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Abstract. The present research intends to propose a fully automatic algorithm for the classification of three-
dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula
from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment
processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal
cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for
adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network
(CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-fre-
quency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence
of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are
used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set
constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from
the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in
age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of
the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an
average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a
three-class classification task. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.3.035005]
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1 Introduction
Optical coherence tomography (OCT) is a well-known noninva-
sive imaging technique providing three-dimensional (3-D)
images with microscopic resolution (1 to 15 μm).1 This is the
most frequently used imaging technique in ophthalmology
since it makes possible the cross-sectional visualization of inner
structures. From a clinical point of view, this is a very important
ability because it makes possible the early diagnosis of retinal
diseases, such as diabetic edema, and the monitoring of the
response to treatment.

The retina contains two main regions called macula and optic
nerve head. Being responsible for the central vision, the macula
is located near the central area of the retina. The main ophthal-
mic diseases in this area include diabetic macular edema (DME)
and age-related macular degeneration (AMD). These patholo-
gies are the major causes of the loss of central vision or even
blindness at different ages.2,3

To investigate the macular pathologies in clinical circumstan-
ces, ophthalmologists manually explore various abnormalities,
such as fluid regions, cystic structures, exudates, and drusens

at each B-scan of the retinal OCT volume. Then, they make a
cumulative decision on the type of disease. This tedious routine
is a time-consuming and error-prone analysis, so it may yield
subjective results especially for elderly stage macular diseases
evaluation. Such issues increase the importance of developing
computer-aided diagnostic (CAD) systems in retinal OCT.
CAD systems can be of great help in providing professional
consultations to ophthalmologists in a shorter time. They also
enable the remote identification of ocular diseases in public
screening programs.4

Different computerized algorithms have, therefore, been
developed for analysis of the retinal OCT data in the last few
years. Some of these algorithms benefit from sophisticated
image processing techniques in OCT data analysis field, such
as denoising and contrast enhancement,5,6 segmentation of reti-
nal layers,7–14 segmentation of abnormalities such as regions or
cystic structures,15–19 and also retinal layers alignment20,21 in the
first steps of the procedures. However, feature extraction
and classification techniques21–28 generally constitute the main
subsequent steps of all of these diagnostic algorithms. A brief
review of the recent related works is presented as follows.
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Liu et al.22 proposed a multiscale local binary pattern (LBP)
feature extraction step and a nonlinear support vector machine
(SVM) method for the classification of macular pathologies
(i.e., macular edema, macular hole, and AMD). In another
study, Srinivasan et al.23 employed a feature extraction method
based on histogram of oriented gradients (HOG) and fed the
features to three linear SVM classifiers for the purpose of dis-
crimination between DME, AMD, and normal OCT volumes.
The research utilized a preprocessing stage composed of
block matching and 3-D-filtering (BM3D) denoising29 and reti-
nal curvature flattening steps. Based on a threshold of 33% of
abnormal B-scans for decision-making on a dataset of 45 OCTs,
this method achieved a classification rate of 86.67%, 100%, and
100% for normal, DME, and AMD classes, respectively. Hassan
et al.26 proposed a feature extraction methodology based on
structural tensors. They extracted three thickness profiles and
two cyst fluids features for the classification of macular edema,
central serous retinopathy, and healthy ones. In Ref. 30, after
segmentation of the retinal pigment epithelium (RPE) layer,
binary features were computed from the RPE layer to identify
AMD and DME pathologies. Koprowski et al.31 extracted mor-
phological and textural features of the choroid in OCT images to
detect the scaring fibro-vascular tissue, neovascular AMD, and
diffuse macular edema. Venhuizen et al.24 proposed a method
for unsupervised feature learning32 followed by the bag-of-
words approach33 for discrimination between AMD and normal
OCT volumes. The method gained an area under the receiver
operating characteristic curve (AUC) of 0.984 in a dataset of
384 retinal OCTs. With the same OCT dataset, an automatic
AMD identification method was proposed in Ref. 34 based
on convolutional neural networks (CNNs)35 with an AUC of
0.997. For this purpose, the method remapped the OCT volumes
to large image mosaics and trained a two-dimensional (2-D)
CNN (called RetiNet-C) for the classification of retinal
OCTs. Recently, Sun et al.21 proposed a macular pathology
detection algorithm in OCT images using sparse coding and dic-
tionary learning. After the application of the preprocessing steps
consisting of BM3D denoising and retinal curvature correction,
the authors performed a dictionary learning technique on shift-
invariant feature transform features on partitioned B-scans.
Then, they used three two-class linear SVM classifiers for dis-
crimination between normal, DME, and AMD OCT volumes
with a classification rate of 93.33%, 100%, and 100%, respec-
tively, on a dataset of 45 OCTs23 using the majority voting for
decision-making. With the same dataset as a part of the study,28

we introduced a multiscale convolutional mixture model to auto-
matically classify the AMD and DME macula from healthy
ones. By assessing aligned OCTs and using a diagnostic thresh-
old value of 15% on abnormal B-scans, the method achieved a
precision (Pr) rate of 98.33%.

The most recent studies demonstrated that the feature learn-
ing from OCT data is a more effective strategy than hand-crafted
features in the retinal OCT diagnosis. In this research, adopting
the above notion, we propose a fully automated system for iden-
tifying different pathologies in retinal OCT volumes, which is
termed as the wavelet-based convolutional neural network fea-
ture learning with random forests classification (WCNN-RF).
With the help of two real retinal OCT datasets captured from
different imaging devices, the proposed system tries to address
the following issues:

I. Minimum preprocessing requirements: Although
preprocessing is performed in many OCT classification

methods (such as Refs. 21–23 and 28), since extraction
of the retinal boundaries can be challenging, especially
for severe abnormal cases, it is desired to detect the
ocular diseases without any emphasis on the retinal
layer segmentation or curvature correction. Indeed,
retinal OCT images are affected by speckle noise and
it seems that we need a robust method against the noise
corruption. Therefore, CNN-based methods are useful
tools, because they are known for their robustness
against image noise and distortions. In addition, these
models are efficiently shape-, intensity-, and scale-
invariant due to their shared-weights architecture.36,37

II. Adaptive feature extraction: The data-driven and
task-dependent feature learning procedure that occurs
in hidden layers of CNNs is the main prominent ad-
vantage of these kinds of intelligent models compared
to the hand-crafted feature extraction methods.26,30,31

As in Refs. 27, 28, and 34, the proposed system ben-
efits from this ability of CNNs but in the form of a
convolutional feature extractor.

III. Generalization: In contrast to Ref. 34, we propose a
system with the ability to classify the input OCT vol-
umes with a different number of B-scans (different
slicing of OCT data). This method considers the
correlation among different B-scans of the input OCT
volume in the feature extraction stage. It makes a volu-
metric diagnosis directly and avoids classic assump-
tions about the final decision-making ties, such as
thresholding or the majority voting.

IV. Speed consideration: The proposed system in this
study tries to implement feature learning and classifi-
cation stages in a fast and efficient mode by consider-
ing minimum computational costs for its subsystems.

The rest of the paper is organized as follows: Sec. 2 presents
the proposed framework for ocular pathology identification. In
this section, having introduced the research datasets, the pro-
posed convolutional model (i.e., WCNN) for retinal OCT
image representation and feature learning is described in detail.
Section 3 describes the evaluation results. This section includes
some baseline studies to evaluate the proposed algorithm.
Section 4 presents a comprehensive discussion of the WCNN-
RF model and experimental results. Finally, Sec. 5 provides the
conclusion of the research and future directions.

2 Materials and Methods

2.1 Optical Coherence Tomography Datasets

Two different SD-OCT datasets were considered for this study.
The first one was obtained from the Topcon 1000 device and
consists of 30 normal and 30 DME OCTs. Each 3-D-OCT
data from this dataset were composed of 128 slices sized
650 × 512 pixels. The second one is an online available dataset
from the Heidelberg device (Heidelberg Engineering Inc.,
Heidelberg, Germany) that consists of 15 normal, 15 AMD, and
15 DME cases.23 The OCT data in this dataset include a range
from 31 to 97 B-scan slices with the size of 512 × 496 or
768 × 496 pixels. In addition to the provided case labels, all
B-scans in the two research databases were annotated by an
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expert ophthalmologist experienced in OCT imaging. Figure 1
shows sample B-scans from different volumes of normal, AMD,
and DME classes.

2.2 Regular Convolutional Neural Networks

CNN initially proposed by LeCun et al.35 is an image-based neu-
ral network model that captures the main spatial information of
the input data. Principally, this model is designed and tested for
the recognition of 2-D images, such as handwritten digit images.
A regular CNN model, generally, consists of three main types of
layers:38,39 (i) convolutional layers (C-layers), (ii) pooling layers
(P-layers), and (iii) fully connected layers (FC-layers). Other
CNN layers exist for recently published CNNs such as batch-
normalization layers (BN-layers)40 and dropout41 for creating
more efficient convolutional networks. In a regular CNN model,
layers are arranged in a feedforward structure: stacks of hidden
C-P layers (CONV-POOL), some hidden FC-layers, and a final
FC-layer called output layer (O-layer). In CNNs, each 2-D layer
(C- and P-layers) has several extracted planes which are called
as layer’s output feature maps (FMs).

2.3 Proposed Approach

In the field of machine vision, a regular CNN performs a hier-
archical multiscale modeling of input data for solving problems,
which have important features at multiple scales of spatial infor-
mation. This procedure depends completely on a free run learn-
ing process (a time-consuming task of learning thousands of free
parameters) to build high-level representations and FMs.
Therefore, as the spatial size and complexity of the input
data are increased, the efficiency of regular CNNs may be
decreased.42 Moreover, an important issue in pattern recognition
tasks is to analyze different frequency components in data,
including high-frequency components such as the edges
and corners. So, if we are able to force the CNN to consider
different level frequency maps of the input data directly, the
computational effort can be reduced by the model to build
high-level representations. Moreover, it is possible to have

smaller networks with acceptable and promising performance.
One suitable strategy for this aim is to apply the wavelet trans-
form (WT).43 By analysis of the image spatial and frequency
characteristics at multiple resolutions, the WT provides a power-
ful unsupervised representation for image processing. In fact, a
combination of different frequency maps information presented
by WT subbands causes to attain CNNs with comparable effi-
ciency and lower time complexity.

In this work, we propose a two-stage scheme for the retinal
OCT volume classification task which includes: (1) volumetric
feature extraction and (2) diagnostic classification. The scheme
benefits from the above idea in the feature extraction stage by
means of a wavelet-based CNN (WCNN) feature learning sub-
system. The WCNN includes a spatial-frequency decomposition
layer (SFD-layer) in the first hidden layer of the model and it is
exploited as an effective feature learning method for retinal OCT
B-scans.

2.3.1 Spatial-frequency decomposition layer

An SFD-layer condenses the input map first by a j-level 2-D
orthogonal discrete wavelet transform (DWT). Once the input
map is decomposed to different scales, the wavelet coefficient
subbands are normalized (with Z-score normalization method44)
and then convolved by different 2-D kernels of neural weights.
After the adding of scale-dependent biases, they are considered
as the output FM of the layer. In SFD-layer l, n’th output FM is
calculated as

EQ-TARGET;temp:intralink-;e001;326;181oln ¼ fl½DWTj;nðol−1Þ ⊗ wl
n þ bln�; (1)

where fl is the activation function of the layer, ol−1 is the output
FM of previous layer, and wl

n and bln are the adaptive kernel and
bias terms, respectively, associated with n’th FM in the layer.
The choice of DWT type for this layer depends upon the
input data and the application. Figure 2 shows a typical 2-D
SFD-layer. In the SFD-layer, it is assumed that all subbands pro-
vided by the DWT block are of the same size. For a one-level

Fig. 1 Sample B-scans: (a) normal, (b) AMD, and (c) DME subjects in dataset2.
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DWT, it needs no further processes. However, for a two, three,
and more level DWT, a 2 × 2max-pooling filtering is applied for
the detailed subbands in the block. This procedure generates
output FMs with an identical size in the SFD-layer to feed to
the consecutive layers.

By means of the SFD-layer, CNN models benefit from the
advantages of different domain multiresolution decomposition
both in width and in depth with integrating spatial-frequency
information at multiple scales.

2.3.2 Wavelet-based convolutional neural network model
for feature learning

In Fig. 3, the proposed WCNN model is demonstrated. The
parameters of the model are optimized by training B-scans as
the 2-D inputs and the corresponding ground truths. Given a
test volume, the output of the last BN layer is considered as
the CNN codes for different B-scans in the input volume. In
fact, these codes are the learned features at the B-scan level.

In this work, the SFD-layer with the 2-D Daubechies wavelets
at one-, two-, and three-level decomposition was used as the first
layer of the WCNN. Therefore, the performance effect of the
imposed spatial-frequency details of the input data was investi-
gated. The choice of the type of DWT depends upon the input
data to be analyzed and the location of the SFD-layer in the
WCNN model. Generally, first layers in the recent successful
CNN models include some extracted FMs with coarse details. To
conform to this attribute, the Daubechies wavelet was found to
give more accurate and coarse details for the first hidden layer
than other wavelets, such as Haar, biorthogonal, Coiflets,
Morlet, and Meyer for retinal OCT image representation.42

Wavelet-based convolutional neural network training
algorithm. Training of the WCNN models is based on the
batch error backpropagation (BP) method and mean square

error (MSE) objective function. Numerous optimization algo-
rithms can be applied for minimizing the error gradients of dif-
ferent layers in the model.45 In this work, for training theWCNN
model, the mini-batch Adam method was used as the first-order
gradient-based optimization approach.46

2.3.3 WCNN-RF structure for retinal optical coherence
tomography diagnosis

This section introduces the proposed method for discriminating
normal retinal OCT volumes from abnormal macula classes
(i.e., DME and/or AMD). The main blocks of the WCNN-
RF pipeline are outlined in Fig. 4 and the details are described
in the following sections.

Preprocessing. In this block, we generate a volume of inter-
est (VOI) of the input OCT to reduce the time complexity of the
whole algorithm by forcing the model to process relevant infor-
mation. So, for a given OCT volume, the most important regions
of different B-scans are cropped, which contain main morpho-
logical information of retinal layers. The main steps for this pur-
pose are as follows: first, a preparing process is needed. In the
research databases, the B-scans in different subjects and imag-
ing systems have various sizes with possible missing back-
ground data.

The missing data are regions with an intensity value of 255.
To handle these issues, all B-scans are first resized to 512 ×
496 pixels, and the missing regions are compensated by means
of the “imfill”morphological operation47 with an intensity value
of zero similar to the image background. Second, we perform
a cropping step. For this purpose, the middle row position of
the maximum intensity values in B-scans of current OCT vol-
ume is selected as the central row of the case. Then, for each
B-scan, 256-row pixels around the calculated central row are
selected as the cropped image (i.e., 135 rows above and 120

Σ

Σ

Σ

Fig. 2 Schematic diagram of a typical 2-D SFD-layer.

Conv-BN-pool stacks

Fig. 3 The proposed WCNN model for B-scan’s feature representation.
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rows below empirically). In some cases with very low or high
central row (i.e., severely misaligned data), 256 rows located on
top or bottom of the image are selected for cropping purpose.
Finally, all of these cropped B-scans are concatenated to gener-
ate the VOI of the current OCT data.

Slice separation. The target of this block is to generate the
training and testing region of interest (ROI) collections with cor-
responding ground truths. Also, the case IDs are reserved for
all B-scans in the VOIs for diagnostic evaluation purpose at
the patient level. In the first step, here, a centered 256 ×
470 pixels bounding box is defined as a field of view (FOV)
in a preprocessed B-scan. This FOV is used to generate central
ROIs for a given VOI. In the training phase for generalization of
the problem and to have an efficient training process, the
selected FOVs in training cases are horizontally flipped, trans-
lated by ½�10;�20� pixels, and/or rotated by ½�3 deg;�5 deg�
angles to generate augmented training sets. This augmentation
trend increases the number of samples with a factor of 18 in our
training process. Furthermore, all the extracted ROIs are resized
to 128 × 256 pixels for subsequent processes. In the testing
phase, only the resized central ROIs in a given volume are consid-
ered for the evaluation purpose. A sample result of the ROI selec-
tion process is demonstrated in Fig. 5 for a Heidelberg B-scan.

Wavelet-based convolutional neural network and code-
fetching blocks. In the early phase of learning, the WCNN

is trained with augmented training B-scans and the correspond-
ing ground truths. When the training process is completed in
WCNN block, the model is used as the CNN code extractor
for each B-scan in the volumes. To do that, the output values
of the normalization layer in the trained WCNN model are
fetched by the code-fetching block (e.g., with a dimension of
1 × v). These values are stacked with considering the ID indices
to generate a code matrix for each input volume (X ¼
½v1; v2; : : : ; vM� ∈ RM×V). In fact, these code matrices are the
primary learned features for input volumes. In the testing
phase, the above strategy is conducted without any learning con-
sideration for the WCNN block.

Volume of interest feature extraction. In this block,
a global feature representation is built for each OCT volume.
For this purpose, the code matrix of each retinal OCT (i.e.,
X matrix) is mapped to a vector of representative features.
As mentioned before, different OCT volumes may consist of
different number of B-scans and obtain code matrices with vari-
ous sizes [e.g.,m × vmatrices with various numbers ofm (rows)
for different cases]. To handle this diversity, the following strat-
egy is applied; in a given code matrix with a size of m × v,
mean, standard deviation, and maximum values are extracted
from each column (which corresponds to a specific CNN
code for different slices) to generate a final 1 × ð3 × vÞ vector
as the final representative features for the given OCT volume.

Random forests classifier. In the proposed framework,
a random forests (RF) classifier48 is used as the final decision
maker, which is exploited at the patient level. After training
the RF with volumetric extracted feature vectors and the corre-
sponding case-level ground truths, it will be ready to be used in
the testing phase for evaluation purpose.

3 Experimental Design and Results

3.1 Baseline Studies

As the first baseline study, to obtain a criterion for the compari-
son of the performance of the proposed scheme in the research
databases, two recent feature-based methods were considered.
These two approaches were a multiscale feature extraction
via LBP22 and HOG23 followed by SVM classification method.
As the second study, to evaluate the SFD-layer proficiency in the

Fig. 4 Overview of the proposedWCNN-RF scheme for classification of retinal OCT volumes. This figure
consists of both the training and testing phases. For the testing phase, only the solid arrows are the active
paths.

Fig. 5 ROI selection: (a) original DME slice from the Heidelberg OCT
dataset with the size of 768 × 496 pixels and (b) extracted central ROI
with 128 × 256 pixels size.
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proposed WCNN feature learner, a CNN-based framework
(hereafter called CNN-RF framework) was considered with top-
ology similar to the proposed scheme and without any SFD-
layer. This baseline was compared based on the performance
results and also the time complexity of the overall scheme. It
should be noted that the baselines were evaluated based on
the extracted VOIs described before in Sec. 2.3.3 in preprocess-
ing paragraph.

3.2 Evaluation Setup

3.2.1 Fivefold cross validation

In this study, 10 repetitions of the unbiased fivefold cross-val-
idation (CV) method were applied at the patient level. The gen-
erated VOIs, according to Sec. 2.3.3, are used to train and
evaluate the diagnostic efficacy of the proposed scheme and
the baselines. For evaluation purpose, in each repetition, the
Topcon dataset was reshuffled initially and partitioned into 5
case folds of 12 patients (6 normal versus 6 DME cases). By
applying the augmentation method, 648 VOIs (i.e., 31,860
ROIs) for training the convolutional models were extracted on
average per iteration. Similarly, for the Heidelberg dataset, the
extracted ROIs were partitioned randomly 10 times into five-
folds constituted of nine different patients (three cases for
each class). According to the augmentation approach, 864 VOIs
(i.e., 21,870 ROIs) for training the convolutional models were
considered on average per iteration. In addition, the subsequent
learning of the RF classifier for the volumetric decision-making

was performed according to the corresponding training labels at
the patient level.

3.2.2 Performance measures

Diagnostic performance in this study was computed according
to the confusion matrix analysis and the values of accuracy
(Acc), Pr, recall (Re), MSE, and also AUC curve.

3.3 WCNN-RF Scheme Characterization

Here, we start with this hypothesis that an efficient algorithm for
retinal OCT diagnosis should be high performance at the B-scan
level classification to build discriminative features. So, we
investigated the proposed WCNN feature learner model by opti-
mizing the SFD-layer in the model and also three different levels
of DWT decomposition.

3.3.1 B-scan level analysis of wavelet-based convolutional
neural network

To assess the SFD-layer effect on the overall performance of the
proposed model, the WCNN structure was investigated by per-
forming the following two different studies and considering the
WCNN models in Table 1. According to a grid search on
a nested fivefold CV within the training sets, the performed
studies were:

• One-level SFD-layer investigation: For a specific
WCNN model (i.e., WCNN1), different neural kernels

Table 1 WCNN structures detail for the two-class classification problem.

WCNN 1 WCNN 2 WCNN 3

Layer name Kernel size Layer name Kernel size Layer name Kernel size

Model configuration

SFD1 4 × 3 × 3 SFD1 7 × 3 × 3 SFD1 10 × 3 × 3

CBN2 4@4 × 3 × 3 CBN2 7@3 × 3 × 3 CBN2 10@2 × 3 × 3

P3 4@4 × 2 × 2 P3 7@3 × 2 × 2 P3 10@2 × 2 × 2

CBN4 4@4 × 3 × 3 CBN4 7@3 × 3 × 3 CBN4 10@2 × 3 × 3

P5 4@4 × 2 × 2 P5 7@3 × 2 × 2 P5 10@2 × 2 × 2

CBN6 4@4 × 3 × 3 CBN6 7@3 × 3 × 3 Flatten —

P7 4@4 × 2 × 2 P7 7@3 × 2 × 2 BN —

CBN8 4@4 × 3 × 3 Flatten — O6 2 × 1 × 1

P9 4@4 × 2 × 2 BN — NTP ¼ 2502

Flatten — O8 2 × 1 × 1

BN — NTP ¼ 3908

10 2 × 1 × 1

NTP ¼ 4562

Note: CBN is a unit, which consists of a convolutional layer and a BN layer, NTP indicates the number of trainable parameters, and the sign of @
implies the number of parallel branches in the models.
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with the size of 1 × 1, 3 × 3, 5 × 5, and 7 × 7 were inves-
tigated in the SFD-layer.

• Multilevel SFD-layer evaluation: Three different struc-
tures of WCNN were explored, which include one-level
SFD-layer (WCNN1), two-level SFD-layer (WCNN2),
and three-level SFD-layer (WCNN3).

For training the WCNN models, considering the Adam opti-
mization method,46 the learning rate, β1, β2, ε, decay, and max-
epoch were tuned to be 0.001, 0.9, 0.999, 1 × 10−08, 1 × 10−4,
and 50, respectively. Furthermore, the mini-batch training size
of 16, 32, 64, and 128 was explored for all investigated models.
Moreover, for SFD-layers, C-layers, P-layers, and the output
layer, the activation functions were considered to be “ReLU,”

“ReLU,” “Linear,” and “Softmax” functions, respectively. To
prevent probable overfitting during the training process, a drop-
out factor of 60% was also considered for the flattened layers.
The considered WCNN models are introduced in detail in
Table 1. Note that for the three-class classification problem
(i.e., the Heidelberg data), O-layers had three output neurons.

For this examination, the Topcon dataset was considered and
evaluated based on 10 repetitions of the fivefold CV results at
the B-scan level. Indeed, the optimum batch size for learning of
these models was 32 B-scans. Figure 6 exhibits a comparison
among different kernel sizes in the SFD-layer for WCNN1.
This study showed that the kernel size of 3 × 3 pixels was
the best nomination for the SFD-layer kernel size in analysis
of the retinal OCT B-scans.

Table 2 reports the performance results of the evaluated
WCNN models. According to the table, WCNN1 outperforms
the other models, so it is the best choice to consider as the CNN
code extractor in the overall WCNN-RF framework. To provide
more insights on the WCNN1 performance at the B-scan level,
Fig. 7 includes average plots of Acc versus iteration and loss
versus iteration functions for the train and test folds in the
CV5 for the Topcon dataset.

3.3.2 C-scan level analysis of the proposed WCNN-RF
framework

Table 3 reports the average performance of the LBP, HOG,
CNN-RF baselines, and the proposed WCNN1-RF framework
at the patient level based on the fivefold CV. For the CNN-RF
framework, we considered a topology similar to the WCNN1 for
feature learning step, where the SFD-layer was substituted with
a stack of C-P layers. For the two-class classification problem
(i.e., Topcon dataset), this baseline framework includes 4562
free parameters, the same as the WCNN1. For the CNN-RF
and the WCNN1-RF frameworks, the number of fetched CNN
codes for each B-scan was 192 scalar codes, which finally
mapped to a 1 × ð3 × 192Þ feature vector for each input OCT
volume in the feature extraction block.

In addition, the RF classifier was explored to have 500,
1000, 2000, and 3000 trees with the max-depth of equal to
the number of features (n ¼ 3 × 192). The experimental explo-
ration showed that the RF with 1000 trees outperformed its other
configurations.

To assess the generalization ability and robustness of the pro-
posed framework and the settings, we combined the two Topcon
and Heidelberg datasets into one. This dataset was evaluated

Fig. 6 The effects of the SFD-layer kernel size on the Acc measure
for the WCNN1 model at the B-scan level on dataset1. The SDF-layer
was considered to include the “ReLU” activation function.

Table 2 Test performance of the WCNNmodels on the Topcon data-
base at the B-scan level.

Performance

Evaluated models

WCNN 1 WCNN 2 WCNN 3

Acc (%) 97.98� 1.7 95.33� 3.2 92.13� 4.5

Note: The best Acc value is indicated in bold.

Fig. 7 Comparison of the WCNN1 training and testing phases on Topcon dataset based on the fivefold
CV method at B-scan level: (a) Acc curves and (b) MSE curves.
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by the proposed approach based on 10 repetitions of the CV5,
in which the average Pr criterion was computed to be
96.45%� 2.9.

All convolutional models were implemented in Python 2.7
using the Theano v0.8.249 and Keras v1.250 Toolkits. Training
of the networks was executed on an NVIDIA GTX 1080-8GB
graphic card, Cuda Toolkit v8.0, and accelerating cuDNN
library v5.1. Main codes were run with Corei7 CPU at
3.4 GHz (Intel 6800K: 15M), and 32 GB of RAM. For the time
complexity comparison, overall training phase of the WCNN1-
RF framework took 10.2 s∕VOI on average for both datasets.
This time was 11.1 s∕VOI for the CNN-RF framework. It
should be noted that once the WCNN-RF framework trained it
took about 1.4 s to analyze an OCT volume including 128 retinal
B-scans.

4 Discussion
In this study, we proposed and evaluated a fully automatic sys-
tem for the diagnosis of retinal pathologies in 3-D OCTs. The
proposed WCNN-RF algorithm did not rely on the routine
computerized processes, such as denoising, segmentation of
retinal layers, and also retinal curvature correction. This is a sig-
nificantly important feature when dealing with severe retina dis-
eases where segmentation and alignment of pathological retinas
are very challenging tasks.

The proposed system included two learning stages: (i) adap-
tive feature learning and (ii) classifier learning. In adaptive fea-
ture learning stage, the authors introduced a convolutional
neural model based on wavelet decomposition in CNNs for ben-
efiting from spatial-frequency information fusion, which included
a hidden layer named as the SFD-layer. They also addressed a
strategy for feature extraction of 3-D OCTs in the system. In
the classifier learning stage, classification of representative and
data-driven features of input volumes performed via a RF clas-
sifier at the patient level.

The system evaluated on two different datasets and diagnos-
tic problems based on fivefold CV method: (i) the diagnosis of
DME and normal cases in a Topcon dataset of 60 subjects with a
Pr of 99.33% and (ii) the diagnosis of AMD, DME, and normal
cases in a Heidelberg dataset of 45 patients with a Pr of 98.67%.

Experimental results in Table 3 showed that the WCNN1-RF
outperformed the considered baseline methods (i.e., LBP-
SVM,22 HOG-SVM,23 and CNN-RF frameworks) in terms of
performance measures on both datasets. The results confirm
the WCNN1-RF’s strength in generating more discriminative
features and classification of retinal OCT data. In fact, the SFD-
layer imposes the CNNs to have a greater depth for data repre-
sentation with considering different frequency information.
Most likely, when one or more frequency maps (mapped sub-
bands) are not closely relevant for discriminative information
fusion for a specific class, another one can be efficiently
used. This capability allows the WCNN1-RF to have less error
than the comparable spatial domain CNN-RF model. In Fig. 8,
the middle and output FMs of the SFD-layer in WCNN1 model
are depicted for a sample OCT B-scan image, in which the middle
FMs are the one-level 2-D Daubechies wavelet subbands.

Although the recent thresholding techniques used in Refs. 23
and 28 are effective trends to design a CAD system in retinal
OCT with acceptable sensitivity, they depend entirely on the
stages of the diseases in the target database. Ideally, it is
expected that an efficient CAD system in retinal OCT be sen-
sitive to the presence of even one abnormal B-scan in OCT vol-
umes. Unlike these methods, which used a threshold of 33% and
15%, respectively, the proposed framework in this paper dealt
with this issue automatically by learning a diagnostic role with
the RF classifier on extracted OCT features. Compared to
Ref. 28, using the diagnostic threshold on abnormal B-scans in
the Heidelberg dataset resulted in an average Pr of 98.33%,
where our strategy outperformed the method with 0.34% Pr rate
without performing the alignment preprocessing for retinal
B-scans.

For the evaluation of the robustness and generalization of the
proposed WCNN-RF, its diagnostic ability was also evaluated
in a more challenging situation with combining the two datasets.
For the dataset, there would be more challenges for the analysis
and classification, because (i) the number of samples in each class
was no longer equal (class imbalance in the dataset), (ii) there was
a greater variety of miss-aligned B-scans that included more var-
iations for retinal curvatures, and (iii) therewere different levels of
noise disruptions in the two basic databases. However, the

Table 3 Baseline classification performance on the research databases.

Method Database

Classification performance

Pr (%) Re (%) MSE AUC

Multiscale LBP + RBF SVM22 Topcon 95.38� 3.8 94.95� 3.9 0.077 0.959

Heidelberg 92.88� 4.9 92.27� 4.8 0.152 0.942

Multiscale HOG + linear SVM23 Topcon 95.71� 3.4 95.31� 3.5 0.061 0.960

Heidelberg 94.09� 4.6 93.47� 4.5 0.122 0.951

CNN-RF framework Topcon 99.00� 1.2 98.67� 1.4 0.013 0.990

Heidelberg 98.17� 1.4 97.56� 1.9 0.025 0.985

WCNN1-RF framework Topcon 99.33� 0.8 99.11� 1.1 0.009 0.993

Heidelberg 98.67� 1.2 98.22� 1.7 0.018 0.989

Note: All best values are indicated in bold characters.
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proposed algorithm could effectively manage these variations and
showed an acceptable diagnostic performance.

In addition, the authors found a reduced time complexity
using the WCNN-RF model compared to the equivalent model
based on regular CNNs (i.e., CNN-RF). The main reason for this
time efficiency is due to the direct application of tunable con-
volutional kernels on the ROI images in the first hidden layer of
the CNN-RF model as well as the error BP process for tuning
the kernels in the layer, where the WCNN-RF utilizes pre-
defined wavelet kernels instead.

Overall, SFD in the WCNN1 feature learning step provided
by the SFD-layer causes the WCNN1-RF framework to have a
high potential for fast and discriminative feature extraction. So,
the WCNN1-RF has higher performance and lower time com-
plexity than the CNN-RF framework in the classification of reti-
nal 3-D OCT data and presents a robust model for retinal OCT
CAD systems.

5 Conclusion
This paper presented an automatic system for diagnosis of AMD
and DME patients from healthy subjects in retinal OCT. The
presented system consists of a two-stage method for adaptive
feature learning and diagnostic scoring. Introducing and exploit-
ing theWCNNmodel to generate OCT representative features in
the spatial-frequency domain, the final diagnosis was made
using a RF classifier. Evaluation results on two different SD-
OCT datasets showed that by applying the WCNN-RF for spa-
tial-frequency information fusion and automatic mapping from
B-scan feature space to OCT level, we can design an efficient
and reliable CAD system in retinal 3-D OCT without engaging
costly retinal image processing steps (e.g., denoising, segmen-
tation, and alignment processes) and different empirical voting
strategies for decision-making. In the future works, we are con-
fident that with the use of a larger database, exploiting of
the extended WCNN-RF model, and dealing with the staging
problem of macular diseases, the proposed system will gain
the potential to support the ophthalmologists in real clinical
conditions.
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