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Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based
on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast.
A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave
atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better represen-
tation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet
and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-
like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppres-
sion degree in the denoised images is controlled by an adjustable parameter that determines the threshold in
the wave atoms domain. The experimental results show that the proposed method can effectively remove
the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average
equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also com-
pared with the wavelet and curvelet thresholding techniques. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Optical coherence tomography (OCT) is an emerging, noninva-
sive imaging technology that can perform high-speed tomo-
graphic imaging of biological tissue with micrometer scale
resolution. Since it was first demonstrated in 1991,1 OCT has
become an important technology and has a variety of clinical
and industrial applications.2,3 Because OCT is based on low-
coherence interferometry, it suffers from speckle noise, which
significantly degrades OCT image quality and makes it difficult
to identify the small detailed structures or low-intensity features
of the imaged object.4–6

A number of approaches, based on either hardware or soft-
ware schemes, have been carried out to reduce speckle noise in
OCT images. The hardware-based approaches include fre-
quency6–9 and spatial compoundings.10–18 These hardware-
based approaches are robust ways for speckle suppression as
speckle properties vary across wavelengths or different illumi-
nation angles.7 However, these methods require further modifi-
cation of an existing system and increase a system’s complexity
and cost.

Compared to the hardware techniques, the software-based
approaches attempt to reduce the speckle noise by applying
numerical algorithms or filtering in a certain transform domain
to OCT images. Several software-based speckle reduction tech-
niques have been proposed; these include local pixel averaging,19

averaging with rotating kernels,20 numerical frequency com-
pounding,6 nonlinear log–space general Bayesian least-square
estimation method,21 Csiszar’s I-divergence regularization,22

adaptive median filtering,23 adaptive Wiener filtering,23 adaptive
Lee filtering,23 symmetric nearest neighbor,23 and anisotropic dif-
fusion-based filtering,24–27 as well as wavelet domain filtering,28–32

contourlet domain filtering,33 and curvelet domain filtering.34–37

Wavelet transform is a well-known multiresolution analysis
tool capable of conveying accurate temporal and spatial infor-
mation. Therefore, the application of denoising filters based on
wavelet thresholding techniques is suitable for those images
which contain discontinuities.29 However, two-dimensional
(2-D) tensor products of wavelet based techniques have poor
orientation selectivity, and they cannot effectively represent
images consisting of different regions separated by bounda-
ries.34 Therefore, wavelet representation does not offer sufficient
sparseness for image analysis. The family of wave packets
called curvelets is very efficient for representing curved
edges in images.34,36 The curvelet transformation concentrates
the energy of an object with an arbitrary discontinuity curve
in just a few coefficients, giving an optimal sparse representa-
tion. This characteristic is due to the fact that curvelets obey
a precise parabolic balance between oscillations and support
size.34 Therefore, curvelet filtering techniques should be good
candidates for speckle reduction. However, the large coefficients
in a curvelet decomposition only correspond to directions along
the pattern oscillations.

In this paper, we present an effective shrinkage filter for
speckle reduction in OCT images based on wave atoms trans-
form. Wave atoms transform is a new multiscale geometric
analysis tool that offers sparser expansion and better represen-
tation for images containing oscillatory patterns and textures
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than other traditional transforms, such as wavelet and curvelet
transforms.38 Moreover, due to lack of translation invariance of
wave atoms transform, cycle spinning-based technology is intro-
duced to avoid visual artifacts, such as Gibbs-like phenomenon,
and to develop a translation invariant wave atoms despeckling
scheme. The trade-off between speckle suppression degree or
image quality is controlled by a single adjustable parameter
K that determines the threshold value in the wave atoms domain.
The experimental results show that the proposed method can
effectively remove the speckle noise while simultaneously pre-
serving detail features in the despeckled images. Improvement
with the proposed method is quantitatively evaluated in terms of
image metrics, such as signal-to-noise ratio (SNR), contrast-to-
noise ratio (CNR), average effective number of looks (ENL),
and cross-correlation value (XCOR). The results are compared
with wavelet and curvelet thresholding filtering techniques.

2 Theory

2.1 Wave Atoms Transform

In this section, we briefly describe a recently developed half
multiscale and multidirectional representation called the wave
atoms transform.38 Wave atoms can be seen as a variant of
2-D wavelet packets and obey the parabolic scaling of curvelet
wavelength ∼ ðdiameterÞ2. Wave atoms can be adapted to arbi-
trary local directions of a pattern and also can sparsely represent
anisotropic patterns aligned with the axes. Moreover, the warped
oscillatory functions and oriented textures in the wave atoms
have been proven to have a dramatically sparser expansion
compared to some other fixed standard representations, such as
Gabor filters, wavelets, and curvelets, which make the wave
atoms transform a better option for image characteristic extrac-
tion. Wave atoms interpolate precisely between Gabor filters and
directional wavelets. Moreover, wave atoms come either as an
orthonormal basis or a tight frame of directional wave packets
and are particularly well suited for representing oscillatory pat-
terns and textures in the images.39

Let the wave atoms be φμðxÞ with the subscript μ ¼
ðj;m; nÞ ¼ ðj;m1; m2; n1; n2Þ, where the five quantities j,
m1, m2, n1, and n2 all are integer values. A point (xμ, ωμ) is
indexed in phase space by

xμ ¼ 2−jn; ωμ ¼ 2jmπ; C12
j ≤ maxi¼1;2jmij ≤ C22

j;

(1)

whereC1 andC2 are two positive constants, and their values will
be deduced by the specifics of the implementation. Wave atoms,
then, need to obey a localization condition around the phase-
space point (xμ, ωμ). The position vector xμ is the center of
φμðxÞ, and the wave vector ωμ determines the centers of both
bumps of φμðωÞ as�ωμ. The elements of a frame of wave pack-
ets fxμg are called wave atoms when

jφμðωÞj ≤ CM2
−jð1þ 2−jjω − ωμjÞ−M

þ CM2
−jð1þ 2−jjωþ ωμjÞ−M; (2)

and

jφμðxÞj ≤ CM2
jð1þ 2jjx − xμjÞ−M: (3)

Here M > 0, the oscillations within the envelope of a wave
atom in x have a wavelength ∼2−2j. Here, the subscript j indexes

different “dyadic coronae,” whereas the additional subscript M
labels the different wave numbers wμ within each dyadic corona.

Let g be a real-valued continuous function with support
included in the domain of [−7π∕6, 5π∕6] and such that for
jωj≤π∕3, gðπ∕2−ωÞ2þgðπ∕2þωÞ2¼1 and gð−π∕2 − 2ωÞ ¼
gðπ∕2þ ωÞ. Define ν as the inverse Fourier transform (FT)
vðtÞ ¼ ð2πÞ−1∫ gðωÞeiωtdω and

ψ0
mðtÞ ¼ 2Refexp½iπðmþ 0.5Þt�v½ð−1Þnðt − 0.5Þ�g: (4)

The FT of ψ0
m is given by38

Ψ0
mðωÞ ¼ e−iω∕2fgeiαm ½τmðω − πðmþ 0.5ÞÞ�

þ ge−iαm ½τmþ1ðωþ πðmþ 0.5ÞÞ�g: (5)

Here, τm ¼ ð−1Þm, αm ¼ ðπ∕2Þðm þ 0.5Þ andP
mjΨ0

mðωÞj2 ¼ 1. The function g is an appropriate real-valued,
C∞ bump function, compactly supported on an interval of length
2π. Writing basis functions as ψ j

m;nðxÞ ¼ ψ j
mðx − 2−jnÞ ¼

20.5jψ0
mð2jx − nÞ, the coefficients of the transform can be

obtained by

Cj;m;n ¼
Z

ψ j
m;nðxÞuðxÞdx ¼ 1

2π

Z
ei2

−jnωΨj
mðωÞuðωÞdω:

(6)

Assuming that the function u is discretized at xϕ ¼ ϕh, h ¼
1∕N and Φ ¼ 1; 2; : : : N, then we have,

Cj;m;n ¼
1

2π

X
ϕ¼2πð−N∕2þ1∶1∶N∕2Þ

ei2
−jnϕΨj

mðϕÞ ũðϕÞ: (7)

This algorithm can be implemented by the following steps:
(1) fast Fourier transform (FFT) of uðxϕÞ, (2) wrap the product

Ψj
m ũ by periodicity inside the interval [−2jπ, 2jπ] for each

(j, m), and (3) perform an inverse FFT.
By individually taking products of 1-D wave packets, 2-D

orthonormal basis functions with four bumps can be formed
in frequency.38,39 The 2-D extension can be formed by the
products

φþ
μ ðx1; x2Þ ¼ ψϕ

m1
ðx1 − 2−jn1Þψϕ

m2
ðx2 − 2−jn2Þ; (8)

φ−
μ ðx1; x2Þ ¼ Hψϕ

m1
ðx1 − 2−jn1ÞHψϕ

m2
ðx2 − 2−jn2Þ: (9)

Here, H denotes the Hilbert transform operator. The combi-
nations φð1Þ

μ ¼ 0.5ðφþ
μ þ φ−

μ Þ and φð2Þ
μ ¼ 0.5ðφþ

μ − φ−
μ Þ from the

wave atoms frame are denoted jointly as fφμg ¼ fφð1Þ
μ ;φð2Þ

μ g,
and we have

X
μ

j < φð1Þ
μ ; u > j2 þ

X
μ

j < φð2Þ
μ ; u > j2 ¼ kuk2: (10)

The coefficients of 2-D wave atoms transform can be given
by38

WAfμðuÞg ¼ hu;φð1Þ
μ i þ hu;φð2Þ

μ i; (11)

where WA is the forward wave atoms transform operator, and
WA−1 denotes the inverse transform. Therefore, the wave atoms
shrinkage can be formulated as μc ¼

P
μT½cμðfÞ�φμ in which
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TðxÞ can be determined, for example, as a hard thresholding,
TðxÞ ¼ x, if jxj ≥ σ; otherwise, TðxÞ ¼ 0, where σ is a threshold
value. The computational complexity of wave atoms is
OðN2 log NÞ, and a MATLAB software for numerical imple-
mentation of WA is given in Ref. 40.

2.2 Wave Atoms Cycle Spinning

Orthogonal wave atoms transform is not translation invariant.
This means that visual distortions, such as Gibbs-like phenome-
non or ringing effects, will be produced in the image discontinu-
ous point neighborhood area (e.g., edges and textures) due to
lack of translation invariant in the translation processing.
Fortunately, any denoiser can be turned into a translation invari-
ant denoiser by performing cycle spinning.41 The denoiser is
applied to several shifted copies of the image, then the resulting
denoised image is shifted back to the original position and the
results are averaged. As the wave atoms transform is not a trans-
lation invariant, this approach will result in different estimates of
the original image with statistically different noises, which are
reduced by linear averaging on all denoised results. Denoting
the 2-D circular shift by Si;j, the forward and inverse wave
atoms transform by WA and WA−1, and the threshold operator
by Tð:Þ, therefore the cycle spinning will be performed as41

U ¼ 1

κ1κ2

Xκ1;κ2
i¼1;j¼1

S−i;−jfWA−1½TðWA½Si;jðuÞ�Þ�g; (12)

where u denotes the noisy image, κ1 and κ2 are the maximum
number of shifts in the row and column directions, and the sub-
scripts, i and j, are the translation amount in the row and column
directions, respectively.

2.3 Algorithm Implementation

As described in the above section, in order to inhibit visual dis-
tortions, such as ringing effects and Gibbs-like phenomenon, the
wave atoms based image despeckling algorithm is proposed by
combining cycle spinning technology in the process of a hard
threshold denoising theme. The denoising procedure of wave
atoms cyclic spinning shrinkage is similar to the steps in the
traditional wavelet transform method and includes seven
steps. The seven steps are: logarithm transformation, cycle spin-
ning operation, forward wave atom transform, thresholding set,
inverse wave atoms transform, reverse cycle spinning, and the
exponential transformations to convert the denoising images
from the logarithmic scale to the linear scale. The procedure
for speckle reduction in OCT imaging based on wave atoms
cycle spinning shrinkage is shown in Fig. 1.

The specific algorithm steps are as follows:

Step 1 : Take a logarithm operation of the aligned OCT
image. The purpose of this is to convert the multiplica-
tive noise into additive noise as it is well known that
speckles can be well modeled as multiplicative noise,
ƒ ¼ u × n, where ƒ denotes the noisy image, u is the
noise clean image, and n denotes the multiplicative
noise in the OCT image. After the logarithm transforma-
tion, that is, logðfÞ ¼ logðuÞ þ logðnÞ, where f is the
measured data, u is the noise free signals, and n is
the speckle noise.

Step 2: Conduct cycle spinning on the noisy image logðfÞ
by the use of a cycle spinning operator S, and obtain the
shifted image SðfÞ.

Step 3: Take the 2-D forward wave atoms transform of the
cycle shift data, SðfÞ, to produce the wave atoms coef-
ficients C ¼ WA½SðfÞ�. The transformed coefficient is
a function of the scale x, direction y, and spatial coor-
dinate z. Moreover, the wave atoms transform is a linear
process, hence the additive noise is still additive after
the transform, Cx;y;z ¼ Ux;y;z þ Nx;y;z, where Cx;y;z,
Ux;y;z, and Nx;y;z are the coefficients for noisy image,
speckle-free signals, and speckle noise, respectively.

Step 4: Process these coefficients using a hard thresholding
operator Tf:g and obtain the denoised coefficient,
ΔC ¼ TfWA½SðfÞ�g. A hard threshold Tx;y is applied
to each wave atoms coefficients Cx;y;z, so that ΔCx;y;z ¼
Cx;y;z when jCx;y;zj > Tx;y, and ΔCx;y;z ¼ 0 when
jCx;y;zj ≤ Tx;y.

Note that determination of the threshold value is very
critical in the despeckling processing, and its values are
based on the noise variance of the corrupted image
given by34

Tx;y ¼ K · σnoise · σx;y; (13)

where σnoise is the standard deviation of speckle noise in
the noisy image, and σx;y is the standard deviation of
speckle noise in the wave atoms domain at a specific
scale x and direction y by Monte Carlo analysis.35

Moreover, in order to account for the slight noise estima-
tion deviation between the actual speckle noise distribution
and the estimation, an adjustable parameterK is introduced
to further reduce noise with a minimal blurring of edge
sharpness. The value of K is usually obtained by trial

OCT noisy image  

Cycle spinning operation  

Logarithm  transformation 

Forward wave atom transform   

Inverse wave atoms transform   

Thresholding 

Reverse cycle spinning operation 

Exponential transformation 

Denoised image  

Fig. 1 The basic work frame of speckle reduction for OCT images
based on wave atoms transform.
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and error, and it is used to control the degree of speckle
reduction; namely, despeckled image quality metrics such
as SNR, CNR, and ENL. The trade-off between speckle
reduction degree and edge preservation in denoised
images, therefore, is achieved by tuning the K value.

Step 5: Carry out an inverse wave atoms transformation on
the wave atoms coefficient ΔCx;y;z after the hard thresh-
old process and get the denoised image. Take the inverse
2-D wave atoms transform of the attenuated wave
atoms coefficients to reconstruct despeckled data, U 0 ¼
WA−1½TfWA½SðfÞ�g�.

Step 6: The restored image S−1fWA−1½TfWA½SðfÞ�g�g can
be obtained by reverse cycle spinning on the denoised
image U 0, where S−1f:g represents the reverse cycle
spinning operator, and the denoised results U can be
corrected and derived by averaging on all results U 0.

Step 7: The last step is the exponential transformation which
converts the denoised images U in the logarithmic scale
to the linear scale. The obtained data are in the log-
arithmic scale, hence an exponential calculation of base
10 is applied to convert the despeckled data back to
the original linear scale.

3 Results and Discussion

3.1 Quality Metrics

For a quantitative comparison of the various thresholding filters,
such as wavelet29 and curvelet,36 we used several blind speckle
denoising metrics to quantify the despeckled image quality. The
metrics included SNR, CNR, and ENL.29 The CNR measures
the contrast between an area of the image feature and an area
of background noise, while the ENL measures the smoothness
of homogeneous regions of interests (ROIs) that are corrupted
by speckle noise. The ENL is a good metric for the quantifica-
tion of noise reduction in homogeneous areas, and it increases
with noise reduction. The ENL in an intensity image is a meas-
urement of the statistical speckle fluctuations. Thus, ENL gives
essentially an idea about the smoothness in regions of the
images that are supposed to have a homogeneous appearance
but are affected by noise.

The definitions for SNR, CNR, and ENL are defined as29

SNR ¼ 10 × log10

�
max½Iði; jÞ2�

σ2b

�
; (14)

CNRm ¼ 10 × log10

�
μom − μbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2om þ σ2b

p
�
; (15)

ENLm ¼ μ2om
σ2om

; (16)

where Iði; jÞ is the intensity at locations (i; j) in the selected
ROI. Here, μb and σb are the mean of intensity and the standard
deviation of the intensity in the background region, respectively;
μom is the mean of the pixel values in the m’th ROI, and σom is
the pixel standard deviation.

Moreover, we also use the cross-correlation (XCOR) value as
an indicator of similarity between different speckle fields, which
measures the similarity between the images before and after
denoising. Its definition is given by36

XCOR ¼
P

ði;jÞ Ibeforeði; jÞ · Iafterði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ði;jÞ ½Ibeforeði; jÞ�2 ·

P
ði;jÞ ½Iafterði; jÞ�2

q ;

where Ibefore is the intensity data before denoising, Iafter is
the intensity data after denoising, and (i, j) are the indices of
the images; μafter and σafter, μbefore and σbefore are the mean of
intensity and the standard deviation of the intensity in the
denoised image and the noisy images, respectively. The value
of XCOR is smaller than 1 and will approach to 1 when the
denoised image resembles the original image.

3.2 Results and Discussions

This section gives a detailed qualitative and quantitative analysis
of the proposed OCT speckle reduction algorithm based on
wave atoms transform. The image data are acquired with a spec-
trometer-based 890 nm Fourier domain OCT system.42 Briefly,
the spectrometer-based Fourier domain OCT uses a super lumi-
nescent diode light source, which has a central wavelength of
890 nm and full width at half maximum bandwidth of
150 nm. A modified scanning head from a commercial Zeiss
Stratus OCT was used. The optical power on the human eye
was set at 650 μW. The charge-coupled device (CCD) integra-
tion time was set at 50 μs. The system sensitivity was measured
to be about 100 dB at around zero imaging depth. The 6 dB
sensitivity roll-off distance was found to be at an imaging
depth of 1.6 mm. The imaging process includes background
signal subtraction, linear interpolation to convert data from
the linear wavelength space to the linear wavenumber space, and
numerical dispersion. The lateral and axial resolutions were
measured to be 20.0 and 3.5 μm, respectively, in the air.

We applied our algorithm to the acquired OCT image of a
human retinal image with 512 × 1536 pixels (axialtransverse).
Here, the retinal image was first reduced to 512 × 512 pixels
by averaging groups of three adjacent axial scans, as shown
in Fig. 2(a). As shown in Fig. 2(a), six ROIs, including three
nonhomogeneous (labeled 1, 3, and 5) and three homogeneous
(labeled 2, 4, and 6) areas, respectively, were selected in the reti-
nal image and marked with solid rectangles in red. Meanwhile,
a biological tissue-free area in the top region of the retinal image
was selected as a “background” region, which was marked with
a dashed rectangle in red and used for calculating SNR of
the images. A region in the black rectangle window in Fig. 2(a)
was enlarged 1.8 times and used for comparative analysis.
Meanwhile, wavelet29 and curvelet35 based thresholding filter-
ings were also applied to the same OCT image. For objective
and equivalent comparisons, cycle spinning technology was
also applied to remove Gibbs artifacts in the wavelet filtering
and curvelet filtering processes. Note that we performed the
wavelet- and curvelet-based thresholdings with the best results
by obtaining the most appropriate threshold by a trial and error
method in the image processing. The threshold is chosen to be
3.6 and 1.1 times of the noise variances, which are obtained
from the median estimator of the highest sub-band of the trans-
form for wavelet- and curvelet-based methods, respectively.35,36

Comparing wavelet- and curvelet-based methods with the
proposed wave atoms-based methods for a similar cross-corre-
lation XCOR value, the threshold value in the wave atoms
despeckling process is chosen to be K ¼ 1.0. In all cases, the
images were processed with MATLAB on an Intel dual-core
2.2 GHz laptop.
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Figure 2 shows the original and despeckled OCT images of
a human retina. The unprocessed image, shown in Fig. 2(a), has
a grainy appearance due to the presence of speckle noise.
Figure 2(b) shows the denoised image by the traditional wavelet
method and the same OCT image after despeckling by curvelet
is shown in Fig. 2(c). Figure 2(d) shows the denoised image
using the proposed wave atoms transform method. It can be
seen from the results that all three methods can remove most
speckle noises and improve the visualization of small morpho-
logical features, such as outer plexiform layer (OPL) and retinal
pigment epithelium, which are not shown clearly in the original
raw OCT image. Meanwhile, it also can be seen that the proc-
essed OCT image, as shown in Fig. 2(d) with the proposed wave
atoms method, shows much better visual effects and clearer
detailed morphological features indicated, for example, by

the red elliptical area in Fig. 2(d), than with the wavelet and
curvelet methods. However, it needs to be pointed out that,
like other image despeckling methods, the proposed wave
atoms method also will blur or injure some feature details
and edge information in the processed image. For example,
there are some discontinuities in the OPL layer in the despeckled
image compared to the original image. Therefore, it is necessary
to keep a balance between obtaining the highest level of des-
peckling in the processed image and maintaining minimum
damage to the original image in the practice applications.

For further comparative analysis, enlarged views of the
region in the solid rectangle marked in black in Fig. 2(a) are
presented in Fig. 3. It can be seen from Fig. 3 that there is almost
no residual speckle noise pattern in the denoised images with
wavelet, curvelet, and wave atoms shrinkages. However,
there appears to be significant visual aberration (ringing effects
and artificial effect in some areas in the despeckled image) and
blurring of features in the denoised images by wavelet- and cur-
velet-domain filtering methods compared to the proposed wave
atoms transform method. Namely, the proposed wave atoms
shrinkage method shows much better visual effects and clearer
detailed morphological features in the denoised images, as indi-
cated, for example, by the two black arrows in the Fig. 3 (right
image), the OPL and external limiting membrane (ELM). For
the wavelet method, as shown in Fig. 3 (left), the ELM layer
is almost invisible and the OPL layer cannot be resolved easily
in the wavelet-based despeckled image, while in the curvelet-
based despeckled image, as shown in Fig. 3 (middle), we can
see that the ELM layer is distorted and discontinuous.
Moreover, the OPL layer edge is distorted with mottling, and
it cannot be resolved easily. In the wave atoms-based despeckled
image, as shown in Fig. 3 (right), it shows a nicely continuous
OPL layer, and the ELM layer is very clear except for where
there are a few minor discontinuities as indicated by the white
arrow.

The reason for this performance difference is that the wavelet
transform is only optimal in representing 1-D singularities
but not optimal in representing 2-D image contours or layers
because of poor orientation selectivity and anisotropy.
Therefore, it cannot effectively represent images consisting of
different regions separated by boundaries that often appear in
OCT images. The curvelet transform gives an optimal sparse
representation because it obeys a more precise parabolic balance
between oscillations and support size, and it concentrates the
energy of an object with an arbitrary discontinuity curve in

43

1

6

5

2

(a) (b)

(c) (d)

Fig. 2 Denoised results ofahuman retinal imagewith512 × 512 pixels.
(a) Original image, (b) denoised image with wavelet, (c) curvelet, and
(d) proposedwaveatomsshrinkage, respectively.Theareas insolid rec-
tangles (marked in red) are the selected regions of interests (ROIs) and
thedashedredrectanglearea is theselectedbackgroundregionusedfor
quantitative comparison of the performance of all speckle reduction
algorithms based on wavelet, curvelet, and the proposed wave atom
transforms applied to the original image. The red elliptical area points
to structures with clearer visibility in the denoised OCT images; white
scale bars represent 0.80 mm.

Wavelet Curvelet Wave atoms

Fig. 3 Enlarged copies of the solid black rectangle region in OCT retinal images [as shown in Fig. 2(a)]
for close comparison of the performance of three image processing algorithms. The black arrows point to
layer structures with clearer visibility and the white arrow points to the discontinuous layer structure in
the denoised OCT images. The white scale bars represent 0.42 mm.
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just a few coefficients.34 Meanwhile, wave atoms can be adapted
to arbitrary local directions of a pattern and also can sparsely
represent anisotropic patterns aligned with the axes.
Moreover, the warped oscillatory functions and oriented textures
in wave atoms have been proven to have a dramatically sparser
expansion compared to wavelets and curvelets, and wave atoms
transform is particularly well suited for representing oscillatory
patterns and textures in the images39 As a result, the wave
atoms transform would generate relatively larger transformed
coefficients for such continuous and weak layer features (like
ELM), while the wavelet and curvelet coefficients for the
weak ELM signals are small and are easily attenuated along
with speckle noise. The proposed wave atoms method, there-
fore, is a highly promising preprocessing approach that can
enhance retinal OCT image quality for further quantitative
analysis, such as segmentation for retina layer measurement
and analysis.

To quantitatively analyze the performance of the proposed
algorithm, we also calculated the image quality metrics, such
as SNR, CNR, ENL, and XOCR. The CNR values were aver-
aged over six ROIs (m ¼ 1 → 6) within the solid red rectangle
in Fig. 2(a). Similarly, the ENL values were averaged over the
three ROIs, m ¼ 2, 4, 6, in Fig. 2(a). The selected background
region in the dashed rectangle was used to calculate the back-
ground noise level. Note that the CNR and ENL were computed
using a logarithmic scale while SNR and XCOR were calculated
using a linear scale. Table 1 gives the results of the qualitative
metrics for the original and the filtered images. It clearly shows
that the denoised results with curvelet and the proposed wave
atoms transforms are better than the traditional wavelet thresh-
olding method. Note that we performed the wavelet- and curve-
let-based thresholdings with the best results by obtaining the
most appropriate threshold by a trial and error method in the
image processing. For similar XCOR values, for example, we
took the XCOR values of 0.925, 0.924, and 0.926 for the wave-
let-, curvelet-, and wave atoms-based methods, respectively. As
shown in Table 1, our proposed wave atoms shrinkage method
(K ¼ 1.0) made further improvements to the SNR, 8.43 dB and
3.12 dB, compared to the wavelet- and curvelet-based methods,
which also greatly improving the image quality of the CNR
and ENL.

In speckle reduction with wave atoms shrinkage, the param-
eter K controls the degree of speckle reduction, and there is
a trade-off between speckle reduction degree and edge preser-
vation in practical applications. Figure 4 shows the trend of
SNR improvement and cross-correlation XCOR with a different
threshold factor,K, in the denoising process. As shown in Fig. 4,

the XCOR decreases with the increment of threshold factor K.
However, SNR increases with the increment of K until K
reaches 1.1. The XCOR decreases sharply initially at small
K values, and then it does not change significantly for K
between 0.8 and 1.2. Increasing the threshold further would
eventually lead to the loss of image features and decrease the
XCOR. Moreover, Fig. 4 also shows acceptable and stable des-
peckled results (SNR and XCOR) for a wide available range of
threshold K (from 0.7 to 1.2) in the wave atoms despeckling
process.

4 Conclusions
In summary, we presented a recently introduced wave atoms
frame of decomposition for speckle reduction in OCT images.
The results showed that the proposed approach achieved better
SNR improvement and visual effects compared to the traditional
wavelet and curvelet shrinkages. Furthermore, the wave atoms
algorithm showed good preservation of image detail features,
and the trade-off between speckle reductions can be controlled
by using an adjustable parameter K in the despeckling process.
Note that the computational complexity of wave atoms trans-
form is OðN2 log NÞ for an N × N image; it shows more com-
plex than wavelet and curvelet methods. Moreover, after using
cycle spinning technology, the time consumed by the algorithm
is slower and the proposed method was the most time consum-
ing. In our case, the total time for processing a 512 × 512 images
was about 2.3, 2.7, and 8.1 s using wavelet, curvelet, and the
proposed wave atoms algorithm with MATLAB on an Intel
dual-core 2.2 GHz laptop, respectively. However, the processing
time can be significantly reduced with a C++ program and
graphic processing unit.
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