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Abstract. Quantitative investigations of fiber orientation and structural connectivity at microscopic resolution
have led to great challenges for current neuroimaging techniques. Here, we present a structure tensor (ST)
analysis of ex vivo rat brain images acquired by a multicontrast (MC) serial optical coherence scanner. The
ST considers the gradients of images in local neighbors to generate a matrix whose eigen-decomposition
can estimate the local features such as the edges, anisotropy, and orientation of tissue constituents. This com-
putational analysis is applied on the conventional- and polarization-based contrasts of optical coherence tomog-
raphy. The three-dimensional (3-D) fiber orientation maps are computed from the image stacks of sequential
scans both at mesoresolution for a global view and at high-resolution for the details. The computational orien-
tation maps demonstrate a good agreement with the optic axis orientation contrast which measures the in-plane
fiber orientation. Moreover, tractography is implemented using the directional information extracted from the 3-D
ST. The study provides a unique opportunity to leverage MC high-resolution information to map structural con-
nectivity of the whole brain. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.3.036003]
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1 Introduction
Unveiling fiber map and connectivity patterns in the nervous
system are important both in basic neuroscience research and
in clinical diagnosis. It is believed now that many brain diseases
are associated with abnormity in the white matter.1,2 Diffusion
magnetic resonance imaging (dMRI)3 technique provides a
unique solution to noninvasively map the white matter in living
human brain. Advances in dMRI, such as high-resolution diffu-
sion tensor imaging (DTI),4 high angular resolution diffusion
imaging (HARDI),5 or diffusion spectrum imaging (DSI),6 en-
able investigations at spatial resolutions around 1 mm and with
over one hundred directions. Clinical applications have indi-
cated changes in white matter organization in patients with trau-
matic and ischemic brain injuries and brain tumor, and abnormal
connectivity patterns are accompanied by volume change of
gray matter in patients with autism or schizophrenia.7,8 Based on
those observations, it is reasonable to hypothesize that the alter-
ations in fiber orientations would be a sensitive indicator of
brain conditions. However, comprehensive studies on fiber ori-
entations in normal and diseased brains need to be conducted at
multiscale resolutions.

Light microscopy on histological sections allows single fiber
visualization. By using texture analysis on digital images, fiber
orientations can be quantitatively assessed. Budde et al.9 applied
a Fourier transform algorithm to obtain fiber orientation maps in
normal and tumor-induced rat brains. Choe et al.10 used a filter
matching algorithm to compare the fiber orientations computed
from light microscopy images with dMRI. Wang et al.11 used the

gradients of local features on a histology image to quantify the
cardiac fiber orientation and validated the measurement of a
Jones matrix optical coherence tomography (OCT) technique.
The majority of the studies have been performed on two-dimen-
sional (2-D) space, restricted to a small spatial coverage of the
tissue, or generating a region of interest (ROI)-based orientation
estimation. Global explorations of fiber orientation maps at a
microscopic level remain largely unsolved and thus leave a
gap with the system-level investigations.

OCT12 is a three-dimensional (3-D) imaging technique that
enables the visualization of the nerve fiber architecture at
micrometer scale resolution.13–15 We have recently reported a
serial optical coherence scanner (SOCS) that integrated a vibra-
tome slicer into a multicontrast (MC) OCT system to realize
large-scale imaging of ex vivo brain.16 SOCS distinguishes the
gray and white matters, provides brain-wide anatomical delin-
eation of fiber architectures, and quantifies the 2-D in-plane (xy-
plane) fiber orientation with intrinsic optical contrasts. However,
direct measurement of fiber orientation in the third dimension
(with respect to the z-axis) is not supported by the current im-
aging procedure. As a result, efforts in computational analysis
may help to recover the inclination angle to complete the ori-
entation information in 3-D space.

In this paper, we use the structure tensor (ST) model on
SOCS images of ex vivo rat brain to construct quantitative fiber
orientation maps in 2-D and 3-D spaces. The ST is typically
used to extract features on digital images or volumetric data.
It takes the neighboring gradients of a pixel into account and
describes the anisotropy and directionality of local textures.17
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The approach has been widely used in image or video process-
ing for edge detection and motion tracking.18,19 Biomedical
applications of ST include quantitative analysis of anisotropic
elements such as collagen networks,20 myocardial fibers,21 and
human brain cortex.22,23 Budde and Frank24 applied ST on his-
tological slices of rat brain to examine the fiber orientation in
2-D. Our work demonstrates the use of ST analysis for OCT
images and extends previous studies to interrogate 3-D fiber ori-
entations. The ST-based fiber orientation mapping in rat brain is
compared with the optic measures of SOCS on the xy-plane.
Because of the analogy of ST with the tensor matrices in DTI,
software tools that have been developed for dMRI techniques
are readily applicable for visualization, tractography, and con-
nectivity analysis.

2 Materials and Methods

2.1 Tissue

Two euthanized adult rats were obtained from the tissue sharing
program of Research Animal Resources at the University of
Minnesota. Brains were dissected and fixed with 10% buffered
formalin for 72 h before imaging.

2.2 Serial Optical Coherence Scanner Imaging

The imaging system and associated experimental procedures
have been described in detail by Wang et al.16 In brief, SOCS
integrates an MC OCTand a microtome slicer to accomplish the
reconstruction of macroscopic tissues. Built on a polarization-
maintaining-fiber-based polarization-sensitive OCT in the spec-
tral domain,25 the MC-OCT characterizes anisotropic tissues
by the optical property of birefringence and incorporates the
Doppler flow information when applicable. The light source, a
superluminescent diode operating at 840-nm central wavelength
with a 50-nm bandwidth, yields an axial resolution of 5.5 μm in
tissue (with a refractive index of ∼1.4). The lateral resolution
determined by a scan lens (f ¼ 36 mm) is about 15 μm.
Interference of the backscattered/reflected light from the sample
and reference arms is detected by a home-built spectrometer that
simultaneously acquires spectra on two orthogonal polarization
states. Inverse Fourier transform of the spectral oscillations in k-
space yields complex-valued depth profiles (A-line) for each
polarization channel, which can be represented in polar form
as A1;2ðzÞ expfiϕ1;2ðzÞg, where A and φ denote the amplitude
and phase, respectively, along depth z, and the subscripts 1 and 2
correspond to the cross-coupled and main polarization channels.
The contrasts for ex vivo brain imaging were generated from the
amplitude and phase of the complex-valued depth profiles.
These include reflectivity RðzÞ ∝ A1ðzÞ2 þ A2ðzÞ2, cross-polari-
zation CðzÞ ∝ A1ðzÞ2, retardance δðzÞ ¼ arctan½A1ðzÞ∕A2ðzÞ�,
and optic axis orientation θðzÞ ¼ ½φ1ðzÞ − φ2ðzÞ�∕2. The optic
axis orientation, however, is a relative measurement, bearing a
time-variant offset that needs to be removed. The offset origi-
nates from an arbitrary delay between the optical paths of the
two PMF channels. To obtain the absolute optic axis orientation,
a retarder film was included as a calibrating reference and
imaged together with the tissue. Construction and operation
details of the imaging system can be found in our previous
publications.16,25

The brain sample was mounted on a vibratome slicer posi-
tioned under the scanner. A volumetric scan (optical section)
contains 300 cross-sectional frames (B-line) with 1000 A-lines

in each frame, covering a field of view of 7 × 7 × 1.78 mm3

(xyz) with a corresponding voxel size of 7 × 23 × 3.47 μm3.
After imaging one optical section, a superficial slice is removed
allowing deeper regions to be imaged. The procedure is repeated
until the whole sample is imaged. As the tissue is kept unmoved
during the imaging procedures, 3-D reconstruction of the entire
sample is achieved by stacking the slices without requiring com-
plicated registration algorithms.16

Two rat brains were scanned, one sectioned in sagittal planes
(shown in Figs. 2–4, 6, and 7) and the other in coronal planes
(shown in Fig. 5). The sagittal sections consist of 28 slices of
200 μm each, and the coronal sections consist of 66 100-μm
slices.

2.3 Image Reconstruction

The 2-D en-face images unveil surface and subsurface features
within a section. The volumetric datasets of reflectivity, retard-
ance, and optic axis orientation contrasts were projected onto the
xy-plane for each optical section. The pixel intensities in en-face
reflectivity and retardance images were computed by taking the
corresponding mean value along the depth (z) direction. The
pixel intensities in en-face orientation images were determined
by the peak of a histogram formed by binning the measured ori-
entation values along the depth into 2 deg intervals. The depth
range used in calculations matches the physical slice thickness.
3-D images of the entire sample block were reconstructed in two
ways: by stacking the 2-D en-face images or by stitching the
volumetric datasets of all sections. The en-face stack facilitates
the global structure identification at a mesoscopic resolution
(15 × 15 × 100 μm3, the resolution in z-axis is constrained by
the slice thickness). On the other hand, stitching the volumetric
datasets preserves the microscopic resolution as recorded (15 ×
15 × 5.5 μm3). For optimal fusing outcome, the starting point
along the depth was adjustable to match the ending point of
the previous section. The cross-polarization images were used
for the 3-D stitching, as the contrast describes the nerve fibers
and preserves decent signal intensity in deeper regions. The
details of the 3-D reconstructions can be found in our previous
publication.16

The reflectivity image portrays the anatomical structures
including the fiber tracts, and the retardance and cross-polariza-
tion images particularly probe the nerve fibers. They are used as
an original dataset to apply ST. The optic axis orientation con-
trast provides quantification of the in-plane orientation of nerve
fibers; therefore, it is used to compare with the results of the ST
analysis. Details of the comparison methods are described in the
following sections.

2.4 Structure Tensor Analysis

The ST is a second-moment matrix, which is computed from the
gradients of the image data.26 It describes the dominant direction
in a local neighborhood of a specific point. The computations
are performed based on a pixelwise method.20,24 The procedures
are described as follows:

1. The gradient ð∇IσÞ of the image data (I) is computed.
For 2-D ST analysis, I represents either the en-face
reflectivity image or the en-face retardance image.
For 3-D ST analysis, I represents a 3-D dataset formed
either by stacking the 2-D en-face images (retardance
contrast) or by stitching the volumetric datasets of all
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sections (cross-polarization contrast). To avoid the sin-
gularity in discrete digital images, we use the convo-
lution of the first-order Gaussian derivatives kernel
ð∇KσÞ with the original image to compute the partial
derivatives ð∇IσÞ of the image data. σ represents the
standard deviation of the Gaussian kernel and is
selected to be 1 pixels∕voxel for calculating the deriv-
atives:

∇Iσ ¼ ∇Kσ � I.

2. The ST (J) for each pixel/voxel is constructed by the
outer product of the gradient vectors as follows, where
the subscripts x, y, and z represent x-, y-, and z-axis,
respectively,

J ¼ ∇Iσ∇ITσ ¼

8>>>>>>>><
>>>>>>>>:

� I2σx Iσxy
Iσyx I2σy

�
for 2-D

0
B@

I2σx Iσxy Iσxz
Iσyx I2σy Iσyz
Iσzx Iσzy I2σz

1
CA for 3-D

3. The individual elements of the tensor matrix are
smoothed through a convolution with a Gaussian ker-
nel Kn;ρ, where n represents the number of neighbor-
ing points included in the Gaussian kernel and ρ is the
standard deviation of the Gaussian kernel. The values
of n and ρ are empirically determined on the image for
an optimal performance:

Jn;ρ¼

8>>>>>>><
>>>>>>>:

�Kn;ρ�I2σx Kn;ρ�Iσxy
Kn;ρ�Iσyx Kn;ρ�I2σy

�
for 2-D

0
B@

Kn;ρ�I2σx Kn;ρ�Iσxy Kn;ρ�Iσxz
Kn;ρ�Iσyx Kn;ρ�I2σy Kn;ρ�Iσyz
Kn;ρ�Iσzx Kn;ρ�Iσzy Kn;ρ�I2σz

1
CA for 3-D

4. Eigen-decomposition is performed on the smoothed
tensor matrices for each voxel, and the eigenvalues (λi,
where i represents 1, 2 for 2-D and 1, 2, 3 for 3-D) and
eigenvectors (vi, where i represents 1, 2 for 2-D and 1,
2, 3 for 3-D) are extracted. The eigenvalue represents
the local gradients of the image intensity, and the
direction of the fiber axis should have the smallest gra-
dient. Therefore, fiber orientation is represented by the
eigenvector corresponding to the smallest eigenvalue.

Noise, especially speckle, is a nontrivial problem in coherent
and low-coherent imaging systems. Because the speckle pattern
in SOCS images can be sensitively captured by the ST analysis,
its removal by appropriate filtering is important. We used a non-
linear anisotropic diffusion filter described by Kroon and
Slump.27 The filter was applied as a preprocessing step on the
original SOCS images. The effectiveness of filtering is evaluated
in Sec. 3. The ST algorithms were implemented in MATLAB
using customized codes.

2.5 Comparison of Computed and Measured
Orientations

The 2-D computational orientation maps are compared with the
en-face optic axis orientation images obtained by SOCS. The
orientation differences in selected ROIs are inspected. Since the
inclination angle is not measured optically, the comparison of
computational and measured orientations is not directly avail-
able for 3-D. Instead, we projected the computed 3-D vector
onto the xy-plane and created an en-face image for each optical
section using a histogram analysis, as described in Sec. 2.3. The
2-D images derived from the 3-D STanalysis are then compared
with the en-face optic axis orientation images.

2.6 Tractography

Since the ST matrix has the same construction as the tensor data
in DTI, tractography tools used for the dMRI technique are
readily applicable. We conducted tractography on the 3-D ST
data using the Diffusion Toolkit.28 As the tracts are created
based on the eigenvectors with respect to the greatest eigenval-
ues, while in ST the fiber orientation is represented by the vector
corresponding to the smallest eigenvalue, we replaced the eigen-
values (λi) with 1∕λi and rebuilt the ST matrix. We demonstrated
the results with the interpolated streamline algorithm,29 while
application of the fiber assignment by continuous tracking
method,30 the second-order Runge Kutta29 and the tensorline31

algorithms showed similar pathways. The tracts are visualized in
TrackVis.28 For detailed inspection, ROIs are selected and fibers
passing through the nodes are examined. The pipeline of the
entire processing is shown in Fig. 1.

Fig. 1 Processing pipeline of structure tensor (ST) analysis of serial
optical coherence scanner (SOCS) images. The optical contrasts are
generated for each volumetric scan. En-face images of reflectivity (R)
and retardance (δ) are calculated for two-dimensional (2-D) ST com-
putation. Stacked en-face retardance images and stitched optical sec-
tions of the cross-polarization (C) contrast are utilized for three-
dimensional (3-D) ST computation. The computed orientation maps
are obtained through eigen-decomposition of ST and validated by
the en-face optic axis orientation images. Tractography is conducted
based on the 3-D ST.
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3 Results

3.1 En-Face Representations of Structure Tensor

We applied ST on various contrasts of en-face images. A non-
linear diffusion filter was applied as a preprocessing step on the
original images before the ST computation, and the pixel size
was interpolated to be 7 × 7 μm2. The results with the reflectiv-
ity and retardance images are shown in Fig. 2. The left column
shows the original images. The reflectivity image is the tradi-
tional OCT measure describing the gross structure, but the
white matter can be either brighter or darker than the gray matter
depending on the fiber orientation with respect to the illumina-
tion beam. The retardance image is generated from polarization-
sensitive measurement and especially targets the white matter
where the birefringence property of myelinated fibers alters the
polarization state. The right column shows the computed fiber
orientation maps. The images share the same color-coding given
on the color wheel, while the brightness is determined by the
original SOCS images (left). The results indicate that the com-
puted orientations of the fiber tracts are consistent between the
two contrasts. The best agreements are found in regions where
fiber identifications are highlighted on both contrasts indicating
in-plane alignment of those fiber bundles (e.g., the labeled fiber
groups around the medial part of the thalamus). Some discrep-
ancies are observed in the fiber clusters caudal to the thalamus,
attributed by the different characteristics revealed on the original
images. The result also suggests that the ST analysis can be
applied to the images of conventional OCT where the polariza-
tion information is not available. As the retardance contrast

provides the most robust identification of the white matter on
the en-face images,14,17 we apply the 2-D ST on this contrast
for further evaluation and comparison.

ST is sensitive to abrupt changes in image intensity; as a
result, noise reduction plays an important role in obtaining
smooth and accurate representations of fiber orientations.
Therefore, we applied a nonlinear diffusion filter before ST
computation and compared the results with those without
any filtering (Fig. 3). Two sizes of smooth kernels, K10;2
and K20;4, were used for the tensor matrices. K denotes a
Gaussian kernel with the first subscript being the number of
neighboring pixels (7 μm∕pixels) included and the second sub-
script being the standard deviation of the Gaussian kernel. The
maps are accompanied by the histograms of fiber orientations
in an ROI (dashed box). The ROI is placed in the optic tract
where coherent orientation is expected in the fiber bundles.
When no filter was utilized on the original image, the orienta-
tion map is hardly immune from noise (top left) for a smooth-
ing size of 28 μm (K10;2), and the histogram presents a
scattered orientation distribution in the optic tract. Increasing
the size of the smooth kernel and the weight of the neighboring
points enhances the consistency of orientation representation
(right column), but results in degraded resolution and misiden-
tification of small crossing fibers if existing. To minimize the
problem, a preprocessing step with a nonlinear diffusion filter
dramatically reduces the noise while keeping the spatial reso-
lution less affected. We empirically determined to use a
smoothing kernel size of 30 to 50 μm with the preprocessing
filter in the following sections.

Fig. 2 The 2-D ST analysis on (a) en-face reflectivity and (b) retardance images. Left: original images,
right: orientation maps computed by eigenvector of ST. Color wheel shows the orientations. Brightness is
controlled by the pixel intensities in corresponding en-face images. sm: stria medullaris thalamus, f: for-
nix, mt: mammillothalamic tract, and fr: fasciculus retroflexus. The round area in blue indicates the ROI 4
for Fig. 4(b).
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3.2 Comparison with Optical Measurement

To evaluate the 2-D ST performance, we compared the computa-
tional orientations with the optic axis orientation measurements.
Figure 4(a) shows a sagittal slice of the computed and measured
orientation maps. The orientation values share the same color
coding given by the color wheel. The brightness of the pixels is
controlled by the en-face retardance values. The orientation
maps demonstrate a remarkable agreement with less than a
10 deg difference in well delineated fibers where higher bright-
ness (retardance) is usually seen. These areas include the inter-
nal capsule (ic), the stria medullaris thalamus (sm), the cingulum
(cg), and the fiber tracts in the caudate putamen (CPu). More
deviations are observed in the white matter regions with low
brightness.

We then performed quantitative comparisons in specific
areas of the white matter [Fig. 4(b)]. The ROIs 1, 2, 3 [indicated
by the boxes on Fig. 4(a)] contain small fiber tracts in the CPu,
dense fiber tracts in the ic, and fiber tracts in the lateral thalamus,
respectively. The ROI-4 contains fiber groups around the medial
thalamic region including the stria medullaris thalamus (sm),
the fornix (f), the mammillothalamic tract (mt), and the fascicu-
lus retroflexus (fr), as indicated in Fig. 2. The ROIs are across

multiple slices where the selected architectures are clearly vis-
ible. Figure 4(b) shows the plots of mean and standard deviation
of the difference between the computed and measured fiber
orientations. Pixels having retardance values of 233 nm and
higher are included in the statistical analysis. The orientation
differences (mean� standard deviation) are −0.2� 15.5 deg,
−5.7� 22.1 deg, −14.6� 28.7 deg, and −7.9� 29.41 deg,
respectively, for ROIs 1, 2, 3, and 4. The minimal differences
indicating good agreement are seen where individual fiber tracts
are clearly identified (ROI-1). In addition, the computational ori-
entations are viable in fiber bundles where the dominant features
can be captured (ROIs 2 and 4). The orientations are less com-
parable with greater variations observed in the lateral thalamus
(ROI 3) where fiber identification becomes less reliable.

3.3 Three-Dimensional Orientation Maps

The 3-D STachieves quantification of the fiber orientation in the
whole brain space, which fills the gap of current 2-D orientation
measurements by SOCS. First, we conducted the ST analysis on
the en-face stack of the retardance images. The voxel size of the
data was interpolated to be 25 μm isotropic. This dataset pro-
vides a global view of the fiber organization and captures the

Fig. 3 Filtering and kernel size effects on the computational orientation maps: (a) without filter; and
(b) with nonlinear diffusion filter applied on SOCS images. The sizes of the smoothing kernels are
K 10;2 (left) and K 20;4 (right), respectively, where the first subscript is the number of neighboring pixels
included in smoothing and the second subscript is the standard deviation of the Gaussian kernel. The
color-coding is in Fig. 2. The white boxes indicate the region of interest (ROI), whose fiber orientation
distributions are plotted with histogram (white bars) on individual images (range: �90 Deg, binning:
2 deg).
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neural fibers running through the xy-plane with an inclination
angle. Figure 5(a) demonstrates the orthogonal views of the
3-D orientation map derived from the ST. The fiber directions
are indicated by the color-coding on each map, and the bright-
ness is controlled by the retardance value. The coronal view
(left) shows various fiber groups including the anterior commis-
sure (ac) connecting the two hemispheres in the left-right direc-
tion, the f aligned in the superior-inferior direction, and the
fibers in the CPu running in the rostral-caudal direction. Color
transitions are seen in the fimbria of the hippocampus (fi) and
the posterior branch of the anterior commissure (acp). Similar
results are seen on the sagittal (middle) and horizontal (right)
sections as well. The orientations are consistent with the prior
knowledge from dMRI results.32,33 Figure 5(b) demonstrates a
microscopic diffusion tensor atlas (resolution: 50 μm) of the
Wistar rat brain.32 Orthogonal views of 3-D orientation maps
are shown at similar locations. The color-coding for orientation
is the same as Fig. 5(a). The majority of the fiber orientations
obtained by ST are well correlated with the diffusion tensor
images. The major deviations in the ST results are observed
in the corpus callosum (cc) and external capsule (ec) which
form large white matter areas in the absence of the detailed fea-
tures of fiber bundles. The lack of a dominant direction in local

features may induce errors in the orientation estimations within
large white matter regions.

The 3-D dataset generated by stitching the volumetric optical
sections of serial scans provides higher resolution for delineat-
ing the fiber map. ST analysis applied on this dataset provides a
favorable solution for both large-scale orientation quantification
and comprehensive connectivity investigations. To achieve more
efficient computation, the dataset was downsampled to a voxel
size of 25 μm. Figure 6 shows a 3-D orientation map of the right
hemisphere of a rat brain. The colors represent the orientations
as follows: red: rostral-caudal, green: left-right, and blue: supe-
rior-inferior. The brightness is controlled by the pixel values of
the cross-polarization images. Figure 6(a) illustrates the
orthogonal views demonstrating fiber tracts with various direc-
tions and patterns. Directional changes of fiber tracts can be sen-
sitively detected. On the coronal plane, the neural tracts through
the putamen are aligned more horizontally in the lateral region
(ROI 1) and vertically in the upper region (ROI 2). Similar color
transitions are shown on the horizontal and sagittal planes.
Moreover, results obtained from the 3-D ST analysis clarify
the ambiguity of fiber alignments on 2-D ST images. For exam-
ple, the orientation map on the horizontal plane shows that the
fiber bundles in the ic run along the superior-inferior direction

Fig. 4 Comparison of computed and measured orientations: (a) The orientation maps of a sagittal sec-
tion share the same color-coding (color wheel), and the brightness is controlled by the en-face retardance
values. CPu: caudate putamen, TH: thalamus, cc: corpus callosum, and ic: internal capsule. (b) Mean
(circles) and standard deviation (bars) of the difference between computed and measured fiber orienta-
tions are plotted for all ROIs and respective slices. Pixels having low retardance (<233 nm) are excluded
in the statistical analysis. ROIs of the first three plots are indicated on (a). ROI of the last plot contains
multiple fiber bundles as shown in Fig. 2 including f, fr, mt, and sm. The ROIs are acrossmultiple slices [x -
axis in (b)].

Journal of Biomedical Optics 036003-6 March 2015 • Vol. 20(3)

Wang, Lenglet, and Akkin: Structure tensor analysis of serial optical coherence scanner images. . .



rather than the left-right direction which would be the apparent
intuition from the 2-D plane. Fiber bundles aligned in the left-
right direction are less visible, probably due to the fact that the
optical systems barely detect the fibers along the illumination
beam. This yields low backreflection and decreased signal inten-
sity compared with the surrounding gray matter; therefore, some
of the fiber bundles are not captured. Volume rendering of the
3-D orientation map is implemented in Vaa3D31 and shown in
Fig. 6(b).

The 3-D orientation obtained by ST analysis is not directly
comparable with the optical measures as the optical axis orien-
tation contrast in SOCS is restricted in 2-D. Therefore, we pro-
jected the 3-D computational orientation vectors onto the xy-
plane and then generated en-face images to compare with the
en-face optic axis orientation images. Pixel values on the en-
face computational orientation image are determined by a histo-
gram approach similar to that used for en-face optic axis orien-
tation. Figure 7 shows the en-face images of a sagittal section.
The computation (left) and the measurement (middle) are well
correlated in most of the white matter, as shown by the absolute
difference between the two images (right). Fiber orientations
obtained by the two approaches closely match with the
differences less than 10 deg in most regions where the image
intensity is high and neural fibers are clearly traceable. These
regions include the ic, the tracts in the putamen, the optic

tract, the superior thalamic radiation, and the local fibers within
the thamalus. More deviations are seen in the fiber bundles
going through the plane.

3.4 Tractography

Tractography can be readily performed using the tools designed
for diffusion MRI data. Figure 8 shows a representative tractog-
raphy based on the STanalysis applied on the en-face retardance
stack (7 × 7 × 5.5 mm3). The tracts are color coded by their
local orientations according to the directions shown in the cube
(bottom-right corner). The original dataset is overlaid in gray-
scale for a better interpretation of the anatomy. Figure 8(a) illus-
trates the pathways beneath the cc. Only 14% of the tracts are
shown due to the high density. Tracts in the mass white matter
areas such as cc and ec are excluded, because the orientation
estimation of the 3-D ST on these shell-like geometries does
not align with the direction of its constituting fibers. To explore
the fibers passing through a specific region, a sphere ROI indi-
cated by a black arrow on Fig. 8(b) is placed at the conjunction
of f and ac. The localization of the ROI is facilitated with the
visualization of 3-D anatomical images of the en-face retardance
stack. The tracts on Fig. 8(b) indicate that the fibers passing
through this region primarily include f, fi, and ac. The ac is fur-
ther branched in the anterior and posterior directions (aca and

Fig. 5 (a) The 3-D ST for fiber orientations at mesoscopic resolution. The ST is calculated from a stack of
en-face retardance images and the orthogonal images are visualized in Vaa3D34 (left: coronal, middle:
saggital, and right: horizontal). The color represents the fiber orientations (red: left-right, green: anterior-
posterior, and blue: superiorinferior). Directions are labeled on the individual viewing plane. The image
intensity is masked by the retardance value which highlights the white matter. CPu: caudate putamen,
acp: posterior branch of the anterior commissure, cc: corpus callosum, ec: external capsule, f: fornix, and
fi: fimbria of the hippocampus. Sample size: 7 × 7 × 5.5 mm3. (b) Microscopic diffusion tensor atlas of a
Wistar rat brain (resolution: 50 μm) shows the correspondence with the same color-coding. The fiber
orientation maps are shown superimposed on the fractional anisotropy images, which were obtained
from the public online dataset at the Duke Center for In Vivo Microscopy.
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acp). Tracking of the ac is better visualized when the ROI is
moved more laterally [Fig. 8(c)].

4 Discussion
Abnormalities of structure, orientation, and connectivity in the
white matter have been linked to many brain diseases; however,
comprehensive understanding of those factors with current
imaging techniques is limited by spatial resolution or restricted
coverage. In this paper, we demonstrated an STapproach to estab-
lish quantitative fiber orientation maps and the neuroanatomical
connectivity in rat brain with SOCS imaging. This data-driven

model offers a viable solution for comprehensive estimation of
fiber orientations at microscopic resolution in complex brains.
The eigenvectors of the ST sensitively capture the directionality
of the anatomical features, and the computed orientation maps
are well correlated with the measured in-plane optic axis orien-
tation contrast of SOCS. Quantitative comparisons between the
computed and measured orientations disclose an agreement with
<10 deg difference in the well delineated fiber tracts (Figs. 4
and 7).

The 3-D fiber orientation maps obtained by ST provide
details that have not been available with direct optical measures.

Fig. 6 The 3-D ST analysis on high-resolution reconstruction of rat brain. The dataset is generated by
stitching the optical sections of the cross-polarization contrast. (a) Orthogonal views of the 3-D fiber ori-
entations. ic: internal capsule. ROIs 1 and 2 indicate the fibers oriented along horizontal and vertical
directions, respectively. The color sphere codes the orientations as red: anterior-posterior, green:
left-right, and blue: superior-inferior. Directions are labeled on the orthogonal planes as well.
Brightness is controlled by the dataset (cross-polarization). (b) Volume rending of the 3-D orientation
map provides a perspective view.

Fig. 7 The 3-D orientation by ST analysis is (a) projected onto the xy -plane and (b) correlated with the
en-face optic axis orientation. The color wheel indicates the orientations. The brightness is controlled by
the en-face retardance values. The absolute difference of computed and measured orientations for pixels
with retardance greater than 233 nm is plotted on the en-face retardance image (c). The color bar rep-
resents a narrow range (0 deg to 35 deg) for visualizing the mismatch.
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Owing to the high resolution of SOCS images, fiber tracts of
25 μm in diameter are visualized on the stitched optical sections.
ST applied on this dataset produced the 3-D orientation of the
fiber tracts (Fig. 6). Although the smooth kernel for ST compu-
tation inevitably undermines the image resolution, this effect can
be minimized by controlling the kernel size on high-quality
images. In the current analysis, the smoothing kernel size used
for 3-D ST is 50 μm, indicating that the orientations of the cross-
ing fiber groups would not be distinguished within the 50 μm
neighborhood due to the averaging effect. However, the orien-
tation estimation for the parallel fibers with smaller sizes (down
to 25 μm) is still valid. Speckle noise on SOCS images is a dom-
inant factor limiting the reliability of STwith smaller kernel size.
Future improvements on the optical resolution and speckle-
reduction techniques could enhance the results.

In this study, we also applied the 3-D ST analysis on a stack
of en-face retardance images. The dataset, although bearing a
compromised resolution on the z-axis, provides a global inspec-
tion of fiber organizations in the brain. The 3-D orientation map
(Fig. 5) demonstrates the preferred orientations in the majority
of the fiber tracts, where directionality of the structural features
can be identified. Inconsistent estimations are seen in the cc and
ec (blue embedded in red colors on Fig. 5), probably because the
mass white matter regions form a shell-like geometry without
showing the features of individual fiber bundles. As opposed
to the cylindrical shape of individual fiber tracts which have
a uniquely defined direction, the plenary structures lack a dom-
inant direction. As a result, the ST estimation for the orientation
merely shows a direction with the least local gradient, not nec-
essarily parallel to the individual fiber direction. This problem
might be solved by developing contrasts and enhancing the opti-
cal resolution for fiber identification.

The comparison of the ST results and the optic axis orienta-
tion yields good agreement in well-defined fiber tracts. The dis-
crepancies arise in the white matter regions where the fiber
architectures are poorly depicted on the SOCS images. This
could be caused by low retardance values, which typically imply
the presence of fibers with low birefringence, running through
the plane or crossing with each other. In these scenarios, the
optic axis orientation measure bears more noise. The low con-
trast and the noisy features on the images affect the ST analysis
making the fiber orientation estimation more prone to error. For
instance, the small fiber tracts in the thalamus were barely vis-
ible due to low retardance; as a result, the ST estimation and the
optic axis orientation measures may not be accurate and com-
parable with each other. Another example was found in the fiber
bundles exiting the xy-plane with large angles, such as the cc in
the sagittal sections, where the contrast between the white and
gray matters was lost. This study concentrated on the myelinated
fiber tracts due to the high birefringence of myelin sheath. SOCS
imaging and STanalysis of unmyelinated fiber tracts that exhibit
low birefringence require further investigation.

The feature visibility with SOCS can be enhanced by the
optical setup and the problems of the directional anisotropy of
scattering and the dependence of measured retardance on the
inclination angle of the neuronal fiber tracts could potentially
be dealt with multidirectional illuminations. Angle-resolved im-
aging techniques have been suggested in OCT,35,36 and a polari-
zation-sensitive OCT with variable-incidence angles has been
reported to support 3-D orientation estimation.37 Another
method is to improve the spatial resolution for feature identifi-
cation.38,39 Incorporation of these techniques in SOCS imaging

Fig. 8 Tractography based on SOCS images. Tracts in color are com-
puted from ST applied on the en-face stack of retardance. Colors in
the cube represent the directions. Tracts are overlaid on the original
data (grayscale). (a) Tracts excluding the cc and ec. Considering the
high density, only 14% of the tracts are shown. (b) Fibers passing
through a ROI at the junction between the ac and the f (gray sphere
indicated by black arrow). (c) Fibers passing through another ROI
(blue sphere) on the ac.
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for drawing the full-angle wiring system in complex brains
needs to be explored.

The formation of the ST establishes a seamless connection to
the tractography tools developed for diffusion MRI to investi-
gate fiber tracking and structural connectivity. For proof of prin-
ciple, we construct a tractography based on the en-face stack of
retardance images. Excluding the cc and the ec, the tracts com-
ply with the prior knowledge of anatomy (Fig. 8). We could also
conduct the tractography on the high-resolution 3-D ST matri-
ces, derived from the stitched optical sections in SOCS; how-
ever, the results need to be more delicately visualized and
more carefully interpreted due to the high density of fiber path-
ways. Another concern is that the identification of the fiber tracts
through the xy-plane is weaker than the fibers parallel to the xy-
plane; therefore, the tract map could miss certain directions and
induce a biased connectivity result.

In summary, the combination of the ST analysis and the
SOCS imaging provides a viable tool for brain-wide orientation
mapping and connectome exploration at microscopic resolution.
The 3-D orientation estimation from SOCS images enables a
comprehensive cross-scale investigation with dMRI tech-
niques.40 The method is easily generalized to other 3-D imaging
techniques, including conventional OCT, serial microscopy,41,42

and light sheet microscopy,43 to support quantitative evaluation
of fiber orientation where direct measure is not available. The
analysis is also applicable to other tissues and molecular struc-
tures, in which anisotropic features are identified. The computa-
tional analysis provides an objective assessment of tissue
microstructures, thus facilitating quantitative assessments of
pathological studies.
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