary stone (which generally ranges from a few millimeters to
2 cm), and is also smaller than most surface imperfections or
porosity. This resolution prevents any remarkable signal loss
or pixel misclassification, because the area surrounding the sur-
face defect would still be correctly classified.

2.5 Data Analysis

The data treatment included the handling of the spectra, creation
of the classification (reference) model, and sample treatment.
The NIR reflectance spectra were directly analyzed as
obtained, i.e., no derivatives or other data pretreatment were
applied. However, due to the large amount of information avail-
able from the HSI measurements, the reduction of the dimen-
sionality of the system was required so that only the most
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influential variables (wavelengths) were taken into considera-
tion. For this issue, a randomized principal component analysis
(PCA) algorithm was used to select the 10 principal compo-
nents, a figure chosen by cross-validation. This way each pixel
is represented by a vector of 10 components instead of more
than 100 spectral measurements. This decreases the number of
parameters for the classifier to learn, thus preventing overfitting
to a great extent. Since the variables that had little classification
power were not included in the model, the noise of the system
was likewise decreased.?*

The classification model included a variable number between
six and eight stone fragments of each stone type with homo-
geneous composition. Each stone fragment was collected from
a different patient, so model overfitting was reduced. Note that
although only a few samples were taken in the training set
according to the characteristics of the HSI technique (i.e.,
acquisition of a spectrum for each pixel of the image sample),
thousands of pixels were used for training purposes. The number
of samples in the model was large enough to cover all the nat-
urally occurring components in urinary stones.

The image analysis of the training and test sample sets was
performed using SciPy and Scikit-learn, two open source
Python libraries for scientific analysis.?>®

A series of classifiers were tested for the creation of a model
able to categorize the samples. A classifier is any mathematical
function able to assign a label “class” to a given sample when it
has been learned on a specific training set.?’ Following the cri-
teria of the best classification rate, quadratic discriminant analy-
sis (QDA) was selected. This classifier is a classic Bayesian
method, generally used on machine learning. It assumes the nor-
mal distribution of the data within each class and different cova-
riances within classes.”® Due to the complex nature of the
sample set used in this work, QDA is a good approach since
it can establish boundaries between classes based on quadratic
algorithms, so it is more flexible than linear classifiers. This
classification scheme showed a better performance than others
tested, including k-nearest neighbor, random forest, and support
vector machines.

The creation of the model included a test step using the leave-
one-out approach. The vectors of 10 principal components of
every pixel of each fragment are placed in a pool. Then, each
time a certain fragment has to be analyzed, that is when we want
to assign a class label to each of its pixels, they are removed
from the pool which now is the training set. The QDA classifier
parameters are learned and the classification on the given frag-
ment vectors, which act as the testing set, is performed. This
process is iterated for every fragment. In pattern classification
literature, this procedure is known as leave-one-out, although
in this case it was done at a fragment level.**

When the classification model created using the standards
was applied to the samples, the structural analysis of the stone
was achieved. The physical structure of the stone was recon-
structed based on the results for the analysis of each pixel.
These procedures lead to the creation of chemical maps of the
stones which represent the spatial resolution of the technique.

3 Results and Discussion

3.1 Performance of the HSI-NIR Model

The training set was analyzed using IR spectroscopy (reference
values) and also using NIR-HSI. In this case, only homogeneous
samples were considered, since the objective of this step was to
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COD UA

COM BRU STR CAP UAD

CYS

Fig. 1 Results for the classification using the training set. Not all the samples used for the creation of the
model are shown. Upper row: reconstructed image from the original stones, obtained from the Spectral
Scanner software. The different fragments (with different origins) can be appreciated. Lower row: results
of the classification model, where each pixel is assigned a class and, so, a different color (from MATLAB®

software).

train the classifier in the recognition of stone classes using a
large number of pure pixels. It was easier to isolate pure pixels
in homogeneous stones. The advantages in spatial resolution of
HSI are not relevant in this step. The graphical results obtained
for the HSI model performance are shown in Fig. 1.

The overall correct classification rate of the model was cal-
culated to be 90.4% in terms of correctly classified pixels com-
pared to the results obtained by IR spectroscopy. The specific
efficacy of the model on the classification of each stone type
is shown in the normalized confusion matrix (Table 1). The
diagonal of the matrix shows how, for most classes, only a
minor number of pixels are confused with other classes, with
the exception of carbonate apatite [Ca;o(PO,)(COs, OH)q
(OH),] (CAP) and struvite (Mg - NH,PO, - 6H,0) (STR).
Indeed, the confused pixels for the rest of the stone classes re-
present only residual values. Note the composition difference

between CAP and hydroxylapatite (lacking any carbonate ion
in the lattice), sometimes misclassified as the main component
of CAP stones.

It can be appreciated that the general behavior of the model is
very efficient, with the overall results >95% of correct predic-
tion for most stone classes. The exception is represented by CAP
and STR, which are confused with each other in an important
percentage (30 to 40%). These results can be attributed to the
similar features their NIR spectra share and the related appear-
ance of both types of urinary stones. The model shows a good
general result, even considering the remarkable variability
within groups seen in the spectra, as plotted in Fig. 2. The gen-
eral trend of the spectra in each class and the unique spectral
bands for some components lead to a proper classification result.
The mean spectra of the training set shows such specific bands
(see Fig. 2). As specified in Sec. 2.4, NIR does not overlap with

Table1 Normalized confusion matrix. The efficiency of the model can be measured as a percentage of correct classification for each stone class.

Type of stone

Predicted values (%)

(mineralogical composition)

BRU CcOoM UA COD CAP CYs STR UAD
BRU 99.37 0 0.08 0.55 0 0 0 0
COM 0.04 99.75 0 0.04 0 0.17 0 0
UA 0 0 99.33 0 0.16 0.08 0 0.43
COD 0 0 0 99.77 0.17 0 0.06 0
CAP 4.83 0 0 1.26 73.33 0.07 20.51 0
CYs 0 0 0 0.03 0 99.84 0.13 0
STR 0 0 0 0 26.55 0.02 73.43 0
UAD 2.06 0 0.36 4.58 0 0.72 1.17 91.11

BRU, brushite (CaHPO, - 2H,0); COM, calcium oxalate monohydrate (CaC,0, - H,0); UA, uric acid (CsH;N4O3); COD, calcium oxalate dihydrate
(CaC,0, - 2H,0); CAP, carbonate apatite [Ca;(PO,4)(CO3, OH)s(OH),]; CYS, cystine (CsH12N204S,); STR, struvite (Mg - NH,PO, - 6H,0);

UAD, uric acid dihydrate (CsHsN,Os - 2H,0).

Journal of Biomedical Optics

126004-4

December 2014 « Vol. 19(12)



Blanco et al.: Taking advantage of hyperspectral imaging classification of urinary stones against conventional infrared spectroscopy

CoM CoD

0.

o

o
o~

2
‘a
<
v
£
v
Eo
g
&

03

0.2

950 1090 1230 1370 1510 1650 950 1090 1230 1370 1510 1650 950 1090 1230 1370 1510 1650 950 1030 1230 1370 1510 1650
nm rm m m

CYs UAD BRU

Reflectance intensity

950 1090 1230 1370 1510 1650 950 1090 1230 1370 1510 1650 950 1090 1230 1370 1510 1650 950 1090 1230 1370 1510 1650
m rm m m

Mean

09

08 ).

— BRU N .
03f{ -- com . ’

coo

02 <Ys

UAD

950 1090 1230 1370 1510 1650
nm

Fig. 2 First and second rows: accumulation of all the spectra of the training set, plotted as reflectance
intensity versus wavelength (nm). The mean spectra are plotted at the bottom of the image.

the IR spectral range. Despite this important difference, most for proper recognition of urinary stones’ mineralogical compo-
of the relevant bonds in organic components can be identified nents, as discussed here.

in the NIR range, including: C—H, S—H, N—H, O—H, or O—H The distribution of pixels (depending on the size and number
linked to an aromatic ring. The sensitivity of those bonds (which of stones used in the model) of each class used for creating
are also identified in IR spectroscopy) in the NIR range allows the model is shown in Fig. 3. Only uric acid dihydrate
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Fig. 3 Frequencies histogram. The model is created from such a dis-
tribution of pixels. The total count of pixels is related not only to the
number of fragments considered for each group but also to the size of
those fragments.

(CsH4N,O5 - 2H,0) (UAD) counts had a smaller number of
pixels for the creation of the model; it was difficult to find stones
rather pure in UAD and with no contamination of uric acid
(CsH4N,0O3) (UA), since UAD rapidly transforms into UA in
contact with urine.” The computer model, though, is able to
perfectly discriminate (>99%, as seen in Table 1) between the
two derivatives of uric acid, and also to distinguish them from
any other component to a great extent.

3.2 Conventional IR Analysis of Samples

From the test samples group, only one sample was discarded
from the experiment using IR spectroscopy. Its composition,
according to the IR analysis, was 100% dittmarite, correspond-
ing to the chemical composition MgNH,PO, - H,O. This min-
eral corresponds to the dehydration of STR, the hexahydrated
derivative, which may take place during storage periods of
these stones.*® The NIR-HSI test set did not include such unex-
pected minerals as standards, so the sample was not considered.

3.3 Implementation of the NIR-HSI Model

The created model was rapidly implemented on the 200 test
samples by using the described data analysis software.
Two types of output were demanded from this software: the
classification of each pixel into a group from the standards
and a reconstructed picture of the stone, from which the location
of all components and their spatial relationships are easily
recognizable. These pictures represent the spatial resolution,
that is, the possibility of performing a topological assessment

Table 2 Overview of the classification results obtained by the near-
infrared hyperspectral imaging (NIR-HSI) methodology and their cor-
relation to IR spectroscopy for each type of stone. Results correspond
to a total of 200 urinary stone analyses using both techniques.

Type of stone  BRU CAP COD COM CYS STR UA UAD Mixed

Correlation (%) 88 60 78 94 100 64 93 90 78
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of the detected species in the sample offered by this methodol-
ogy: the added value that NIR-HSI offers compared to IR
spectroscopy.

The samples in the test set were analyzed using the NIR-HSI
model and the results, expressed as percentage for each compo-
nent, were compared to the composition measured by IR spec-
troscopy. Assuming an error <10% for the IR classification due
to the component gradations in the consulted bibliography, the
results from NIR-HSI were considered to correlate with the IR
results if the NIR-HSI composition matched, considering +10%
deviation.

A thorough analysis of the results shows the composition
obtained by NIR-HSI to generally fit that from IR (achieving
70% correlation), with some variations that require a more care-
ful analysis. It should be taken into account that the sensitivity of
minor components is higher for the NIR-HSI technique than for
IR spectroscopy. Minor components could cause only a small IR
spectral band to grow or appear, so the spectrum would hardly
be changed. IR spectroscopy strongly relies on the analyst’s
experience, so such small changes might be hard to quantify.
Instead, since each pixel is analyzed individually by NIR-HSI,
minor components are identified with the same precision as
main constituents of the sample. Therefore, as will be seen later,
NIR-HSI can give more information in some cases than IR spec-
troscopy does.

The description of the classification results and their corre-
lation to the IR analyses is listed as groups based on their min-
eralogical composition and is summarized in Table 2.

3.3.1 Calcium oxalate

This complex group of urinary stones includes calcium oxalate
monohydrate (CaC,0, - H,O) (COM), calcium oxalate dihy-
drate (CaC,0, - 2H,0) (COD) and, frequently, a mixture of
those components together with CAP. In addition, COD is not
stable in contact with urine, so it slowly transforms into the
thermodynamically most stable derivative COM.?! Thus, both
species can be found in a wide range of proportions. When the
model was applied to this group of samples, the classification for
those containing basically COM correlated >90% with that of
IR spectroscopy. For COD and mixed stones, the percentage
stayed close to 80%. This difference could be based on terms
of frequency and composition. While stones whose composition
is >90% COM are very common, COD tends to be mixed with
COM (often formed from COD transformation) or CAP in var-
iable amounts.'” This fact could cause the calculated composi-
tion by NIR-HSI to be outside of the +10% error for the IR
spectroscopy results, thus a wrong correlation was considered.
It must be stressed that NIR-HSI is able to locate the different
components in the stone, allowing the performance of a full tex-
tural characterization of the minerals constituting the stone
itself. Starting from these features, it is possible to derive useful
information about stone formation and, as a consequence, to for-
mulate a description of the position and the moment in which
each component precipitated. Thus, these mixtures of several
components were described in a further dimension.

3.3.2 Cystine

This stone type presented the highest correlation rate, namely
100% of the samples analyzed by NIR-HSI completely agreed
with the IR analysis. This type of stone is strictly related to a
genetic disorder, so cystine (CgH[,N,0,S,) (CYS) precipitates
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in special conditions and it usually does not coprecipitate.
Besides, since CYS is the only species in the studied group con-
taining C—H bonds, its NIR spectrum shows unique features.

3.3.3 Phosphate stones

CAP and STR stones, as well as the less frequent brushite
(CaHPO, - 2H,0) (BRU) group form this heterogeneous
group of stones. The classification of BRU urinary stones by
NIR-HSI correlated as much as 87.5% to that from IR spectros-
copy. Only a few pixels in several samples were confused with
CAP (as seen in the model), which is also a calcium phosphate.
In regard to CAP and STR, the NIR-HSI model could match
~60 to 65% (see Table 1) of the results to those obtained by
IR spectroscopy. As seen in Fig. 2, the NIR spectra of both spe-
cies are similar and they tend to precipitate together, so the quan-
tification of each component in mixed stones becomes difficult.
Although the composition obtained by NIR-HSI was not dra-
matically different from the IR results (most samples remained
within the +20% range), the portion of samples that were out-
side the +10% region set as the correlation range was higher
than that of other urinary stone groups.

3.3.4 Uric acid

This type of stone actually includes two different components:
UA and its kinetic derivative, the dihydrated form (UAD). The
analysis of both components by NIR-HSI yielded very good
results, with a correlation >90%. The model could distinguish
with little error these two forms of UA, and its comparison to the
IR results were correct.

3.4 Spatially Defined Analysis

As already stated, the main advantage of the NIR-HSI technique
over the conventional IR spectroscopy is the spatial resolution of
the analysis (i.e., topological assessment of the different miner-
alogical species), not available when the sample is ground for
the IR measurements. Thus, NIR-HSI offers the possibility to
describe all the stages in the stone formation and the urine

conditions at each point of the process, information that can
direct a treatment that is precisely adapted to every patient.
This is the advantage that the examples presented in this section
highlight.

Among the total amount of samples that were analyzed, some
specific representative examples will be accurately described in
order to illustrate the performance of the developed model and to
highlight the differential results that both techniques offer
(Fig. 4). The results for the composition of these examples
are listed in Table 3.

The first example [Fig. 4(a)] shows a calcium oxalate mixed
stone, with a similar composition for both methodologies. This
stone presents a singular structure: it is basically a COM stone,
totally covered by a COD layer. Thus, the order of precipitation
is important; COD (which usually precipitates due to a high con-
centration of Ca ion and oxalate in urine’) precipitated exclu-
sively at the end of the stone episode. In this case, it should be
appreciated that the higher percentage of COD quantified by the
NIR-HSI technique is due to the analysis of both the inner part
and surface at the same time so the COD surface is bigger than
that for COM. HSI is a surface technique, so attention shall be
paid to which part of the stone is being analyzed. Once this is
clear, HSI allows the description of two steps in the stone for-
mation, while IR can only give a general composition ratio of
these two phases.

The stone in Fig. 4(b) corresponds to a very common com-
position, calcium oxalate and CAP. In this case, the stone was
formed as COD and the core transformed into COM due to the
higher stability of the latter.'® We can observe this phenomenon
as a different color in the stone nucleus. CAP did precipitate in
this stone as a few deposits within the stone structure. Both tech-
niques could identify the same three components; the higher per-
centage of COM in the IR should be attributed to the difference
of relative surface (NIR-HSI) and relative weight in the stone
(IR) of this component. NIR-HSI allows the location of CAP
not only in the stone core so the stone formation steps become
clearer when image analysis is used.

The mixed stone of UA and COM in Fig. 4(c) yielded a very
similar percentage composition when analyzed by the two

COD UA COM

Color code -

BRU STR  CYS

CAP  UAD
3 Hy |

Fig. 4 Examples of some results for stone analysis comparing near-infrared hyperspectral imaging and
infrared spectroscopy. First row: color, real pictures of the samples. Second row: reconstructed images
corresponding to the samples listed in the first row; these images are the output of the imaging analysis
software used (the legend shows the correspondence between colors and components).
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Table 3 Mineralogical composition corresponding to the samples
listed in Fig. 4, according to the two methodologies used. The com-
position values are expressed as percentage.

Sample a b c d e
NIR-HSI 90 COD
40 COM 78 COM 63 STR 55 UA
5 COM
60 COD 22 UA 37 CAP 45 UAD
5 CAP
IR 80COD 80COM 70 STR 60 UA
60 COD
15 COM 20 UA 30 CAP 40 UAD
40 COM

5 CAP

methodologies suggested in this work. However, NIR-HSI
allowed the location of COM in the core of the stone, so the
acidic urine conditions needed for the precipitation of UA
can be located in the latter stages of the stone formation.
This separate analysis of core and shell parts requires the addi-
tion of steps to the stone analysis process by IR spectroscopy
(the measurement of two spectra), so the time for the analysis
is increased.

The stone in Fig. 4(d) is a common mixed stone, which
includes CAP and STR. These stones usually lack any defined
structure, and this exact situation can be seen in the picture. The
quantification of the stone components is really similar using
both techniques.

In Fig. 4(e), UAD is the kinetic derivative of UA, and, as seen
in the calcium oxalate case, it also slowly transforms into the
most stable UA if it remains in contact with urine.** While
the composition according to both techniques is basically the
same, HSI also gives the distribution of components, which
appears to be different in the two analyzed fragments. HSI is
able, in this case, to define which fragments are UAD, so the
description of the sample is totally precise for this particular
patient.

4 Conclusions

The present work has verified for the first time the modern meth-
odology (NIR-HSI) applied to urinary stone analysis by a com-
parison with the conventional procedure based on IR
spectroscopy. The developed HSI methodology presents a
unique distinctiveness against conventional IR spectroscopy
for urinary stones classification, by appropriately locating com-
ponents in the stone. Given the relevance of the location of com-
ponents in the stone structure for the proper description of the
etiologic causes, this methodology represents a clear advantage
compared to IR in terms of performance.

The efficiency of the software turns this technique into a
totally analyst-independent procedure that requires a very
short analysis time, typically 1 to 2 min including spectra
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acquisition and data analysis. This time is comparable to IR
spectroscopy, in the case where IR is linked to ATR, which
shortens the sample preparation time described in this publica-
tion (there is no need to prepare pellets). Maintenance costs are
as low as in IR and no chemicals are needed for the analysis. The
versatility of HSI for the analysis of solid samples (not very
extended in clinical laboratories) provides interesting possibil-
ities to easily adapt the device to other sample types and medical
specialties. This versatility would compensate the initial inver-
sion required in any laboratory for an HSI device. These advan-
tages position this methodology as an attractive update for stone
analysis in clinical laboratories.

The high performance of the developed technique leads to a
more accurate description of the stone history, which, in turn,
allows a more precise diagnosis. NIR-HSI produces key infor-
mation for an individualized treatment.

Acknowledgments

The authors acknowledge the financial support of the Spanish
Ministerio de Economia y Competitividad (MINECO, Spanish
Ministry for Economy and Competitiveness) through the
CTM2012-30970 Project and the Ministerio de Educacion,
through Becas FPU (Ref. AP2009-3245) and the Subprogram
Estancias Breves (EST2012-940), for funding F. Blanco stages
in foreign institutions. The Spanish-Italian Program for
Integrated Action is likewise acknowledged (Ref. IT2009-
0024). Second and third authors were supported by Spanish
R&D projects TIN2011-29494-C03-02 and TRA2011-29454-
C03-01, respectively.

References

1. A.Hesse et al., “Study on the prevalence and incidence of urolithiasis in
Germany comparing the years 1979 vs. 2000,” Eur. Urol. 44, 709-713
(2003).

2. C. D. Scales et al., “Prevalence of kidney stones in the United States,”
Eur. Urol. 62, 160-165 (2012).

3. H. G. Tiselius, “Who forms stones and why?,” Eur. Urol. Suppl. 10,
408-414 (2011).

4. A. Hesse et al., Urinary Stones: Diagnosis, Treatment and Prevention
of Recurrence, st ed., Karger, Basel (2009).

5. R. Siener and A. Hesse, “Comparative costs of various treatment strat-
egies and preventive measures,” in Urolithiasis: Basic Science and
Clinical Practice, J. J. Talati et al., Eds., pp. 897-901, Springer,
Amsterdam (2013).

6. C.Y.C.Pak et al., “Predictive value of kidney stone composition in the
detection of metabolic abnormalities,” Am. J. Med. 115, 26-32 (2003).

7. G. Rebentisch et al., “Assessment and maintenance of the quality of
urolith analyses in a comparison of methods. 4th International Ring
Test to check quality,” Int. Urol. Nephrol.; 20(1), 35—45 (1988).

8. J. L. Garcia, M. J. Torrejon, and M. Arroyo, “Development of a method
for the quantitative analysis of urinary stones, formed by a mixture of
two components, using infrared spectroscopy,” Clin. Biochem. 45(7-8),
582-587 (2012).

9. R. Selvaraju, G. Thiruppathi, and A. Raja, “FT-IR spectral studies on
certain human urinary stones in the patients of rural area,” Spectrochim.
Acta A 93, 260-265 (2012).

10. F. Grases et al., “Simple classification of renal calculi closely related to
their micromorphology and etiology,” Clin. Chim. Acta 322, 29-36
(2002).

11. M. Daudon, C. A. Bader, and P. Jungers, “Urinary calculi: review of
classification methods and correlations with etiology,” Scanning
Microsc. 73(3), 1081-1104 (1993).

12. D. B. Leusmann, “A classification of urinary calculi with respect to
their composition and micromorphology,” Scand. J. Urol. Nephrol.
25, 141-150 (1991).

December 2014 « Vol. 19(12)


http://dx.doi.org/10.1016/S0302-2838(03)00415-9
http://dx.doi.org/10.1016/j.eururo.2012.03.052
http://dx.doi.org/10.1016/j.eursup.2011.07.002
http://dx.doi.org/10.1016/S0002-9343(03)00201-8
http://dx.doi.org/10.1007/BF02583029
http://dx.doi.org/10.1016/j.clinbiochem.2012.02.008
http://dx.doi.org/10.1016/j.saa.2012.03.028
http://dx.doi.org/10.1016/j.saa.2012.03.028
http://dx.doi.org/10.1016/S0009-8981(02)00063-3
http://dx.doi.org/10.3109/00365599109024549

Blanco et al.: Taking advantage of hyperspectral imaging classification of urinary stones against conventional infrared spectroscopy

13. F. Blanco et al., “High precision mapping of kidney stones using p-IR
spectroscopy to determine urinary lithogenesis,” J. Biophotonics 1-9
(2014).

14. F. L. Coe, A. Evan, and E. Worcester, “Kidney stone disease,” J. Clin.
Invest. 115(10), 2598-2608 (2005).

15. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed.
Opt. 19(1), 010901 (2014).

16. J. R. Duann et al., “Separating spectral mixtures in hyperspectral image
data using independent component analysis: validation with oral cancer
tissue sections,” J. Biomed. Opt. 18(12), 126005 (2013).

17. M. Pucetaite et al., “Application of infrared spectroscopic imaging
in specular reflection mode for determination of distribution of
chemical components in urinary stones,” J. Mol. Struct. 1031, 38—42
(2013).

18. S. Piqueras et al., “Resolution and segmentation of hyperspectral
biomedical images by multivariate curve resolution-alternating least
squares,” Anal. Chim. Acta 705, 182-192 (2011).

19. F. Blanco et al., “Hyperspectral imaging based method for fast charac-
terization of kidney stone types,” J. Biomed. Opt. 17(7), 076027 (2012).

20. G. Schubert, “Stone analysis,” Urol. Res. 34, 146—150 (2006).

21. A. Hesse and G. Sanders, Atlas of Infrared Spectra for the Analysis of
Urinary Concrements, 1st ed., Georg Thieme Verlag, Stuttgart (1988).

22. C. Gendrin, Y. Roggo, and C. Colelt, “Pharmaceutical applications of
vibrational chemical imaging and chemometrics: a review,” J. Pharm.
Biomed. Anal. 48, 533-553 (2008).

23. G. Reich, “Near-infrared spectroscopy and imaging: basic principles
and pharmaceutical applications,” Adv. Drug Deliv. Rev. 57, 1109-1143
(2005).

24. R. G. Brereton, Applied Chemometrics for Scientists, 1st ed., Wiley,
New Jersey (2007).

25. SciPy, “SciPy.org,” 05/11/2014, http://www.scipy.org/ (13 November
2014).

26. Scikit-Learn, “Machine learning in Python,” 07/11/2014, http://scikit-
learn.org/ (13 November 2014).

27. L. 1. Kuncheva, Combining Pattern Classifiers. Methods and
Algorithms, 1st ed., Wiley, New Jersey (2004).

28. T. Hastie, R. Tibshirani, and J. Friedma, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd ed., Springer,
New York (2009).

29. F. Grases et al., “Uric acid calculi: types, etiology and mechanisms of
formation,” Clin. Chim. Acta 302, 89—-104 (2000).

30. A. Hesse and D. Heimbach, “Causes of phosphate stone formation and
the importance of metaphylaxis by urinary acidification: a review,”
World J. Urol. 17, 308-315 (1999).

31. D. Skrtic and H. Furedi-Milhofer, “Precipitation of calcium oxalates
from high ionic strength solutions. V. The influence of precipitation
conditions and some additives on the nucleating phase,” J. Cryst.
Growth 80(1), 113-120 (1987).

32. J. R. Asplin et al., “Metabolic urinary correlates of calcium oxalate
dihydrate in renal stones,” J. Urol. 159, 664-668 (1998).

Francisco Blanco received a PhD degree in chemistry from
Universitat Autonoma de Barcelona (Spain). This degree, developed
in the Centre GTS—Chemistry Department at the same university,
has its main focus on the analysis of urinary lithiasis. He has developed
several works on kidney stone classification and the study of promoters
and inhibitors of the stone formation process, using a number of chro-
matographic, spectroscopic, and chemical speciation techniques.

Journal of Biomedical Optics

126004-9

Felipe Lumbreras received a PhD degree in computer science from
Universitat Autonoma de Barcelona (UAB), Barcelona, Spain, in
2001. He is currently an associate professor with the Department
of Computer Science, UAB, and he also is a member of the
Computer Vision Center, UAB. His research interests include texture
analysis, 3-D reconstruction, and computer vision for automotive
applications.

Joan Serrat is an associate professor at the Computer Science
Department of the Universitat Autonoma de Barcelona and also a
member of the Computer Vision Center. His current research interest
is the application of probabilistic graphical models to computer vision
problems such as feature matching, tracking, and video alignment. He
has coauthored more than 40 papers and four patents, and has been
head of several computer vision projects for industries.

Roswitha Siener is a professor in the Department of Urology,
University of Bonn, Germany, and head of the University Stone
Centre. Her scientific focus includes all aspects of urinary stone
disease.

Silvia Serranti is an assistant professor in the Department of
Chemical Engineering, Materials and Environment (DICMA),
Faculty of Civil and Industrial Engineering, University of Rome “La
Sapienza.” His research activity is related to the field of primary
and secondary raw materials characterization and valorization, and
is documented by more than 120 scientific papers published in
international journals and in proceedings of international conferences
and by the participation in 11 research projects financed by the
European Union.

Giuseppe Bonifazi is a full professor of raw materials beneficiation at
La Sapienza—University of Rome. He has an extensive experience
over 30 years on characterization of particulate solids, specifically
with reference to the development and setup of procedures for objects
and material identification, both at laboratory and industrial scales,
using pattern recognition techniques based on classical and hyper-
spectral imaging-based techniques.

Montserrat Lopez-Mesas has received a PhD degree in chemistry
and a postdoctor at Stanford University. At present, he is a lecturer
professor at UAB. His research interests include analysis of organic,
inorganic, and emerging contaminants in several matrices, such as
water and solids, characterization of inhibitors and promotors of uro-
lithiasis in urine, and development of new methodologies for the clas-
sification of kidney stones. He has participated in several EU-FP7
projects and national projects and published more than 25 papers
and 3 patents.

Manuel Valiente has received a PhD degree in analytical chemistry
and inorganic chemistry. He is a full professor in analytical chemistry
at the Universitat Autbonoma de Barcelona. He has published 188
papers in international refereed joumnals, eight patents, and has
been the supervisor of 29 PhD theses and 34 graduate theses. He
is coordinator of six EU projects. He is a specialist in environmental
monitoring and remediation technologies and an expert in the applica-
tion of advanced characterization and speciation techniques in the
analysis of biomaterials.

December 2014 « Vol. 19(12)


http://dx.doi.org/10.1002/jbio.201300201
http://dx.doi.org/10.1172/JCI26662
http://dx.doi.org/10.1172/JCI26662
http://dx.doi.org/10.1117/1.JBO.19.1.010901
http://dx.doi.org/10.1117/1.JBO.19.1.010901
http://dx.doi.org/10.1117/1.JBO.18.12.126005
http://dx.doi.org/10.1016/j.molstruc.2012.07.029
http://dx.doi.org/10.1016/j.aca.2011.05.020
http://dx.doi.org/10.1117/1.JBO.17.7.076027
http://dx.doi.org/10.1007/s00240-005-0028-y
http://dx.doi.org/10.1016/j.jpba.2008.08.014
http://dx.doi.org/10.1016/j.jpba.2008.08.014
http://dx.doi.org/10.1016/j.addr.2005.01.020
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://scikit-learn.org/
http://scikit-learn.org/
http://scikit-learn.org/
http://dx.doi.org/10.1016/S0009-8981(00)00359-4
http://dx.doi.org/10.1007/s003450050152
http://dx.doi.org/10.1016/0022-0248(87)90530-6
http://dx.doi.org/10.1016/0022-0248(87)90530-6
http://dx.doi.org/10.1016/S0022-5347(01)63696-6

