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Abstract. The infrared laser photoacoustic spectroscopy (LPAS) and the pattern-recognition-based approach
for noninvasive express diagnostics of pulmonary diseases on the basis of absorption spectra analysis of the
patient’s exhaled air are presented. The study involved lung cancer patients (N ¼ 9), patients with chronic
obstructive pulmonary disease (N ¼ 12), and a control group of healthy, nonsmoking volunteers (N ¼ 11).
The analysis of the measured absorption spectra was based at first on reduction of the dimension of the feature
space using principal component analysis; thereafter, the dichotomous classification was carried out using the
support vector machine. The gas chromatography–mass spectrometry method (GC–MS) was used as the refer-
ence. The estimated mean value of the sensitivity of exhaled air sample analysis by the LPAS in dichotomous
classification was not less than 90% and specificity was not less than 69%; the analogous results of analysis by
GC–MSwere 68% and 60%, respectively. Also, the approach to differential diagnostics based on the set of SVM
classifiers usage is presented. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.1.017002]
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1 Introduction
The analysis of exhaled air is under investigation as a promising
tool for express and noninvasive analysis of biochemical proc-
esses in the human body1 that arise from underlying diseases by
providing a detailed picture of specific metabolites that are bio-
markers in the exhaled air.2 The term “biomarkers” was first
used in 1989 (Ref. 3) and standardized in 2001, as “a character-
istic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention.”4 Control of
metabolites in exhaled air produced by biochemical reactions
in cells being called “breathomics” provides the ability to pre-
dict the specific disease before the appearance of the clinical
features. This approach has already been applied for diagnostics
of cancer, pulmonary diseases, and infectious diseases.5

In addition to nitrogen, oxygen, carbon dioxide, water vapor,
and inert gases, exhaled air contains components of endogenous
or exogenous origin in the ppbv–pptv range of concentrations.
The endogenous compounds include inorganic gases such as
NO, CO; volatile organic compounds (VOCs) such as ethane,
pentane, acetone, isoprene, acetaldehyde, methanol, ethanol,
and other alcohols and alkanes; 2-propanol, sulfur-containing
compounds such as dimethylsulfide; methyl, ethyl, mercap-
tanes, and carbon disulfide; and nitrogen-containing substances
such as ammonia and dimethyl/trimethylamine.1,6

Single-molecule biomarkers often do not suffice for describ-
ing a specific phenotype or endotype. Therefore, molecular

biomarker panels are often applied as they can be highly relevant
in distinguishing subgroups of patients for targeted interven-
tions. These panels can be derived from complete mapping
of molecular mixtures obtained from “omics” technologies
and subsequent unbiased statistical pattern recognition.6

Exhaled air analysis can be used both as a tool in diagnostics
and to reveal specific (patho-) physiological mechanisms. The
latter is not of primary importance for diagnostic purposes.
Therefore, identification of VOCs is not strictly necessary in
a clinical setting, and a “profiling” approach can be used.7

Chemical analytical techniques provide identification of specific
compounds, pattern-recognition-based techniques provide prob-
abilistic discrimination of biomarker profiles. Notably, the latter
does not identify individual compounds but is based on prob-
abilistic recognition, which forms the basis for assessing diag-
nostic accuracy.7

The aim of this paper is to reveal the abilities of the infrared
(IR) laser photoacoustic spectroscopy (LPAS) and the pattern-
recognition-based approach for noninvasive express diagnostics
of pulmonary diseases on the basis of absorption spectra
analysis of the patient’s exhaled breath. The method of gas chro-
matography–mass spectrometry (GC–MS) was used as the
reference.

2 Technical Background
Various analytical methods are used for breathomics.8 Selected
ion flow tube mass spectrometry (SIFT-MS) is based on chemi-
cal ionization (ChI) using molecular ions to transfer charge onto
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the target compound. The ChI approach allows reduced frag-
mentation of the latter in comparison with many other types
of ionization. SIFT-MS provides direct analysis with no sample
preconcentration, is suitable for real-time monitoring, and is
slightly influenced by humidity. The limit of detection (LOD)
of the SIFT-MS Voice200Ultra (Syft Technologies Ltd.) is better
than 1 pptv.

Proton transfer reaction mass spectrometry (PTR-MS) is a ChI
mass spectrometric technique, which allows the measurement of
trace gases as, for example, in exhaled human breath. To increase
measuring accuracy, the duration of the measuring process is
extended, but for breath-to-breath resolution the time window
for measurement should be relatively short. To estimate the
LOD, a theoretical model of the measurement process is outlined.
According to this, for example, LOD for concentration measure-
ments of the acetone is about 0.2 ppb.9 The PTR-QMS 300 instru-
ment (IONIKON Analytik GmbH) provides LOD < 300 pptv.10

Gas chromatography–mass spectrometry (GC–MS) detec-
tion is a “gold standard” in VOCs analysis. For example, LOD
for dichloromethane by this method is about 0.1 ppt.11

The method of ion mobility spectrometry (IMS) is used to
detect substances in very small concentrations, for instance
for measurements of background concentrations of pollutants
in workplace and environment. A small sample of air containing
the suspected substance is periodically taken into the IMS sys-
tem where a radioactive source ionizes the molecules in the sam-
ple. As a result, they drift in an electric field inside the so-called
“drift cell.” Each type of molecules has a specific drift velocity
in the air and may, therefore, be identified. Gas chromatography
coupled to ion mobility spectrometer (GC-IMS) by Gesellschaft
für analytische Sensorsysteme mbH provides a typical value of
LOD near the low ppbv-range.12

The devices, consisting of a number of sensors, each of
which corresponds to a particular substance, are often called
“electronic nose.” The example of the “e-nose” is “Cyranose
320,” consisting of 32 polymer chemiresistors.13 The disadvant-
age of similar sensors is nonspecificity due not only to reaction
on a given chemical compound but also to sensibility to nearly
all compounds, and slightly more to one chemical family, such
as organic solvents, fatty acids, sulfurous gases, etc.14

LPAS is one of the most sensitive approaches of laser absorp-
tion spectroscopy to gas analysis, especially with the use of
coherent radiation sources and intracavity photoacoustic
detection.15 LPAS has a very low detection limit. For example,
LPAS gas analyzer with intracavity acoustic cell provides the
measurement of ethylene down to 6 pptv.16,17 Several milliliters
of gas sample volume is enough for LPAS analysis. Sample pre-
concentration is not needed because the photoacoustic signal is
proportional to the absorbed volume fraction of laser energy,
which can be increased by the power of the used laser source.
Therefore, it is preferable to use as it is as high-power a light
source as is available.

Light sources that have been used in photoacoustic spectros-
copy include broadband infrared radiation sources, that is,
black-body radiators and light-emitting diodes; in most cases,
various lasers (CO2, CO, diode, quantum cascade, and Nd:YAG
lasers) are used. Another way to use Nd:YAG lasers in LPAS is
optical parametric oscillator (OPO) systems as a source of high-
power, continuously tunable mid-IR light.18 OPO systems
provide light power of a few 100 mW to more than 1 W in the
wavelength range from 2 to 4 μm. OPOs were first used in
photoacoustic detection of organic compounds near 3.3 μm at

ppm-level and successfully applied later to measure formalde-
hyde with ppb and ethane with sub-ppb accuracy.19

The sensitivity of LPAS is strongly influenced by the con-
struction of the photoacoustic cell. The latter can operate either
in a nonresonant mode or as an acoustic resonator. Nonresonant
operation means that the light modulation frequency is below
the lowest resonance frequency of the cell. In this case, acoustic
wave distribution within the cell is almost spatially independent
and resonant amplification of the photoacoustic signal is not
used. When the exciting light is modulated at a resonance fre-
quency of the cell, the generated photoacoustic signal is ampli-
fied proportionally to the quality factor (Q-factor) of the acoustic
resonance. Q-factors can be up to several hundreds.15

The most frequently used types of resonant LPAS detectors
are based on Helmholtz resonators, one-dimensional cylindri-
cal resonators, and cavity resonators.15,20 The Groupe de
Spectrométrie Moléculaire et Atmosphérique (Reims, France)
and the Institute of Atmospheric Optics (Tomsk, Russia) have
developed a photoacoustic sensor based on a double differential
Helmholtz resonator (DHR) for infrared gas detection.20–22 The
double DHR uses two identical DHR configurations, which can
significantly eliminate the in-phase external acoustic noise at
atmospheric pressure and flow mode.18

Nonlinear effects in OPO is one of the most widespread ways
to generate tunable coherent radiation in the wide spectral range.
We developed the LaserBreeze gas analyzer based on an LPAS
method and OPO with a tuning range from 2.5 to 10.7 μm.23

The experimental set-up of the LaserBreeze gas analyzer is
shown in Fig. 1. The laser source includes two OPOs. The first
one is based on fan-out periodically poled lithium niobate struc-
ture (PPLN), which provides wavelength tuning in the spectral
range from 2.5 to 4.5 μm. The second OPO is based on mercury
thiogallate crystals HgGa2S4 (HGS) and has a wavelength tun-
ing range from 4.45 to 10.7 μm. Both OPO were pumped by a
Nd:YLF laser. The switching between two OPO is realized by a
motorized translation stage. The linewidth of laser radiation is
about 3 to 4 cm−1. It is enough for a pattern-recognition-based
approach. Resolution of wavelength scanning is around 7 nm∕s
for OPO based on PPLN structure. This value for OPO based on
HGS crystal due to its mechanism of wavelength tuning is var-
ied over spectral range, but the values are practically the same.
The total time of the absorption spectrum registration in the
whole spectral range is about 10 min. The photoacoustic

Fig. 1 Experimental setup of the LaserBreeze.
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detector (PAD) is based on double channel Helmholtz resonator
with Q-factor ∼40 and fundamental resonance frequency
∼1700 Hz. Data from the pyroelectric detector (PD) are used
to normalize the PAD signal relative to the laser radiation
power. The thermostating at the temperature 40°C� 0.2°C
was applied to avoid temperature drift of the OPO parameters
and water vapor condensation on the PAD walls.

To provide wavelength calibration, we use the reference cell
(REF) filled with a gas mixture with a known composition of
compounds having strong absorption lines in known wave-
lengths within the LaserBreeze gas analyzer tuning range.
Absorption spectrum of the gas mixture in the reference cell
is shown in Fig. 2.

The other designation in Fig. 1 are: FI is the Faraday isolator,
Mi are the mirrors, PC is the personal computer, and λ∕2 is the
halfwave plate.

In the case of a smooth absorption spectrum with no distinct
peaks of absorption of spectral bands of the measuring compo-
nents of a gas mixture, a method based on Bayesian estimate of
the solution of the inverse spectroscopy task allows the deter-
mination of the gas concentration.24 The LaserBreeze gas ana-
lyzer allows the detection of more than 20 molecular biomarkers
that have absorption lines in the mentioned spectral range,
including acetone (C3H6O), acetylene (C2H2), ammonia (NH3),
butane (C4H10), carbon dioxide (CO2), 13 isotope of carbon
dioxide (13CO2), carbon monoxide (CO), ethane (C2H6), etha-
nol (C2H5OH), ethyl acetate (C4H8O2), ethylene (C2H4), form-
aldehyde (CH2O), methane (CH4), methanol (CH3OH),
nitrogen dioxide (NO2), nitrogen oxide (NO), nitrous oxide
(N2O), pentane (C5H12), propane (C3H8), and sulfur dioxide
(SO2). Relative error in determining of VOC concentrations
is not more than 30%.

The necessary volume of the studied sample is not more than
50 cm3, and the concentration sensitivity of the LaserBreeze gas
analyzer is not worse than 1 × 10−3 ppm.

A procedure of sensitivity estimation was described in
Ref. 22. PAD was preliminarily cleared by the pumping of
N2. After that, the device was switched on. The measurements
of noise signal value UN were continued for 3 min. The average
value hUNi and standard deviation δUN were calculated. Then,
PAD was filled by a calibration gas mixture including tested
gas with known concentrations n and nitrogen (N2). The

concentration of tested gas was chosen to provide a useful signal
value US over UN in 2 to 3 times. The measurements procedure
was the same as for noise level one. The following equation was
used to calculate signal/noise value (S∕N):

EQ-TARGET;temp:intralink-;sec2;326;708S∕N ¼ hUsi
hUNi þ δUN

;

where hUsi is the average value of useful signal. The sensitivity
no was determined by the following equation:

EQ-TARGET;temp:intralink-;e001;326;642no ¼
n

S∕N
: (1)

3 Data Preprocessing and Analysis
One of the key steps in the biomarkers analysis involves evalu-
ation of latent dependencies in the variables data using reliable
methods. The methods often are referred to as chemometrics.

The first step in chemometrics data analysis usually consists
of separation of informative variables and reduction of the
dimension of the feature space. This can be provided by multi-
variate unsupervised methods such as principal component
analysis (PCA), factor analysis, k-means clustering, or hierar-
chical cluster analysis.25

The basic idea of PCA is to find the reduced number of new
variables, termed the principal components, that are enough for
the recovery of the initial variables, possibly with insignificant
errors. The mathematical background of PCA consists of
decomposition of initial experimental data from a two-dimen-
sional matrix X (I × J) in the form of a matrix product26

EQ-TARGET;temp:intralink-;e002;326;412X ¼ T · Pt þ E; (2)

where T, P, and E are the scores, loadings, and residuals
matrixes, respectively. The loadings matrix contains weight
coefficients that characterize the contribution of features to a
principal component. The scores matrix contains coordinates
of the samples in the space of the principal components.

Breathomics data frequently show nonlinear patterns in the
feature space, and these problems are well handled using non-
linear methods.27 Nonlinear techniques, particularly kernel
methods, are more powerful in predicting accuracy and
discrimination.28 The support vector machine (SVM) is the
most frequently used kernel method.

SVM binary classification is based on building up the maxi-
mum-width stripe that spatially separates groups under study.
The algorithm is based on scalar product analysis of the feature
vectors. When the building of such a stripe is impossible, the
kernel transform can help to provide classification that is
based on analysis of the scalar product of the feature vectors
functions. The application of SVM to the problem of data clas-
sification is by a training set with objects that belong to one of
the two classes; each new object is assigned to one of these
classes. The problem may be defined as follows:

EQ-TARGET;temp:intralink-;e003;326;150ðx1; y1Þ; : : : ; ðxm; ymÞ ∈ X × f�1g; (3)

where X is a nonempty set; m is the number of objects in the
training set; yi are called labels, and xi are the objects under
classification. Each classified object is a vector in n-dimensional
space.

Fig. 2 Absorption spectra of gas mixture in the reference cell in the
spectral range from 2500 to 10,700 nm.
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Thus, the task of some classifier rule building is

EQ-TARGET;temp:intralink-;e004;63;741aðxÞ ¼ sign

�Xn
j¼1

wj · xj − b

�
¼ signðhw; xi − bÞ; (4)

where operation hw; xi defines the scalar product of vectors, and
the vector w ¼ ðw1; w2; : : : ; wnÞ ∈ Rn and scalar threshold b ∈
R are the algorithm parameters.

The SVM method includes a training phase; consequently,
the experimental data set should be separated into teaching
and testing subsets. The separation procedure essentially
influences the robustness of the classification. This can include
both a cross validation and an external validation to avoid dis-
crepancy. In the n-fold cross validation, the dataset is randomly
divided into n subsets of equal size; after that, (n − 1) subsets are
used for training and the remaining subset is used for the exami-
nation of classification quality. This procedure should be
repeated until all n subsets have been used as the test set.29,30

The limit case of this algorithm is “leave one out cross valida-
tion,” which corresponds to n being equal to the experimental
data set size. In the external validation, a new dataset obtained
by repetition of the measurements with the same population is
used.31,32

4 Results and Discussion
The experimental part of the research was carried out according
to the principles of good clinical practices. Protocol of the
research was approved by the Ethic Committee of the
Siberian State Medical University (Tomsk, Russia), Ref. No.
2882 at 24.11.2011. All participants were preliminary informed
about details of the research and signed an “informed agree-
ment” on the actions carried out. The interaction with the
patients was limited by the sampling of a part of exhaled air
into a disposable container.

The sampling procedure occurs before eating or 2 h after.
Prior to sampling, participants rinsed their mouths with running
water without any special cleaning of the oral cavity. Then, par-
ticipants did some calm breaths through a sterile plastic tube into
the sample container. The “dead volume” was exhaled outside
the sample container.

The study involved three groups: patients with bronchopul-
monary diseases including lung cancer (LC) (N ¼ 9); patients
with chronic obstructive pulmonary disease (COPD) (N ¼ 12);
and a control group of healthy nonsmoking volunteers
(N ¼ 11). All patients had been treated or diagnosed in special-
ized units of medical institutions, so the diagnosis of every
patient had been verified and thoroughly tested by instrumental
methods. All patients with severe comorbidities, with chronicity
of the pathological processes, or an unconfirmed clinical diag-
nosis were excluded from the study.

All patients with COPD were men in the Pulmonological
Division of the Regional State Autonomous Institution of
Public Health Municipal Clinical Hospital No. 3 (Tomsk,
Russia), with an average age of 67.8� 9.7 years; 10 of 12 of
them were smokers with average smoking of 42� 13 years.
The details are shown in Table 1.

All LC patients were men in the Thoraco-Abdominal
Division of the Federal State Budget Scientific Institution
Tomsk National Research Center of the Russian Academy of
Medical Sciences (Tomsk, Russia), with an average age of
61.5� 4.8 years; 8 of 9 patients were smokers with average
smoking of 44.9� 8.2 years. The details are shown in Table 2.

The control group consisted of nominally healthy males with
an average age of 21.5� 1.6 years. Exclusion criteria were the
presence of “smoking” in their anamnesis vitae and the presence
of diseases of the bronchopulmonary, cardiovascular, digestive,
endocrine, reproductive, and urinary organ systems in the
chronic form, as well as in the acute form during the 3 weeks
prior to sampling.

Table 1 Information about the group of patients with COPD.

Patient ID Age (years) Primary diagnosis Complication
Length of

smoking (years)

C1 53 COPD stage II, exacerbation No 40

C2 70 COPD stage III, exacerbation Chronic pulmonary heart, compensation 40

C3 71 COPD stage IV, exacerbation Chronic pulmonary heart, compensation 45

C4 63 COPD stage IV, exacerbation Chronic respiratory failure I, chronic pulmonary
heart, compensation

50

C5 84 COPD stage II, exacerbation No No

C6 71 COPD stage III, exacerbation Chronic pulmonary heart, compensation 50

C7 86 COPD stage II, exacerbation No 60

C8 66 COPD stage III, exacerbation No 20

C9 66 COPD stage I, exacerbation No 20

C10 63 COPD stage IV, exacerbation Chronic pulmonary heart, compensation 50

C11 65 COPD stage IV, exacerbation Chronic pulmonary heart, compensation 45

C12 56 COPD stage II, exacerbation No No
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Exhaled breath samples (EBS) were collected in disposable
plastic containers (syringe) with a volume of 150 ml and analyzed
using the LaserBreeze gas analyzer. Additionally, EBS were col-
lected in the Bio-VOC breath sampler with Supelco solid phase
microextraction fiber holder 57330U. The extraction time was
30 min. All measurements were carried out at room temperature
(variations were 20°C to 25°C) and humidity (50% to 60%).

The EBS from the Bio-VOC breath sampler were analyzed
by gas chromatography Finnigan Trace GC with MS detector
Finnigan Trace DSQ (GC–MS). Processing of the data is pro-
duced in Qual Browser of Xcalibur software. For identification
of VOCs, substances spectra obtained are compared with the
substances spectra from the NIST MS Search 2.0 library.
After the VOCs were identified, the area of chromatographic
peaks was estimated manually on Xcalibur software as a con-
centration parameter of identified VOCs in EBS.

To validate the suitability of the Bio-VOC breath sampler and
plastic containers for sampling of the EBS, we filled both con-
tainers with nitrogen of 99% purity and analyzed the content by
GC–MS technique. The measured chromatograms had no peaks,

which indicate that the used samplers do not contribute any
errors in analysis.

An example of measured by the LaserBreeze gas analyzer
absorption spectra of EBS from an LC patient and a healthy vol-
unteer is presented in Fig. 3.

In the comparative analysis of slightly different feature vec-
tors in high-dimensional feature space, there is a known problem
of the homogeneity (weak visibility) of the similar vectors.32 To
overcome this problem, we provided a two-step analysis of the
measured spectra. First, the selection of informative features and
reduction of the dimension of the feature space was realized
using PCA preprocessing; thereafter, the classification was carried
out using SVM. In contrast to standard approaches of PCA-SVM
usage, we carried out the optimization procedure used for both
classification principal components and SVM kernels and kernel
parameters. At the latter step, we used the polynomial kernel, mul-
tilayer perceptron kernel, and Gaussian radial basis function.26

The teaching and testing sets were produced by splitting the
initial data into a specific proportion. The random forming of
teaching and testing sets was repeated 50 times, and the results
were averaged. The results of dichotomous classification of EBS
absorption spectra measured by the LaserBreeze gas analyzer
are presented in Table 3.

Figure 4 shows the dichotomous classification of COPD-LC
patients using the multilayer perceptron kernel. Round markers
correspond to the reference vectors, cross-markers correspond to
the COPD patients, and triangles mark LC patients.

The profile of metabolites analyzed in EBS by the GC–MS
method includes methanol, ethanol, acetonitrile, acetone,
methylene chloride, pentane, ethylacetate, hexane, benzene,
propyleneoxide chloride, n-ethylformamide, octane, toluene,
butylacetate, chlorobenzene, o-xylene, decane, and chloroform.
The results of the dichotomous classification of these profiles by
a PCA-SVM combination technique as described above are pre-
sented in Table 4. Here, the training set consisted of five patterns
for each group.

Comparison of the results presented in Tables 3 and 4 shows
that, in our case, the classification results obtained by LPAS are
more promising than the results obtained by GC–MS.

Table 2 Information about the group of patients with lung cancer.

Patient
ID

Age
(years) Primary diagnosis

TNM
classification

Length of
smoking (years)

L1 61 Peripheral cancer, upper lobe of left lung T4N2M0, IIIB 41

L2 60 Central cancer, upper lobe bronchus on right T4N1M0, IIIA 47

L3 60 Central cancer, lower lobar bronchus on right T2N2M0, IIIA 40

L4 62 Central cancer, intermediate bronchus on right T3N2M0, IIIA 45

L5 65 Peripheral cancer, lower lobe of left lung with spread on chest wall and upper lobe T3NxM0, IIB 50

L6 59 Central cancer, bottom lobar bronchus on left with spread on pulmonary vein T3NxM0, IIB 35

L7 68 Peripheral cancer, upper lobe of left lung with spread on interlobar pleura,
metastases of lymph nodes in aortic window

T3N2M0, IIIA 35

L8 67 Central cancer, upper lobe bronchus on right with spread on main bronchus,
trachea, carina

T4NxM0, IIIA 46

L9 52 Central cancer, lower lobar bronchus on left with extensive local spread T4N3M0, IIIB No

Fig. 3 An example of measured absorption spectra of EBS from LC
patient and healthy volunteer in the spectral range from 2600 to
10,000 nm.
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The above mentioned results allow one to construct the rules
of differential diagnostics based on the set of SVM classifiers
usage. There are several approaches to solve this problem using
binary classifiers.33 According to the “One-vs-All” method, we
had to construct N-independent binary classifiers, so the every
classifier will separate a specific class feature vectors from all
other class’s feature vectors.34 According to the “One-vs-One”
(also known as “All-vs-All”) method, we had to construct
NðN − 1Þ independent binary classifiers, each of which will sep-
arate i’th class feature vectors from j’th class feature vectors.35

The latter method was shown to provide the better results.
The results of differential diagnostics based on EBS analysis

by LPAS and three SVM dichotomous classifiers from Table 3
and the “One-vs-One”method are presented in Table 5. The esti-
mations were carried out using a merged testing set that included
LC, COPD patients, and healthy volunteers, as is shown in
Table 5.

The feature vector of a representative from the testing set
was analyzed by every classifier from Table 3. The differential
diagnostics rule was based on the result that was selected more
times. Diagnosis did not set if all possible results of classifica-
tion (LC–COPD–healthy) for definite representative from the
testing set met the same number of times.

5 Conclusion
EBS analysis is a promising tool for express and noninvasive
analysis of biochemical processes in the human body and diag-
nosis of various diseases. In other words, a similar technique is
useful for identifying specific metabolites in the EBS or for
discrimination of metabolites–biomarkers profiles using pat-
tern-recognition-based methods of data analysis. We used IR
LPAS and GC–MS methods to provide spectral analysis of
EBS. The analysis of measured spectra was based first on reduc-
tion of the dimension of the feature space using PCA; thereafter,
the dichotomous classification was carried out using a SVM.
The estimated average sensitivity of EBS analysis by the
LPAS in dichotomous classification was not worse than 90%,

Table 3 SVM classification of the testing set of EBS absorption spectra measured by the LaserBreeze gas analyzer for the groups under study
(patients with lung cancer, COPD, and healthy volunteers).

Dichotomous classification SVM kernel Kernel parameters

Sensitivity Specificity

Mean Dispersion Mean Dispersion

COPD–LC Gaussian radial basis function 1.1953 0.9258 0.0009 0.7790 0.0584

LC–healthy volunteers Gaussian radial basis function 0.0832 0.9267 0.0102 0.9191 0.0039

COPD–healthy volunteers Multilayer perceptron 5.0241 and 24.3958 0.9027 0.0473 0.6894 0.0303

Fig. 4 Classification of EBS absorption spectra from COPD and LC
patients in the space of the principal components using SVM with the
multilayer perceptron kernel. The projection on the plane of the first
and fifth principal components is shown.

Table 4 SVM classification of the testing set of EBS absorption spectra measured by GC–MS for the groups under study (patients with lung
cancer, COPD, and healthy volunteers).

Dichotomous classification SVM kernel Kernel parameters

Sensitivity Specificity

Mean Dispersion Mean Dispersion

COPD-LC Polynomial 4 0.8800 0.0320 0.6400 0.0680

LC-healthy volunteers Gaussian radial basis function 0.0250 0.8241 0.0043 0.8875 0.0018

COPD-healthy volunteers Multilayer perceptron 5 and 0.7 0.6800 0.0520 0.6000 0.1400

Table 5 Differential diagnostics based on the set of SVM classifiers
usage.

Group
Quantity of the feature
vectors in the testing set

Diagnosis

Set
right

Set
wrong

Did
not set

LC 8 8 0 0

COPD 12 10 2 0

Healthy
volunteers

29 26 1 3
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the average specificity was not worse than 69%, and the analo-
gous results of analysis by GC–MS were 68% and 60%,
respectively.

The results obtained in this study show high potential for the
application of LPAS spectral analysis of the exhaled air samples
in combination with the pattern-recognition-based approach for
noninvasive screening tests of pulmonary diseases. The future
steps in bringing this technology to clinics should include design
of cost-effective and informative measurement devices, for
example, specialized medical purpose LPAS equipment without
unnecessary abilities and simple to use, accumulation of spectral
information about exhaled air samples of patients with a con-
firmed diagnosis, and finding effective methods of data analysis
and classification.

Disclosures
Alexey A. Karapuzikov has a financial interest in Special
Technologies, Ltd., which, however, did not provide financial
support for this work. Except for this, no conflicts of interest,
financial or otherwise, are declared by the authors.

Acknowledgments
The work was carried out with the partial financial support of the
FCPIR contract No. 14.578.21.0082 (ID RFMEFI57814X0082).
The authors thank Jean Kollantai, Tomsk State University, for
style review.

References
1. D. Smith and A. Amann, Breath Analysis For Clinical Diagnosis and

Therapeutic Monitoring, World Scientific, Singapore (2005).
2. D. Smith and A. Amann, Volatile Biomarkers: Non-Invasive Diagnosis

in Physiology and Medicine, 1st ed., Elsevier, Austria (2013).
3. X. Ping, “Evaluation of repeated biomarkers: non-parametric compari-

son of areas under the receiver operating curve between correlated
groups using an optimal weighting scheme,” Graduate Theses and
Dissertations (2012).http://scholarcommons.usf.edu/etd/4261.

4. Biomarkers Definitions Working Group, “Biomarkers and surrogate
endpoints: preferred definitions and conceptual framework,” Clin.
Pharmacol. Ther. 69(3), 89–95 (2001).

5. A. W. Boots et al., “Exhaled molecular fingerprinting in diagnosis and
monitoring: validating volatile promises,” Trends Mol. Med. 21(10),
633–644 (2015).

6. S. Kwiatkowska, “Elevated exhalation of hydrogen peroxide and circu-
lating IL-18 in patients with pulmonary tuberculosis,” Respir. Med.
101 (3), 574–580 (2007).

7. M. P. van der Schee et al., “Breathomics in lung disease,” Chest 147(1),
224–231 (2015).

8. C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: meth-
odological considerations and applications,” Metabolites. 4, 465–498
(2014).

9. A. Amann et al., “Model based determination of detection limits for
proton transfer reaction mass spectrometer,” Meas. Sci. Rev. 10(6),
180–188 (2010).

10. W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction
mass spectrometry (PTR-MS) medical applications, food control and
environmental research,” Int. J. Mass Spectrom. Ion Processes 173(3),
191–241 (1998).

11. F. Obersteiner and H. A. Bönisch, “Engel An automated gas chroma-
tography time-of-flight mass spectrometry instrument for the quantita-
tive analysis of halocarbons in air,” Atmos. Meas. Tech. 9, 179–194
(2016).

12. www.gas-dortmund.de.
13. M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of

lung cancer using nano-nose—a review,” Open Biomed. Eng. J. 9, 228–
233 (2015).

14. M. Kuske, A.-C. Romain, and J. Nicolas, “Microbial volatile organic
compounds as indicators of fungi. Can an electronic nose detect
fungi in indoor environments?” Build. Environ. 40 (6), 824–831
(2005).

15. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators
in photoacoustic trace gas analysis,” Rev. Sci. Instrum. 72 (4), 1937–
1955 (2001).

16. J. A. de Gouw et al., “Airborne measurements of ethene from industrial
sources using laser photo-acoustic spectroscopy,” Environ. Sci. Technol.
43 (7), 2437–2442 (2009).

17. F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical
optimization of a longitudinal resonant photoacoustic cell for sensitive
and fast trace gas detection,” Rev. Sci. Instrum. 67(8), 2914–2923
(1996).

18. Z. Bozóki, A. Pogány, and G. Szabó, “Photoacoustic instruments for
practical applications: present, potentials, and future challenges,”
Appl. Spec. Rev. 46, 1–37 (2011).

19. J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic
spectroscopy techniques,” Appl. Spectr. Rev. 46, 440–471 (2011).

20. V. Zéninari et al., “Photoacoustic detection of methane in large concen-
trations with a Helmholtz sensor: simulation and experimentation,” Int.
J. Thermophys. 37(1), 1–11 (2016).

21. V. Zéninari et al., “Helmholtz resonant photoacoustic cell for spectros-
copy of weakly absorbing gases and gas analysis,” Atmos. Oceanic opt.
12(10), 928–940 (1999).

22. C.-M. Lee et al., “High-sensitivity laser photoacoustic leak detector,”
Opt. Eng. 46(6), 065002 (2007).

23. A. I. Karapuzikov et al., “LaserBreeze gas analyzer for noninvasive
diagnostics of air exhaled by patients,” Phys. Wave Phen. 22(3),
189–196 (2014).

24. L. N. Eremenko, V. I. Kozintsev, and V. A. Gorodnichev, “Method of
Bayesian estimates in the problem of laser gas analysis,” Russ. Phys. J.
51(9), 912–918 (2008).

25. A. Kotłowska, “Application of chemometric techniques in search of
clinically applicable biomarkers of disease,” Drug Dev. Res. 75,
283–290 (2014).

26. L. Pomerantsev and O. Y. Rodionova, “Concept and role of extreme
objects in PCA/SIMCA,” J. Chemom. 28(5), 429–438 (2014).

27. G. R. G. Lanckriet et al., “Learning the kernel matrix with semidefinite
programming,” J. Mach. Learn. Res. 5, 27–72 (2004).

28. J. Pereira et al., “Breath analysis as a potential and non-invasive frontier
in disease diagnosis: an overview,” Metabolites 5, 3–55 (2015).

29. R. R. Picard and R. D. Cook, “Cross-validation of regression models,”
J. Am. Stat. Assoc. 79(387), 575–583 (1984).

30. J. Xia et al., “Translational biomarker discovery in clinical metabolo-
mics: an introductory tutorial,” Metabolomics. 9, 280–299 (2013).

31. A. Krilaviciute et al., “Detection of cancer through exhaled breath: a
systematic review,” Oncotarget 6 (36) (2015).

32. M. B. Shapiro and R. B. Marimont, “Nearest neighbour searches
and the curse of dimensionality,” IMA J. Appl. Math. 24, 59–70
(1979).

33. M. Aly, “Survey on multiclass classification methods,” Technical report,
pp. 1–9, California Institute of Technology, Pasadena, California
(2005).

34. X. Zhao, S. Guan, and K. L. Man, “An output grouping based approach
to multiclass classification using support vector machines,” Adv.
Multimedia Ubiquitous Eng. 393, 389–395 (2016).

35. J.Milgram,M. Cheriet, and R. Sabourin, “‘One against one’ or ‘one against
all’: which one is better for handwriting recognition with SVMs?” in
10th Int. Workshop on Frontiers in Handwriting Recognition (2006).

Yury V. Kistenev is a professor, deputy vice rector for Research of
TSU, and he is the author of more than 120 journal papers, including
patents and conference proceedings. His current research interests
include application of laser photoacoustic spectroscopy in medicine
and biology.

Alexey V. Borisov, PhD, is an associate professor at TSU. His areas
of scientific interests are biomedicine, optics, numerical analysis, and
mathematical physics.

Dmitry A. Kuzmin is a junior researcher of SSMU, and he is the
author of more than 20 research papers. The present research

Journal of Biomedical Optics 017002-7 January 2017 • Vol. 22(1)

Kistenev et al.: Exhaled air analysis using wideband wave number tuning range IR laser photoacoustic spectroscopy

http://scholarcommons.usf.edu/etd/4261
http://scholarcommons.usf.edu/etd/4261
http://scholarcommons.usf.edu/etd/4261
http://dx.doi.org/10.1067/mcp.2001.113989
http://dx.doi.org/10.1067/mcp.2001.113989
http://dx.doi.org/10.1016/j.molmed.2015.08.001
http://dx.doi.org/10.1016/j.rmed.2006.06.015
http://dx.doi.org/10.1378/chest.14-0781
http://dx.doi.org/10.3390/metabo4020465
http://dx.doi.org/10.2478/v10048-010-0031-5
http://dx.doi.org/10.5194/amt-9-179-2016
www.gas-dortmund.de
www.gas-dortmund.de
www.gas-dortmund.de
http://dx.doi.org/10.2174/1874120701509010228
http://dx.doi.org/10.1016/j.buildenv.2004.08.012
http://dx.doi.org/10.1063/1.1353198
http://dx.doi.org/10.1021/es802701a
http://dx.doi.org/10.1063/1.1147072
http://dx.doi.org/10.1080/05704928.2010.520178
http://dx.doi.org/10.1080/05704928.2011.570835
http://dx.doi.org/10.1007/s10765-015-2019-8
http://dx.doi.org/10.1007/s10765-015-2019-8
http://dx.doi.org/10.1007/s00340-002-1000-y
http://dx.doi.org/10.1117/1.2746929
http://dx.doi.org/10.3103/S1541308X14030054
http://dx.doi.org/10.1007/s11182-009-9135-5
http://dx.doi.org/10.1002/ddr.2014.75.issue-5
http://dx.doi.org/10.1002/cem.v28.5
http://dx.doi.org/10.3390/metabo5010003
http://dx.doi.org/10.1080/01621459.1984.10478083
http://dx.doi.org/10.1007/s11306-012-0482-9
http://dx.doi.org/10.18632/oncotarget.5938
http://dx.doi.org/10.1093/imamat/24.1.59
http://dx.doi.org/10.1007/978-981-10-1536-6
http://dx.doi.org/10.1007/978-981-10-1536-6


interests include gas analysis, laser IR photoacoustic spectroscopy,
data mining, and chemometrics.

Olga V. Penkova is a junior researcher of TSU, and she is specialist
in quantitative gas chromatographic analysis.

Nadezhda Y. Kostyukova is a engineer of Special Technologies,
Ltd., is the author of more than 20 journal papers, including

conference proceedings. Her research interests include the develop-
ment of parametric conversion devices in the mid-IR spectral range.

Alexey A. Karapuzikov is the director of Special Technologies, Ltd.
His research interests include development of IR laser sources and
laser photoacoustic spectroscopy systems.

Journal of Biomedical Optics 017002-8 January 2017 • Vol. 22(1)

Kistenev et al.: Exhaled air analysis using wideband wave number tuning range IR laser photoacoustic spectroscopy


