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Abstract. Autofluorescence, the endogenous fluorescence present in cells and tissues, has historically been
considered a nuisance in biomedical imaging. Many endogenous fluorophores, specifically, collagen, elastin,
nicotinamide adenine dinucleotide, and flavin adenine dinucleotide (FAD), are found throughout the human
body. In fluorescence imaging scenarios, these signals can be prohibitive as they can outcompete signals intro-
duced for diagnostic purposes. However, autofluorescence also contains information that has diagnostic value.
Recent advances in hyperspectral imaging have allowed the acquisition of significantly more data in a shorter
time period by scanning the excitation spectra of fluorophores. The reduced acquisition time and increased sig-
nal-to-noise ratio allow for separation of significantly more fluorophores than previously possible. We propose to
utilize excitation-scanning hyperspectral imaging of autofluorescence to differentiate neoplastic lesions from
surrounding non-neoplastic “normal” tissue. The spectra of isolated autofluorescent molecules are obtained
using a custom inverted microscope (TE-2000, Nikon Instruments) with an Xe arc lamp and thin-film tunable
filter array (VersaChrome, Semrock, Inc.). Scans utilize excitation wavelengths from 360 to 550 nm in 5-nm
increments. The resultant molecule-specific spectra are used to analyze hyperspectral image stacks from
normal and neoplastic colorectal tissues. Due to a limited number of samples, neoplastic tissues examined here
are a pool of both colorectal adenocarcinoma and adenomatous polyps. The hyperspectral images are analyzed
with ENVI software and custom MATLAB scripts, including linear spectral unmixing. Initial results indicate the
ability to separate signals of endogenous fluorophores and measure the relative concentrations of fluorophores
among healthy and diseased states, in this case, normal colon versus neoplastic colon. These results suggest
pathology-specific changes to endogenous fluorophores can be detected using excitation-scanning hyperspec-
tral imaging. Future work will focus on expanding the library of pure molecules, exploring histogram distance
metrics as a means for identifying deviations in spectral signatures, and examining more defined disease states.
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part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.2.021207]

Keywords: hyperspectral; fluorescence; spectroscopy; microscopy; linear spectral unmixing; autofluorescence.

Paper 180318SSRR received Jun. 1, 2018; accepted for publication Nov. 26, 2018; published online Dec. 27, 2018.

1 Introduction
Exogenous fluorescence labels have been used for biological
imaging since the 1940s.1 Coons et al. used fluorescein chemi-
cally bound to an antibody to visualize that antibody in tissue
sections, creating the field of immunofluorescence microscopy.
Fluorescence microscopy advanced further with the cloning
of the green fluorescent protein (GFP) in the 1990s2 and the
development of many variants of GFP.3 Combining fluorescent
proteins with genetic encoding expanded the applications of
fluorescence microscopy, allowing researchers to tag specific
proteins with fluorescent markers and track their movements and
interactions.4 A common limitation to these new fluorescence

techniques was the endogenous fluorescence of the cells or
tissues themselves, called autofluorescence. Autofluorescent
signals can compete with or overpower the signal introduced
for study. This was especially true of the first fluorescent
proteins, as they had yet to be optimized for imaging and had
relatively weak signals. The solution was often to choose a
fluorophore whose peak emission wavelength was as different
as possible from the autofluorescence, alter the excitation wave-
length to selectively excite the introduced fluorophore and not
the autofluorescence, use a very high concentration of fluores-
cent label, or a combination of these approaches.5–7 These com-
promises often led to weak or nonspecific signals, the detection
of which was further complicated by a lack of noise separation
from low-sensitivity detection equipment and analysis methods.
Schultz et al.8 introduced an elegant solution to separation of
fluorescence signals in 2001 when he applied hyperspectral
imaging to fluorescence microscopy.
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Hyperspectral imaging began with remote sensing and
geologic applications by NASA.9,10 Subsequent applications
of hyperspectral imaging have reached virtually every field of
science, including agriculture,11 archaeology,12 astronomy,13

biomedicine,14 crime scene investigation,15 environmental
science,16 eye care,17 food processing,18 forensics,19 and
surveillance.20 Although hyperspectral imaging was initially
performed via spectral reflectance, advancements in both imag-
ing technology and processing now allow measurement of
absorbance and fluorescence. The basis of this technique is that
every object interacts with light in a unique and wavelength-
dependent manner, and the resultant measurements are termed
as spectral signatures. The uniqueness of these signatures allows
separation of each object from the bulk detected signal.21 Thus,
hyperspectral imaging is especially relevant in fields, such as
fluorescence microscopy, where the entire method is predicated
on identifying a molecule based on its interaction with light.

While the effectiveness of signal separation provided by
hyperspectral imaging clearly enhances the ability to separate
autofluorescence from exogenous signals, the endogenous
fluorescence itself may contain diagnostic information. Using
endogenous fluorescence for diagnostic purposes is not an
innovative concept, but current methodologies to investigate
autofluorescent signals for medical purposes are limited in at
least one of several ways: lack of distinct signal separation,
low signal-to-noise ratios, or prohibitively lengthy acquisition
times.22–25 Similarly, we have shown that the standard method
of hyperspectral imaging microscopy, emission-scanning hyper-
spectral imaging, reduces detectable signal and has limited
applications for time-sensitive and photosensitive studies,
thereby limiting its effectiveness in medical imaging.26–28

To overcome these limitations, we have designed an excitation-
scanning hyperspectral imaging approach. This approach pro-
vides excitation light at discrete wavelengths over a broad wave-
length range and collects all of the emitted light beyond
a predetermined cutoff wavelength, which has been shown to
significantly increase signal-to-noise ratio of the acquired data
(10- to 100-fold) while reducing acquisition time.26–28

Here, we evaluate excitation-scanning hyperspectral imaging
for estimation of endogenous autofluorescent signals in tissues.
Colorectal cancer, when skin cancers are excluded, is the third
most common cancer diagnosed in men and women in the
United States. The American Cancer Society estimates that
97,220 new cases of colon cancer and 43,030 new cases of rectal
cancer will be diagnosed in 2018.29 An alarming development is
the increasing rate of colorectal cancer in younger populations
(ages 20 to 54) since the mid-2000s.30 The five-year relative
survival rate for colorectal carcinoma when detected at an early
stage before it has spread is ∼90%. However, only an estimated
4 in 10 cancers are found at an early stage.29

Colorectal cancer is known to cause changes in the concen-
tration of at least five autofluorescent molecules: collagen, elas-
tin, flavin adenine dinucleotide (FAD), nicotinamide adenine
dinucleotide (NADH), and protoporphyrin IX (PPIX).31–35 To
evaluate the feasibility of excitation-scanning hyperspectral im-
aging for detecting these autofluorescent molecules, an excita-
tion range of 360 to 550 nm was selected, and the excitation
spectra of these endogenous autofluorescent molecules were
measured. Spectral image data were then acquired from pairs of
normal and neoplastic colorectal tissues. This approach was
used to estimate the respective fluorescence contribution from
autofluorescent molecules. The results suggest that excitation-

scanning hyperspectral imaging may be able to identify neoplas-
tic regions in colorectal tissue in near-real time based on changes
in the spectral signature of the tissues induced by concentration
changes of endogenous autofluorescent molecules.

2 Methods

2.1 Tissue Specimens

Human colon specimens were obtained from colorectal resec-
tions from the University of South Alabama Medical Center
Department of Surgery under an IRB-approved protocol. All
human tissue specimens were obtained as deidentified residual
specimens from standard-of-care procedures. Fresh specimens
were retrieved from the operating room and brought to the sur-
gical pathology suite for assessment by the surgical pathology
attending to ensure tumor adequacy for patient diagnostic pur-
poses. If deemed adequate for harvesting additional tissue for
the study, a section of the neoplasm was obtained along with
a section of normal colonic tissue away from the site of the neo-
plasm. Both specimens were assigned the next consecutive dei-
dentified study number and designated neoplastic versus normal
colon. The section of neoplasm harvested for the study was
bisected and half of the specimen was submitted for frozen sec-
tion analysis to ensure adequate lesional sampling. The other
half was placed in a container without fixative in a 4°C refrig-
erator for retrieval for hyperspectral imaging analysis. A frozen
section was not performed on the normal colonic tissue, which
was entirely submitted in a separate container without fixative
and placed in a 4°C refrigerator for retrieval. The frozen section
of the neoplasm was interpreted by a surgical pathologist, and
the result of the frozen section was recorded. The final diagnosis
for the neoplasm was also recorded once the patient’s surgical
pathology report was completed. Any variances in representa-
tion of the neoplasm between the frozen section performed
for the study and the final diagnosis in the patient’s report
were attributed to focal sampling of the neoplasm used in this
study versus extensive sampling of the neoplasm used for
patient diagnosis. The pairs of neoplastic and normal colon tis-
sues were rinsed with phosphate-buffered saline (PBS), cut into
∼2-cm cubes, and imaged within 8 h of resection. All tissues
were imaged using a 25-mm-round coverslip mounted in an
AttoFluor coverslip holder (Life Technologies). Each tissue
specimen imaging session included a minimum of three fields
of view (FOVs), not including the FOV used to generate the
background spectrum.

2.2 Excitation-Scanning Microscope Setup and
Image Acquisition

All imaging was performed on an inverted fluorescence micro-
scope (TE2000-U, Nikon Instruments, Melville, New York) with
a 20× objective (Plan Apo λ 20×∕0.75∞∕0.17 MRD00205,
Nikon Instruments) and 300-W Xe arc lamp (Titan 300,
Sunoptic Technologies, Jacksonville, Florida) for excitation.
Excitation wavelength tuning (360 to 550 nm in 5-nm incre-
ments) was achieved via a custom array of five thin-film tunable
filters immediately following the excitation source (TBP01-
378/16, TBP01-402/16, TBP01-449/15, TBP01-501/15, and
TBP01-561/14, Semrock Inc., Rochester, New York). The tun-
able filters were mounted in a high-speed tiltable filter-wheel
(Lambda VF-5, Sutter Instrument Company). A filter cube
consisting of a long-pass emission filter (BLP02 561R-25,
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Semrock Inc.) and dichroic beamsplitter (FF555-Di03, Semrock
Inc.) was utilized to separate excitation from emission light
at 550 nm. An electron-multiplied charge-coupled-device
(EM-CCD) camera (Rolera EM-C2, QImaging, Surrey, British
Columbia) was used to acquire fluorescence images.

2.3 Image Processing and Visualization

Images were processed into spectral image cubes through
custom MATLAB (MathWorks, Natick, Massachusetts) scripts.
The resultant image data were visualized with ENVI software
(Exelis Visual Information Solutions, Boulder, Colorado) as
a three-dimensional image cube composed of two spatial and
one spectral dimension (spectral image cube). Images were
false colored in the spectral dimension according to wave-
length-dependent intensity, with blue, green, and red images
merged using 10%, 50%, and 90% of the spectral range, respec-
tively. Background subtraction and wavelength-dependent illu-
mination were completed as described previously.36,37 Briefly,
a pixel-averaged background spectrum was extracted from an
FOVof each tissue specimen containing no tissue and then sub-
tracted from all other FOVs for the respective specimens. Image
stacks were corrected for wavelength-dependent illumination by
multiplication of correction coefficients determined by use of
a National Institute of Standards and Technology traceable
lamp (LS-1-CAL-INT, Ocean Optics, Inc.) and a fiber-coupled
spectrometer (QE65000, Ocean Optics, Inc.), as described
previously.36

2.4 Isolated Autofluorescence Molecule Preparation

Suspensions of collagen, elastin, FAD, NADH, and PPIX
(Sigma-Aldrich) were created from commercially available
powders according to product specifications. Briefly, FAD and
NADH were suspended in double distilled water, and PPIX was
suspended in a 1:1 solution of dimethylformamide and methanol
to achieve concentrations of 100 μM. A concentration of
100 μM was selected to provide a high signal-to-noise ratio
of the spectrum being measured while maintaining a low enough
concentration to ensure that the solution was still within
the linear optical response region—a standard procedure in

fluorescence spectroscopy for assuring high dynamic range
measurements of fluorophores without inducing fluorescence
quenching (self-quenching or other nonlinear phenomena).38,39

To confirm that concentrations were within the linear optical
range, a dilution response was performed for each pure autofluor-
escent molecule (see example in Fig. 1). Elastin was prepared as
a suspension of 10 mg/mL powder suspended in 0.2 M Tris tris
(hydroxymethyl) aminomethane buffer (Tris). Collagen was pre-
pared as a suspension of 10 mg/mL PBS with 1 M hydrochloric
acid. The resultant collagen mixture was homogenized for 1 h.
The pure samples were imaged and processed in the same manner
as the tissue specimens mentioned earlier. The spectra were used
to generate a spectral library for signal separation.

2.5 Spectral Image Analysis

Spectral images were analyzed with both ENVI software and
custom MATLAB scripts. First, the processed hyperspectral
image cubes were opened with ENVI software for visualization.
Regions of interest (ROIs) were selected to examine spectral
differences between varying structures or entire FOVs. The aver-
age spectra from each region were extracted, recorded, and aver-
aged per FOVs, patients, and specimen types for comparison.
A custom MATLAB script utilized non-negatively constrained
linear regression for linear spectral unmixing (LSU) to generate
a fluorescence intensity image per fluorophore in the library.
Any signal not accounted for by LSU is included as the root-
mean-square (RMS) error. The RMS error is calculated as the
square root of the sum of the difference in measured and unmixed
intensity squared divided by the sample size as follows:

EQ-TARGET;temp:intralink-;e001;326;425RMS error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðmi − uiÞ2

n

r
; (1)

where mi is the measured intensity, ui is the unmixed intensity,
and n is the sample size.

Intensity-based measurements from unmixed images were
obtained using ImageJ software (National Institutes of Health,
Bethesda, Maryland) and compared with each other and to the
total fluorescence signal available in the image. Specifically,

Fig. 1 A dilution response was completed for five concentrations of FAD. The initial 1 mM concentration
was created (black solid line) and repeatedly diluted to achieve concentrations of 100 μM (red dotted
line), 10 μM (yellow short-dashed line), 1 μM (blue long-dashed line), and 100 nM (green dot-dashed
line). Note that the intensity decreases as concentration decreases.
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a ratio was generated of signal per fluorophore in the neoplastic
tissues compared with the corresponding normal specimens.
A coefficient of variation (CV) was calculated for comparison
among datasets as

EQ-TARGET;temp:intralink-;e002;63;708CV ¼ s
x̄
� 100%; (2)

where s is the standard deviation of the sample and x̄ is the mean
of the sample. This value was averaged across all wavelength
bands to give a single CV for comparison among selected
regions.

3 Results and Discussion

3.1 Generation of Spectral Library

To assess the relative contribution of each autofluorescent mol-
ecule to the bulk spectral signature of each specimen, we created
an excitation-based spectral library of components known to be
both autofluorescent and present in colorectal tissue.31–35

Excitation spectral data reported in the literature are frequently
only reported in terms of peak excitation.31 However, using
only the peak intensity wavelength does not provide sufficient
information for identifying many molecular signatures in tissue.
For example, elastin and NADH both have an excitation peak
at 290 nm, whereas collagen and elastin both have a peak at
325 nm.31 To allow separation of signals from many autofluor-
escent molecules, we created a library of the excitation spectrum
of each autofluorescent molecule between excitation wave-
lengths of 360 and 550 nm (Fig. 2), the same range used to
acquire our tissue data. As the peak excitation wavelength
for collagen and elastin fall near or below 360 nm,25,40–42 the
measured spectra portray only the lagging portion of the spec-
trum for these two fluorophores. The same is true of NADH,
with a much sharper cutoff of no additional excitation above
400 nm. The peak for PPIX falls between 400 and 450 nm,
consistent with porphyrins in literature.31 The excitation peak
wavelength of FAD was the longest peak wavelength at
450 nm, also consistent with literature.31

3.2 Spectral Mixture Validation

To ensure the accuracy of our spectral library and test the effi-
cacy of our LSU algorithm, the linear response of excitation-
scanning hyperspectral imaging was assessed using mixtures
of two autofluorescent molecules in varying ratios. Pure
autofluorescent molecule concentrations were first scanned to
determine the range of linear intensity response as a function
of concentration (Fig. 1) and construct the spectral library
(Fig. 2). Based on these data, concentrations were selected
for mixtures of autofluorescent molecules that provided a linear
response and an equivalent intensity, as measured by the inten-
sity at the peak wavelength. These equivalent intensity concen-
trations were then scaled to achieve ratio mixtures at which to
assess the linearity of response of the excitation-scanning hyper-
spectral imaging and linear unmixing process. The response for
FAD and NADH mixtures is shown as an example (Fig. 3). The
following ratios of FAD to NADH were assessed: 100:0, 80:20,
60:40, 40:60, 20:80, and 0:100. The excitation-scanning hyper-
spectral imaging and linear unmixing process produced a linear
response of detected abundance as a function of mixture com-
position. Here, R2 values were 0.9685 and 0.9729 for FAD and
NADH, respectively. Unmixing error accounted for <10% of
the magnitude of the spectral signature measured. It is worth
noting that while LSU represents a good or best-fit estimate,
there is error associated with any fitting process, which may
be exacerbated by additional fitting restrictions, such as non-
negative constraints.21 Furthermore, the electronic nature of
spectral imaging systems is prone to some level of noise.

3.3 Collection, Presentation, and Visualization of
Spectral Image Data

Fluorescence excitation image data were acquired from 1- to
2-cm cubes of neoplastic and normal colon tissues using exci-
tation wavelengths ranging from 360 to 550 nm in 5-nm incre-
ments. The resultant images were compiled into a hyperspectral
image cube using a custom MATLAB script. Additionally, the
intensity per pixel of each wavelength band in the image cube
was summed across all wavelength bands to create a summed

Fig. 2 The spectral library of pure endogenous fluorophores. Data were obtained by imaging sample sus-
pensions of each component while ensuring that fluorophore concentrations were within the linear optical
response range. The spectrum of each component was normalized to a value of unity at the wavelength
with the strongest signal. Five fluorophores were selected: collagen (black solid line), elastin (red dotted
line), FAD (blue long-dashed line), NADH (yellow short-dashed line), and PPIX (green dot-dashed line).
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intensity image [Figs. 4(a)–4(d)]. For visualization, images were
selected at set intervals throughout the scanning range, false
colored [10%, 375 nm, blue, Fig. 4(e); 50%, 455 nm, green,
Fig. 4(f); and 90%, 530 nm, red, Fig. 4(g)] and merged as an

RGB image [(Fig. 4(h)]. The false-colored image was used
to select ROIs within each FOV [Fig. 4(i)]. The region-specific
statistics were calculated as mean intensity and standard
deviation intensity [Fig. 4(j)].

Fig. 3 The linearity of response of excitation-scanning hyperspectral imaging and linear unmixing was
evaluated using mixtures of autofluorescent molecules, FAD and NADH. First, concentrations for FAD
and NADH were determined that produced an equivalent intensity spectral response while ensuring
linear optical interactions (10 μM FAD and 100 μM NADH). Based on these total concentrations,
mixtures of FAD and NADH were prepared as a percent of the equivalent response concentration
(e.g., 20% FAD and 80% NADH). Mixtures were imaged using excitation-scanning spectral imaging
and linearly unmixed. Unmixed abundances of FAD (red triangles) and NADH (blue squares) were plot-
ted as a function of % NADH in the prepared mixture. Linear fit of the abundances was also performed
(FAD = red dashed line, NADH = blue dot-dashed line). RMS error is represented by black diamonds.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 4 Visualization of spectral image data. (a–c) Three single-band images and corresponding excita-
tion wavelengths. (d) The image generated when the pixel intensity was summed for each wavelength
band in the image cube. (e–g) The images in panels (a)–(c) with their respective false-color look-up tables
applied. (h) The resultant image when (e)–(g) were merged. (i) An example region drawn on the merged
image. (j) Region-specific statistics generated from the region shown in (i). The solid black line is
the mean pixel intensity per wavelength and the dashed red lines are �1 standard deviation.
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3.4 Spectral Response per Region of Interest,
Field of View, Specimen Type, and Patient

Upon collecting a minimum of three FOVs per specimen type
per patient, regions were drawn and region-specific data were
examined. First, variability within the FOV was tested with

multiple regions. In general, there was little variability in
spectral shape within the FOV, regardless of where the region
was drawn within normal colon tissue [Figs. 5(a)–5(e)]. Next,
variability within the specimen type was tested by comparing
spectral data over many FOVs per patient [Figs. 5(f)–5(j)]. The
variability across multiple FOVs was higher than in selected

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

(t)

Fig. 5 Spectral characteristics of image data. (a)–(d) A representative false-colored normal colon speci-
men image and an overlaid region (shown by dashed line) with varying sizes and locations selected to
examine for spectral variability within the image. (e) Color-coded plot of the selected regions where the
color of each line in the plot presents the average signature within the correspondingly colored region in
panels (a)–(d). (f)–(i) Four different FOVs of the same normal colon specimen selected to determine
spectral variability within the representative specimen. (j) Average spectral response of (f) (red),
(g) (green), (h) (blue), and (i) (orange). (k)–(n) Example FOVs from normal specimens from four different
patients. (o) Average normal colon specimen spectral response of each patient in the study. (p)–
(s) Representative FOVs from neoplastic specimens from four different patients. (t) Average neoplastic
spectral response of each patient in the study.
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regions of a single FOV [CV of 1% versus CV of 4%, respec-
tively, Figs. 5(a)–5(j)]. These data were used to characterize an
overall average spectrum per patient for each neoplasm and
normal colon tissue specimen. While normal colon [Figs. 5(k)–
5(o)] and neoplastic specimens [Figs. 5(p)–5(t)] shared some of
the same spectral characteristics (e.g., similar peak locations),
the normal colon spectra were less variant between patients
(38% CV versus 49% for neoplastic specimens). This suggests
that the overall spectral response in normal colon tissue has
a more defined signature whereas neoplastic specimens
differ from this signature with increased variability, possibly
due to variation in changes of cellular and extracellular matrix
(ECM) composition associated with remodeling of the tumor
environment.32,33,35,43 Variation from a defined signature was
more evident when data from normal colon specimens and
neoplastic specimens were compared within a single patient
(Fig. 6). To mitigate error due to enhanced spectral variation
within neoplastic specimens and to better approximate bulk
properties of the specimen, a higher number of FOVs were
acquired for neoplastic specimens that presented noticeable
within-field variability and each entire FOV was selected for
the pixel-averaged ROI.

3.5 Unmixing Images by Library Components

Neoplastic processes can alter the ECM comopsition.44–47

Although hematoxylin and eosin (H&E) staining is the standard

diagnostic method for colorectal neoplasms, the desmoplastic
response, or change in matrix materials such as collagen and
elastin, also aids pathologists in the interpretation of neoplastic
processes, particularly regarding the presence or absence of
invasion in colorectal adenocarcinoma.34,48 Additionally, disrup-
tion of the metabolic cycle in neoplastic cells can result in
changes in FAD and NADH concentrations.32,33,35,49 Estimating
the relative contributions of collagen, elastin, FAD, and NADH
in neoplastic and normal tissues may provide a mechanism for
detecting cancer-related changes in the ECM.50–52 LSU was
used to estimate relative abundances of autofluorescent mole-
cules, allowing estimation of localized fluorophore relative con-
centration (Fig. 7). Elastin and NADH were often responsible
for most of the fluorescence intensity in each FOV. Collagen
was regularly the third most prevalent contributor, and typically
in localized, concentrated regions. FAD generally had a low
abundance and uniform distribution. PPIX usually comprised
no more than 3% of the total fluorescence intensity. (Raw
data are shown in Table 1.)

3.6 Comparison of Normal Colon and Neoplastic
Fluorescence Abundances

This investigation sought to determine whether estimated
abundances of autofluorescent molecules could be used as a
diagnostic tool to indicate colorectal neoplasia. A repeatable

(a) (b) (c)

(f)(e)(d)

(i)(h)(g)

(j)

(k) (l) (m)

(p)(o)(n)

(s)(r)(q)

(t)

Fig. 6 Eighteen FOVs from a single patient and their respective pixel-averaged spectra. (a)–(i) FOVs 2 to
10 of the normal colon section of patient 5. (FOV1 was omitted as it was used to collect a background
spectrum.) (j) The plotted pixel-averaged spectra of each FOV shown in (a)–(i). (k)–(s) FOVs 2 to 10 of the
neoplastic section of patient 5. (FOV1 was omitted as it was used to collect a background spectrum.)
(t) The plotted pixel-averaged spectra of each FOV shown in (k)–(s).
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 7 The relative signal contributions from each purified fluorescent molecule were estimated using
LSU and a corresponding excitation-scanning spectral imaging library. (a) The summed fluorescence
signal created by adding the intensity at each pixel per image in the hyperspectral image cube.
(b)–(f) The unmixed abundance image for each fluorophore. Images were linearly scaled for visualiza-
tion purposes only between the range of the minimum and maximum intensity per image.

Table 1 The raw unmixed data for each fluorophore for each tissue type and patient. Note that many of the ratios of collagen, FAD, and PPIX are
not calculable, as one or both of the pairs is 0.

Collagen Elastin FAD NADH PPIX RMS error

HSI1 normal colon 0.00 430.41 0.00 105.21 0.00 110.16

HSI1 neoplastic colon 1.90 149.22 0.85 184.17 0.00 68.50

HSI2 normal colon 867.96 4600.26 271.98 59.96 158.41 1449.29

HSI2 neoplastic colon 7.70 2301.56 0.00 95.61 68.27 1040.85

HSI3 normal colon 0.00 223.56 0.00 1869.46 63.68 400.15

HSI3 neoplastic colon 0.00 79.83 9.27 1210.98 142.39 236.35

HSI4 normal colon 31.97 103.31 13.67 238.23 0.00 90.34

HSI4 neoplastic colon 69.34 83.34 1.70 518.24 0.40 60.04

HSI5 normal colon 14.21 426.62 0.00 10.30 14.33 281.88

HSI5 neoplastic colon 3.90 183.03 23.55 47.43 29.65 142.55

HSI6 normal colon 40.32 116.14 6.74 114.75 0.00 70.81

HSI6 neoplastic colon 0.00 109.85 9.18 0.06 0.00 80.83

HSI7 normal colon 0.00 377.21 0.00 35.47 0.00 214.68

HSI7 neoplastic colon 0.44 352.29 1.50 11.06 0.00 152.61

HSI8 normal colon 0.02 42.76 0.00 1.27 0.00 38.62

HSI8 neoplastic colon 0.00 187.93 0.00 24.55 0.00 151.59

HSI9 normal colon 0.11 150.62 11.62 6.73 0.00 64.85

HSI9 neoplastic colon 72.19 31.75 2.55 161.02 2.13 29.09
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spectral deviation in tissue signature should indicate a repeatable
change in tissue composition that may be used as a marker for
colorectal cancer and its precursors. To test this theory, ImageJ
was used to extract region-specific spectral statistics for each
unmixed image. These measurements were averaged per tissue
specimen to compare normal colon tissues with their neoplastic
counterparts. This comparison was performed by calculating the
ratio of total fluorescence intensity in each unmixed abundance
image of the neoplastic specimen divided by the intensity of the
corresponding normal colon specimen (Fig. 8). Collagen, FAD,
and PPIX ratios were not meaningful, as many patients had near
zero fluorescence contribution in either the neoplastic or normal
colon specimens. (Raw data are shown in Table 1.) The elastin
ratio was below 1 for 8 of the 9 patients. This may indicate an
elastin decrease in neoplastic specimens due to ECM remodel-
ing, possibly by breakdown of elastin through neoplastic-
derived factors.53–55 Furthermore, the NADH ratio was above
1 for 6 of the 9 patients, possibly indicating increased metabolic
activity in neoplastic regions. Additionally, RMS error
decreased in neoplastic specimens, indicating a better fit of
the autofluorescent molecule library for the neoplastic speci-
mens than their normal colon counterparts. One possible
explanation is that there are molecules not accounted for in
our autofluorescence library that are usually present in normal
colon tissue and are degraded in neoplastic conditions, thus
reducing the number of fluorophores needed in the spectral
library to account for the spectrum of neoplastic tissues.31,53

3.7 Limitations

There are a few important points to note about this study. (1) The
current sample size is 9 normal and neoplastic colon tissue pairs.
Continued sample accumulation is expected to reveal trends not
discernible within the current sample size. (2) In addition, to
maximize the number of samples available for the study, data
were pooled into two broad categories: normal colon and neo-
plastic colon, regardless of whether the neoplasm represented
colon adenocarcinoma or a precursor lesion. Data acquired in
this study represent a range of colorectal neoplasm types,
including adenomatous polyps and invasive adenocarcinoma.
Hence, one limitation may be that normal colon specimens could
have been isolated from different layers of the colon (as opposed
to, for example, only the mucosal layer) and that neoplastic
colon specimens could represent invasive adenocarcinoma or

an adenomatous polyp, as noted previously. Furthermore, tissue
collected as normal colon from patients under treatment for
colorectal cancer may differ from that of a patient devoid of neo-
plasms. (3) The collagen and elastin library spectral signatures
in this study were similar and difficult to separate with LSU.
Additionally, the quantum yield of NADH is low for wave-
lengths >400 nm, whereas collagen and elastin have peak
excitation wavelengths in the ultraviolet region (<400 nm).
Thus, estimates of abundance of these molecules would be
more accurate with an extended wavelength scanning range.
(4) This LSU process used a spectral library containing five flu-
orophores, which assumes the existence of a complete spectral
library. That is, some pixels may have been inappropriately
labeled as one of the five fluorophores, when in fact, they belong
to a missing additional fluorophore. As the amount of signal
present in the RMS error accounted for more abundance than
some of the spectral library components, an additional auto-
fluorescent molecule is likely unaccounted for. Interestingly,
the signal due to RMS error was lower in neoplastic specimens.
This could indicate a breakdown within the neoplastic speci-
mens of the autofluorescent components not accounted for in
our spectral library,53–55 resulting in a better fit. Future work
will assess the ability of nonlinear unmixing and other spectral
analysis methods, which utilize similarity or spectral distance
metrics and do not require a complete library, to estimate
autofluorescent molecule abundances. In an ideal experiment,
every source of fluorescence would be identified and its
abundance quantified. However, for practical purposes, many
pathologies may be diagnosable using only a limited number
of autofluorescent molecules in the spectral library. (5) This
study only considered a single type of each fluorescent molecule
(e.g., collagen I for collagen). Previous fluorescence imaging
studies have shown spectral differences among the various
types of collagen.56–58 It is reasonable to assume that different
collagen types could have distinct spectral signatures when mea-
sured with excitation-scanning hyperspectral imaging. In future
work, we plan to account for a wider range of autofluorescent
molecules, including other types of collagen.

4 Conclusions and Future Work
Differentiation of neoplastic and normal colon tissues remains a
challenge for the detection and diagnosis of colorectal cancer
and its precursors. Development of an imaging system for
quick, sensitive, and accurate differentiation of colorectal tissues
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Fig. 8 The ratio of neoplastic-to-normal colon average abundance values for each patient for elastin and
NADH. The ratio was computed as (neoplastic abundance/normal colon abundance). Collagen, FAD,
and PPIX ratios were not meaningful due to near 0 signal in most unmixed images. (a) The ratio of neo-
plastic-to-normal colon signal for elastin was <1 for 8 of the 9 patients, indicating more fluorescence due
to elastin in normal colon specimens than neoplastic specimens. (b) The ratio of neoplastic-to-normal
colon signal for NADH was >1 for 6 of the 9 patients, indicating less fluorescence due to NADH in normal
colon specimens than neoplastic specimens. (c) The ratio of residual fluorescence unable to be
accounted for by the spectral library <1 for 7 of 9 patients, indicating a more encompassing unmixing
for the neoplastic specimens than the normal colon specimens.

Journal of Biomedical Optics 021207-9 February 2019 • Vol. 24(2)

Deal et al.: Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning. . .



would serve both clinicians and patients. In this study, we exam-
ined the possibility of using fluorescence excitation signals from
endogenous fluorophores to increase sensitivity and accuracy of
colorectal neoplasm detection. The data presented here represent
the basis for a study of the contribution of individual auto-
fluorescent molecules to overall tissue fluorescence in normal
colon and neoplastic colorectal tissues. Though some molecules
appear to remain unchanged in disease states, there is a shift in
the contribution of several autofluorescent molecules from
normal to neoplastic measurements. The shifts caused by the
changing ratios of these molecules will affect the overall shape
of the spectral response. Hence, the diagnostic potential may lie
in algorithms that accurately identify when the spectrum of an
abnormal tissue deviates from the known spectrum of normal
tissue. These algorithms can be used to give a more intuitive,
visually obvious metric for noticing a shift from normal colon
to neoplastic tissue. We plan to evaluate histogram distance
metrics as a means for identifying deviations in the spectral
shape of a specimen from the spectral shape of normal tissue.
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