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Abstract. We propose a theoretical framework for consecutively reconstructing absorption and scattering dis-
tributions in turbid soft tissue in an iterative manner. This approach takes advantage of the stability of a recently
reported least-squares fixed-point iterative method for reconstructing an optical absorption coefficient map to
iteratively update estimates of absorption and scattering for each iteration. Simulations demonstrate that this
method converges to an accurate estimate of the optical properties within only a small number of iterations
and is robust to noise at realistic signal-to-noise levels. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Photoacoustic (PA) imaging has been intensively studied
recently because of its promise for high resolution and intrinsic
optical contrast.1 Efforts have been directed to quantitative
estimation of optical properties (absorption coefficient μa and
scattering coefficient μs), and the Grüneisen parameter distribu-
tions using photoacoustic tomography (PAT), which may sig-
nificantly enhance clinical and biomedical applications of PA
imaging. This is usually termed quantitative photoacoustic
tomography (qPAT), which involves two steps. The first
step is a well-studied acoustic inverse problem, which aims
to reconstruct PA initial pressure distributions using recorded
acoustic data generated by a wide field-pulsed laser.2–4 The sec-
ond step is to estimate optical properties μa and μs. This is essen-
tially a rather challenging optical inverse problem. Quite a
number of approaches have been proposed for the second step
of qPAT. Studies were first focused on μa estimation,5–7 and later
extended to include scattering.8–10 Multiple-wavelength11,12 or
optical sources13–16 were also proposed to mitigate the absorp-
tion-scattering nonuniqueness problem. Diffuse optical measure-
ments were also used to estimate μa in PAT.17,18 A thorough
review on qPAT is provided by Cox et al.19

The fixed-point iterative scheme for estimating optical
absorption distribution was first proposed by Cox et al.6 With
this method, absorption maps are estimated in each iteration and
then used to update fluence distributions for the next iteration.
With simulations based on a diffusion-based finite-element
model, the authors demonstrated that the algorithm converges
fast and the absorption distribution could be reconstructed accu-
rately. Jetzfellner et al.20 examined the performance of this
scheme with experimental data. With a tissue-mimicking phan-
tom, PA imaging was conducted using circular illumination with
a high intensity near-infrared-pulsed laser. The authors argued

the iterative method is sensitive to background optical properties
and diverges over iterations.

Recently, Harrison et al.21 extended the aforementioned iter-
ative method6 to a least-squares fixed-point iterative method for
reconstructing absorption maps in multiple-illumination photo-
acoustic tomography (MIPAT). Instead of using single-optical
source, a number of optical illuminations evenly distributed
around the subject in the imaging plane are employed in MI-
PAT (as is shown in Fig. 1). With the proposed method, conver-
gence of the inversion is significantly improved when multiple
illuminations are utilized. This approach does not require inver-
sion of large Jacobian matrices, and it is efficient and stable.
However, the aforementioned methods are restricted to the
reconstruction of only absorption distributions.

In the present paper, we intend to extend our previous work
to recover both absorption and scattering perturbation distribu-
tions in a known turbid media, which holds a typical value of
background scattering in soft tissue. We accomplish this task in
an iterative manner. For each iteration, absorption maps are first
estimated with the least-squares fixed-point iterative method by
Harrison et al.21 The optical fluence distribution is then updated,
whereupon the scattering coefficient perturbation distribution is
estimated. This procedure is then repeated multiple times until
an acceptable error is reached.

2 Method

2.1 Light Propagation Model

qPAT is, in essence, inversion of a light transport model. We use
the diffusion equation in this paper as the light propagation
model. In PA imaging, a pulsed laser is used to excite transient
acoustic generation, and the pulse duration is significantly
longer than the average random-walk time of photons though
the tissue. Therefore, a time-independent form of the equation is
usually utilized. For a time-independent point source with strength
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A in an infinite turbid homogeneous medium, the equation has
the following form:22

μa
D

ΦðrÞ − ∇2ΦðrÞ ¼ A
cD

δðrÞ; (1)

whereΦ is the optical fluence and A is the photon density source
strength. μa is the absorption coefficient. D is the so-called dif-
fusion coefficient, which is defined as 1∕ 3ðμs þ μ 0

sÞ. μ 0
s in the

above expression is the reduced scattering coefficient, which
may be calculated by μ 0

s ¼ ð1 − gÞμs with the anisotropy g. In
diffusion theory, scattering is usually described with μ 0

s, or D. In
this study, we useD. To validate the diffusion theory, μ 0

s ≫ μa is
required, which is often satisfied in soft tissue at near-infrared
wavelengths.

2.2 Reconstruction of Absorption Distribution

In MIPAT, the transient initial pressure distribution due to source
i for a certain optical wavelength is2

piðrÞ ¼ ΓðrÞμaðrÞΦiðrÞ: (2)

With the least-squares fixed-point iterative method,21 absorp-
tion at location r is estimated by

bμaðiþ1ÞðrÞ ¼ 1

Γ
Σk

cΦk
ðiÞðrÞcpk

0ðrÞ
Σk½cΦk

ðiÞðrÞ�2 þ β2
; (3)

where bμaðiþ1ÞðrÞ is the estimated absorption with the ðiþ 1Þ’th
iteration and cΦk

ðiÞ is the updated fluence due to source kwith the

previous absorption map in the i’th iteration. cpk
0ðrÞ is the recon-

structed initial pressure distribution due to source k. β is a regu-
larization parameter to stabilize the computation.

2.3 Reconstruction of the Diffusion Coefficient
Perturbation Distribution

The relation between the measured data piðrÞ and ½μaðrÞ; DðrÞ�
is nonlinear, because the optical fluence at location r is also a
function of local optical properties. However, if we have an esti-
mation of the absorption distribution bμaðrÞ, the problem is sim-
plified as the contribution of absorption to cΦiðrÞ is known.
Equation (2) is rewritten as

piðrÞ ¼ ΓðrÞ bμa ðrÞ cΦi½ bμaðrÞ; DðrÞ�: (4)

To linearize the problem, we further decompose the local
optical fluence at position r as cΦiðrÞ ¼ dΦi;oðrÞ þ δdΦi;aðrÞþ
δΦi;sðrÞ, which is a sum of known homogeneous background

fluence (dΦi;oðrÞ) due to known background absorption and

scattering properties, and fluence perturbations due to absorp-

tion and scattering: δdΦi;aðrÞ and δΦi;sðrÞ.
Equation (4) now becomes

piðrÞ ¼ ΓðrÞ bμa ðrÞ½dΦi;oðrÞ þ δdΦi;aðrÞ þ δΦi;sðrÞ�: (5)

In the above equation, the only unknown term is δΦi;sðrÞ, the
fluence perturbation due to scattering diffusion coefficient
abnormalities. In this study, an extrapolated boundary condition
is used (with zero inward flux).22 We assume that δΦi;sðrÞ is
linearly related to δDðrÞ, which limits our study to the linear
case such that δΦi;sðrÞ ≪ Φi;oðrÞ, and Φi ≅ Φi;o, then we
have the following relation based on the first-order Born
approximation:14

δΦi;sðrÞ ¼
Z

δDðr 0Þ
Do

∇G0ðr; r 0Þ · ∇Φi;oðr 0Þdr 0: (6)

Here, G0ðr; r 0Þ is Green’s function representing propagation
from r to r 0. δΦi;sðrÞ can be estimated from Eq. (5):

δΦi;sðrÞ ¼
pkðrÞ
Γ bμaðrÞ − dΦi;oðrÞ − δdΦi;aðrÞ: (7)

The integral in Eq. (6) can be discretized as

δΦi;sðrÞ ¼ ΣnWs
fijgnδDðrnÞ; (8)

where

Ws
fijgn ¼ ∇G0ðr; r 0nÞ · ∇Φðr 0nÞ · V∕D0: (9)

∇V is a volume element. i (i ¼ 1;2; : : : S) is the index of optical
sources, whereas j is the index of optical fluence locations, with
j ¼ 1;2; : : : J. The fijg elements are grouped together in this
way because they could be rasterized into a single index
kij ¼ iþ jS.

We write Eq. (7) in a matrix form as

Φsc ¼ Wu; (10)

where W is the Jacobian matrix (SJ × N), or sensitivity matrix,
and u is the N × 1 vector which contains the unknown diffusion
coefficient perturbation map δDðrÞ to estimate. This is a linear-
ized inverse problem and can be solved with a number of
techniques. We use the least-squares minimization with total
variation regularization,

u ¼ arg minukΦsc −Wûk22 þ λjûjTV: (11)

λ in the above equation serves as the regularization parameter for
inversion. To determine the value of λ, we use the classic L-
curve technique to balance the resulting errors in the first and
second term.23

We propose to repeat this procedure with multiple iterations
to accomplish the imaging task until a preset tolerance is
reached following the flowchart in Fig. 2. Before entering the
iteration loop, we set the initial guess of the absorption as
zero. In each iteration, we first update the fluence distribution
with the estimated ½μa; D� from the last iteration. Then, we
reconstruct D with the updated flunce distribution, whereupon
a new version of optical fluence is generated, based on which
absorption is again modified if a tolerance is not yet reached.

Fig. 1 Schematic of the multiple-illumination photoacoustic tomogra-
phy (MI-PAT).
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The iterative reconstruction is repeated until a satisfactory result
is reached. There are two types of iterations involved in this
algorithm. To distinguish them, we call the repetition of con-
secutively reconstructing ½μðnÞa ; DðnÞ� an iteration, and the repeti-
tive steps for estimating μðiÞa the μa-iteration.

3 Simulation
Simulation studies were conducted to examine the performance
of the proposed scheme. All simulations were conducted on a
region of interest composed of a two-dimensional (2-D) 40 × 40
mesh grid system, whose dimension is set to be 20 mm×
20 mm unless otherwise stated. To mitigate inversion crime,
noise was added and the synthetic data were generated on a
larger grid system (43 × 43) and down-sampled to 40 × 40 with
the cubic interpolation for inversion. 16 optical sources were
positioned 3-mm backward from the object to validate the

diffusion light propagation model. The background optical
properties of the object were taken as the physiologically real-
istic values in biological soft tissue. Absorption and the reduced
scattering coefficient are 0.1 and 100 cm−1, respectively.

We first tested our algorithm with regular overlapping fea-
tures, as is shown in Fig. 3. Two rectangular features with
absorption perturbations (10% on the left and 5% on the right)
and diffusion coefficient anomalies (5% on the left and 10% on
the right) were positioned in the center of the field-of-view.
White noise with a normal distribution corresponding to an aver-
age signal-to-noise (SNR) of ∼30 dB was added to “recon-
structed” PAT images. Figure 3(a) shows the PAT images due
to two optical sources located on the top and bottom of the phan-
tom, respectively. For inversion, we use zero as an initial guess
for both absorption map and diffusion coefficient distribution. In
each iteration, the μa iteration was conducted for 20 times.
Reconstructed results with iteration 1, 2, 10, and 50 are
employed to show improvement of estimation as more iterations
are involved, as is shown in Fig. 3(b).

To examine the capability of the method to recover arbitrary
features rather than regular shapes, features with both discrete
strips with sharp edges and smoothed features were tested, as is
shown in Fig. 4. In Fig. 4(a), sharp strip features with 10%
absorption and scattering perturbations were reconstructed. We
also tested four smoothed absorption perturbations (0.1, 0.09,
0.07, and 0.05 cm−1, respectively) and two diffusion coefficient
anomalies (0.0083 and 0.0042 cm−1) with different spatial loca-
tions in the background. Synthetic data were generated with an
SNR of 30 dB and 20 iterations were used for inversion. Values
of the regularization parameter were different for the example to
honor the feature characteristics.

Cross-talk between reconstructed maps of the two parame-
ters is a concern. Artifacts due to diffusion coefficient features
may appear in the reconstructed absorption map. Despite the
fact that the diffusion coefficient depends on both absorption
and scattering: DðrÞ ¼ 1∕3½μaðrÞ þ μ 0

sðrÞ� locally, the scatter-
ing coefficient dominates the apparent D values. If D is not cor-
rectly reconstructed, the resulting fluence estimation may
“contaminate” the reconstructed absorption map. We tried esti-
mating two nonoverlapping features to examine cross-talk
between the two properties in the recovered results (Fig. 5) in
cases of single and multipleilluminations. Interestingly, whereas
no artifacts due to absorption appeared in the reconstructed D,
we did observe artifacts in the reconstructed absorption map

Fig. 2 Flow chart of the iterative method.

Fig. 3 Reconstruction of optical property distributions with the proposed method using 16 optical
sources. (a) Synthetic photoacoustic data (initial pressure distribution) due to two optical sources located
on top and bottom of the phantom, respectively. (b) Simulation results with iteration #0 (initial guess), #1,
#2, #10, and #50 are shown to demonstrate that reconstruction results are improved with more iterations.
Initial values were chosen to be zero for both absorption and diffusion coefficient distributions.
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where diffusion perturbations lie in both cases. However, the
artifacts are alleviated within several iterations and were finally
removed from the results when 16 optical sources were used.
This might be because in each iteration, we update the absorp-
tion distribution, thus the dependence ofD on μa is significantly
mitigated and is already negligible before reconstructing the
scattering feature. On the other hand, while we estimate absorp-
tion maps, the contribution of scattering features brings about

artifacts in the recovered μa. But with more iterations, the optical
fluence is updated repeatedly and approaches its true value,
therefore, artifacts are removed. It is not surprising that with a
single source, a unique solution for ½μa; D� estimation is not
achieved. This is due to the nonuniqueness problem.

Figure 6 shows the reconstruction of a synthetic phantom
with features that shares similarities with blood vessel vascula-
ture using 16 sources. However, we would like to note that the

Fig. 4 Reconstruction of sharp (a) and smoothed features (b) with the proposed method after 20 iter-
ations. In (a), anomalies of both absorption and diffusion coefficient was set at 10% of the background
value. Perturbations of 10%, 9%, 7%, and 5% of the background absorption, 20% and 10% of the back-
ground diffusion coefficient at various locations were used in (b). SNR of synthetic data was 30 dB.

Fig. 5 Reconstruction with nonoverlapping features to demonstrate capabilities of the algorithm to alle-
viate cross-talk between absorption and diffusion coefficient. Reconstruction results when using 1 and 16
illuminations are shown. Artifacts appeared in the reconstructed absorption map where diffusion coef-
ficient anomalies locate. But with more iterations involved, the artifacts were removed when multiple-
sources were used.

Fig. 6 Reconstruction of a synthetic phantom with features that shares similarities with blood vessel
vasculature using 16 sources. The left column is the true ½μa; D� model. Second to the last column
are reconstruction results with average SNR of infinity (no noise), ∼30 and ∼20 dB.
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primary purpose of this example is to challenge the inverse prob-
lem. The software phantom we used here may not be truly
physiological, as certain wavelength bands optical absorption
of blood may be too high to use a diffusion approximation.
From left to right are the true model, reconstruction results
with SNR of infinity (0 noise), ∼30 and ∼20 dB, respectively.
We also show the cross-sectional profiles of the corresponding
results in the center of the distributions in Fig. 7. With data that
has an SNR of ∼30 dB, absorption features are faithfully esti-
mated. More artifacts appeared in the results computed with
20-dB data.

Figure 8 depicts the relation between reconstruction errors
from the last example and the number of optical sources
involved. Errors were calculated with the following equation: 20

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R jU − Unj2dxdy

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R jUj2dxdy

q ; (12)

where U and Un are the intensity of the true model and the
reconstructed maps with the n’th iteration. The algorithm con-
verges in the first few iterations and remains stable even with a
large number of iterations. The number of optical sources mat-
ters for reconstruction quality. With more illuminations utilized
reconstruction errors for both ½μa; D� decreased immediately.
But D benefits more and reconstruction errors drop more sig-
nificantly. Considering that μa is usually better resolved than
the scattering features in qPAT,24 this suggests that a multiple
illumination pattern does yield a higher reconstruction quality
by providing more information. We used 16 optical sources
for studies in previous examples as it yields faithful results.

Fast convergence was seen as a remarkable advantage of the
least-squares fixed-point MIPATapproach.21 We plot the relative
errors of reconstruction in Fig. 9 as an illustration of the overall
convergence ability of the proposed scheme. Reconstruction
errors decrease quickly and stabilize within the first 10
iterations.

4 Conclusion and Discussion
We have proposed a consecutive reconstruction scheme to esti-
mate optical absorption and diffusion coefficient perturbation
distributions in a known turbid medium for MIPAT. With this
approach, the absorption map is first estimated, whereupon
the optical fluence is updated and then the diffusion coefficient
distribution is reconstructed. The absorption distribution is
recovered with a least-squares fixed-point iterative method.
Numerical simulations demonstrated that both optical properties
can be faithfully reconstructed with the presence of noise at an
SNR level of ∼30 dB. This method converges within only a
number of iterations and is robust to cross-talk of overlapping
and nonoverlapping features.

Conventional iterative methods for qPAT suffer from compu-
tational complexity, instability, and poor convergence perfor-
mance. The least-squares fixed-point iterative methods21 to
recover absorption in our previous report does not require inver-
sion of large scale Hessian or Jacobian matrices, therefore, it is

Fig. 7 Cross-sectional profiles of the reconstruction results along the horizontal direction in the center of
the true model in Fig. 6. All features of μa were faithfully reconstructed with the ∼30-dB data. Artifacts
appeared in the reconstruction with data that has an SNR of ∼20 dB. Despite some artifacts, D features
were recovered with a ∼30-dB SNR. Amplitude errors were unacceptable for data with ∼20-dB SNR.

Fig. 8 Reconstruction errors with different numbers of optical
sources.

Fig. 9 Normalized reconstruction errors with 50 iterations. Both μa
and D converge in a few iterations and stay stable after a large num-
ber of iterations.
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computationally efficient and stable. The reconstruction can be
done on a resolution scale equivalent to the fine resolution
obtainable by backprojection or other model-based inversion
approaches. Convergence is substantially improved. These
advantages enable the faithfully estimated absorption to serve as
a compulsory guide for each iteration in the current method.
Updated fluence estimate based on the reconstructed absorption
map assisted accurate estimation of the scattering features.We did
not study convergence of the algorithm with a much greater scat-
tering background as described in Ref. 20 as we restrict our study
to the scope of realistic biological soft tissue. Although various
approaches have been proposed for quantitative reconstructions
of optical distributions, most previous approaches were not suf-
ficiently tolerant to realistic noise levels. Prior to experimental
work, we argue it is essential to develop imaging strategies
and algorithms for sufficient noise-robustness. In this manuscript,
we demonstrate the ability to reconstruct both absorption and
scattering distributions with realistic noise levels.

Our study has limitations. The result in this paper is based on
the approximate 2-D light propagation model in the diffuse
regime. Although many studies used the diffuse approximation
for qPAT, the radiative transfer equation 24 provides a better esti-
mation. It is worth trying to extend our current study to more
accurate theoretical models. Similar to most of the literature
on this topic, we also assume ideal reconstruction of the PA
images from measured acoustic data. Although one option to
avoid this is to use the ultrasonic channel data as proposed by
our previous report,16 one can also follow the framework by Sar-
atoon et al.25 to include acoustic reconstruction to study its in-
fluence on the final reconstruction results. Reconstruction of the
scattering distributions still requires matrix inversion, as do all
other diffuse optical tomographic (DOT) methods thus far. The
matrix condition number is comparable with previous DOT/PAT
approaches and the reconstruction can be done on a courser
scale to accommodate regularization (data not shown). Resolu-
tion of scattering distributions may need to be courser than for
estimated absorption distributions, which can be reconstructed
with a resolution as fine as the transducers and algorithms will
permit. We utilized this method as a preliminary example. We
partially committed the “inverse crime” in this paper, which
refers to the act to generate as well as to invert synthetic data
with the same theoretical model or discretization. Since we
use the same theoretical model for both the forward and inverse
problems, we (1) generated synthetic data on a larger grid sys-
tem (with an odd-number of grid) and then down-sampled the
dataset with a smaller system (even number of grid points) for
inversion; (2) added white noise with a normal distribution to all
experimental data to mitigate this issue. Extension of our sim-
ulation work to experiments is planned as future work. As a pre-
liminary work, recently we have reported a reflection-mode PA
technique that can be used for optical sensing.26 Our method
requires inversion of the Jacobian matrix for estimation of the
diffuse coefficient. Demand for computation resources increase
significantly with Jacobian-matrix-based methods, including
both memory and operation count,25 therefore computation
expense is a concern for the present framework. For example,
despite the quick convergence of our method within only a few
iterations, the computation time taken for each iteration with an
80 × 80 grid system is ∼40 min with MATLAB 2010b (Math-
works Inc.) on a 64-bit 2.5-GHz Intel i5 PC system.

The main contribution of this paper is the demonstration of
the potential to recover not only absorption but also scattering

distributions with MIPAT, and to provide an algorithm with
promising stability in moderately challenging noise. The study
is meant to motivate experimental realization, which, however,
is yet to be determined and optimized. Future work should aim
to develop experimental embodiments of MIPAT and may
require calibrating detected signals to known absorbed energy
distributions, accounting for three-dimensional rather than 2-D
light and sound propagations, acoustic attenuation, and trans-
ducer spatio-temporal impulse responses, among other factors.

If future experimental embodiments are successful, our
approach could provide reconstruction of both absorption and
scattering distributions in living subjects. Although DOT can
provide such information, it does so at course resolution scales
with poor depth-to-resolution ratios. MIPAT has the potential to
quantitatively reconstruct absorption distributions with ultra-
sonic spatial resolution. The recovery of scattering information
requires matrix inversions similar to DOT and spatial resolution
may be ultimately limited by SNR and the requirement of using
regularization. The present study may potentially lead to
improved functional imaging, ability to visualize cancers and
aid in tumor margin assessment (which often have enlarged cell
nuclei and hence higher scattering coefficients). The improved
quantitation could also lead to more confident mutliwavelength
demixing for oxygen saturation estimation, and estimation of
contrast agents or genetically encoded reporter distributions.
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