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Abstract. Biomedical photoacoustic tomography, which can provide high-resolution 3D soft
tissue images based on optical absorption, has advanced to the stage at which translation from the
laboratory to clinical settings is becoming possible. The need for rapid image formation and the
practical restrictions on data acquisition that arise from the constraints of a clinical workflow are
presenting new image reconstruction challenges. There are many classical approaches to image
reconstruction, but ameliorating the effects of incomplete or imperfect data through the incor-
poration of accurate priors is challenging and leads to slow algorithms. Recently, the application
of deep learning (DL), or deep neural networks, to this problem has received a great deal of
attention. We review the literature on learned image reconstruction, summarizing the current
trends and explain how these approaches fit within, and to some extent have arisen from, a
framework that encompasses classical reconstruction methods. In particular, it shows how these
techniques can be understood from a Bayesian perspective, providing useful insights. We also
provide a concise tutorial demonstration of three prototypical approaches to learned image
reconstruction. The code and data sets for these demonstrations are available to researchers.
It is anticipated that it is in in vivo applications—where data may be sparse, fast imaging critical,
and priors difficult to construct by hand—that DL will have the most impact. With this in mind,
we conclude with some indications of possible future research directions. © The Authors.
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1 Introduction

The potential of biomedical photoacoustic tomography (PAT) to obtain high-resolution images
based on optical absorption and, moreover, provide images that depend quantitatively on endog-
enous or exogeneous molecular contrast, has resulted in rapidly growing interest in the modality.
For example, the ability to obtain accurate, spatially resolved, estimates of blood oxygenation
would have significant impact both clinically and for preclinical applications.

There are two aspects to PAT image reconstruction: an acoustic inversion from the measured
acoustic time series to the initial acoustic pressure distribution'> and a spectroscopic optical
inversion to recover optical absorption coefficients or quantities derived from them.? The acous-
tic inverse problem can be solved exactly in closed form in the ideal circumstance that complete
data are available and the medium has a uniform and known sound speed. In most practical
scenarios, however, there are divergences from this ideal case, e.g., heterogeneities in the sound
speed or bandlimited detection over an incomplete set of measurement points, making the acous-
tic inversion challenging. (The use of linear arrays for in vivo imaging is a case in point.) When,
in addition, a solution is required to the optical inversion, the image reconstruction task becomes
more challenging still, as the forward operator is nonlinear. Iterative model-based approaches
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have been devised that manage this greater complexity by providing a flexible way to frame the
problem and incorporate prior knowledge of the kind of solution expected.*® However, such
approaches, while appealing, are typically computationally intensive and time-consuming,
which precludes their use in many applications.

In contrast to purely model-based approaches, data-driven techniques, and in particular deep
learning (DL), are increasingly widely used for tomographic image reconstruction.”'> These
techniques, which primarily originate from computer vision and are known to excel at segmen-
tation and classification tasks, are frequently treated as “black boxes.” This is widely considered
undesirable in biomedical imaging and inverse problems, and recent work has started to provide
insights into why certain network architectures work well for certain tasks,'*™" and also to pro-
vide justifications for the use of DL approaches in the solution of inverse problems including
image reconstruction. We will refer to the application of DL within the image reconstruction
pipeline as learned image reconstruction.

The rising interest in learned image reconstruction has led to a transition from classical ana-
lytical methods to such data-driven approaches. Although much of this work has focused on
established imaging modalities such as MRI*!®!7 and CT,”*!® this transition is also clearly dis-
cernible in the recent literature on PAT image reconstruction. In this paper, we will review the
recent work done in this area and place these approaches into a broader context by drawing
connections to classical analytical reconstructions. We also provide a tutorial style introduction
to the use of DL in PAT image reconstruction, including describing and demonstrating several
different approaches for learned image reconstruction. Code is available for these examples, free
to download, allowing researchers to reproduce them, and providing them with a starting point
for their own learned reconstructions.

PAT is a particularly suitable area in which to review these methods for several reasons. There
is a very active experimental community interested in a wide range of applications, from data-
intensive, large-scale, 3D imaging to 2D high-frame rate uses. This results in a wide variety of
different approaches for data collection and presents many different challenges in the reconstruc-
tion pipeline, including those of limited data, computationally expensive forward operators,
uncertainty in model parameters, and the lack of training data; the latter especially a problem
for in vivo applications. This leads to a final point, which is that the community is not only in a
transition from classical to data-driven approaches, but also in a transition from proof-of-concept
studies to applying the techniques in challenging clinical and preclinical scenarios. Indeed, these
two transitions may prove to be symbiotic: data-driven approaches are rarely needed in proof-of-
concept studies, in which complete data are available and time is not of the essence, but many of
the problems facing in vivo use are not easily tackled within a classical framework. We hope that
by describing a framework for learned reconstructions and by presenting an overview of the
diverse work done, this review can provide guidance for possible future directions for image
reconstruction as PAT transitions from the bench to the clinic.

1.1 Scope of Tutorial Review

There are multiple ways in which DL could be used within the context of PAT, so to keep this
review to a reasonable length it is necessary to limit its scope. This review will concentrate on DL
as applied to tomographic reconstruction in photoacoustics. In other words, the focus will be on
using DL networks, sometimes in combination with classical approaches, to reconstruct photo-
acoustic (PA) images from projections (which here are acoustic time series), this includes pre-
and postprocessing approaches with the intent to improve reconstruction quality. With this as the
focus, there are several applications of DL to PA imaging that must regrettably wait for a future
review. First, this review will be limited to PA tomography and will not cover the use of DL in
relation to PA microscopy (PAM), the principal difference being, for our purposes, that in PAT it
is necessary to reconstruct the image from a set of measured projections but in PAM the image
can be measured directly. Second, this review will not cover work where DL approaches have
been used subsequent to a final reconstruction. This includes, for example, applications where
DL has been used to segment or classify PAT images, or regions of images, into, say, diseased or
healthy. Third, this review will not cover the use of DL to make diagnostic judgments, e.g., to
answer questions such as “Does this image indicate diabetes, rheumatism, cancer, etc.?”
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Papers on DL for PAT reconstruction are currently appearing at a steady rate, and we antici-
pate that trend will continue. This review attempts to cover all relevant papers or preprints
appearing up to the end of June 2020.

2 Forward and Inverse Problems in Photoacoustic Tomography
2.1 PAT Forward Problems

2.1.1 Physics of photoacoustic signal generation

The PA effect is the name given to the phenomenon by which the absorption of an optical pulse
generates an acoustic pulse. A light pulse incident on soft biological tissue will be scattered
around in the tissue, eventually either leaving the tissue or being absorbed by absorbing mol-
ecules in the tissue, known as chromophores (hemoglobin being one of the most important). The
energy of the excited chromophores is then converted into heat. This all occurs on a timescale
(~ns), which is much shorter than the timescale required for the tissue to move (for the local
mass density to change, ~us), so the heating is isochoric and therefore accompanied by an
increase in pressure. Tissue is elastic, so the regions of higher pressure will act as sources
of acoustic waves. Because of the difference in timescales, the pressure increase is usually treated
as occurring instantaneously, and PA wave generation and propagation is modeled as the initial
value problem:

(0 = A)p(r.1) =0, p(x.0) = f(x). 9,p(x.0) =0, ()

where x € R? is the spatial variable, t € R20 is time, and p(x,t) is the acoustic pressure. The
medium properties to which the acoustic wave is sensitive, sound speed and mass density, will in
general vary with position. However, for propagation through soft tissue, the variations are often
small and are rarely known in advance, so the medium is usually treated as acoustically homo-
geneous. (Acoustic absorption, not described by Eq. (1), may also become important in some
applications.) The initial condition f(x) > 0 is termed the initial acoustic pressure distribution
and is related to the optical properties of the tissue by the following equation:

f(x,2) = Tua(x, A)b(x, 2), @)

where A is the optical wavelength, y,, is the optical absorption coefficient (dimensions of recip-
rocal length), ¢(x) is the optical fluence (dimensions of energy per unit area), and I is a dimen-
sionless constant that accounts for the efficiency of the acoustic generation (sometimes called the
Griineisen parameter, which it equals in some circumstances). The dependence of ¢ on wave-
length has been made explicit in Eq. (2), but ¢ also depends on the absorption and scattering
throughout the tissue, making Eq. (2) nonlinear in the absorption coefficient y,. The positivity of
the initial pressure distribution f(x) arises from the fact that u,¢ is the energy density due to
absorption of the light and I" is positive for most materials, especially soft tissue.

2.1.2 Tissue optics

The nature of the dependence of the fluence ¢ on the absorption and scattering is usually mod-
eled in biological tissue using transport theory,'*?" i.e., making the assumption that coherent
optical effects can be safely ignored. Under this assumption, the light field is described in terms
of energy by the radiance y (x, t, §, 1), which is the rate of energy flow per unit area per unit solid
angle in direction § € S? at position x at time ¢ (units of power per unit area per unit solid angle).
When there are no significant inelastic processes such as fluorescence present, the radiance at
each wavelength obeys the following integro-differential equation, known as the radiative trans-
fer equation, which can be thought of as a statement of the principle of the conservation of
energy:
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where v is the speed of light, ¢ is a source term, y is the scattering coefficient, and 9(5, §') is the
scattering “phase” function, a probability density function describing the likelihood of a photon
travelling in direction s’ being scattered into the direction s. The fluence, for a given wavelength,
can be found by integrating the radiance at that wavelength over all angles and time:

P(x.2) = / / w(x, 1,5, 2)ds dr. @)
s2 JR20

The quantity of interest in quantitative PAT is sometimes the absorption coefficient, but more
often it is a related quantity. For example, the absorption coefficient is related to the concen-
trations of the chromophores present by?>!

Ha(x,4) = Zaq(’l)cq(x)’ (5)

where C, is the concentration of the gth chromophore and ,(4) is its molar absorption
coefficient spectrum. A quantity of considerable clinical interest is blood oxygen saturation,*>
which is related to the concentrations of two particular endogenous chromophores, oxy- and
deoxy-hemoglobin, Cy,o and Cyy, respectively, by

$0,(x) = Chivo (¥)

— . 6
Crivo (x) + Cip(x) ©

2.1.3 Photoacoustic measurements

In PAT, measurements of the PA-generated acoustic waves are made on a surface & surrounding
aregion Q containing the object to be imaged f with supp(f) C Q (see Fig. 1). Note that G is not
a boundary, i.e., it is assumed not to affect the acoustic field. The measurement operator M will
typically consist of a filtering operator WV, which accounts for the angle-dependent frequency
response of the detectors, and a spatial sampling operator S, which selects the part of the acoustic
field to be detected such that

g=Mp+e=5Vp +e, @)

where ¢ is the additive measurement noise. (In some imaging systems, e.g., in those using LED
excitation, the signal-to-noise ratio can be very low, and it is necessary to average many times.) A
variety of different sampling operators have been considered for PAT, including detection at a set
of points, {x, € &}, for which & is a simple geometric surface such as a plane,® cylinder,*
sphere,” ellipsoid,”® or polyhedron,”” measurements of spatial integrals of the acoustic field
along planes or lines® or patterns,”” 2D measurements using a ring of detectors focused in
a plane,’® and measurements made with a linear array of elements also focused in a plane
(as used for conventional ultrasound imaging).’!

PA signals are by their nature broadband, often more broadband than the ultrasound detectors
used to measure them, so the detected frequency range is usually restricted. Furthermore, due to
the finite size of real ultrasound detectors, they also filter the spatial wavenumbers. (As the detec-
tion area increases, the more directional the detectors become, i.e., the narrower the acceptance
angle.) The filtering operator WV accounts for both the frequency and wavenumber filtering
effects.

When the detectors are ideal VW = 1d, the identity, and neglecting noise, Poisson’s solution’?
to the initial value problem in Eq. (1) shows that the relationship between the measured time
series g(x;, ) and the initial acoustic pressure f(x) can be written in the form:
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Fig. 1 (a) Ideal PAT measurement setup with point-like omnidirectional detectors covering the
surface & surrounding the initial pressure distribution f. (Here, shown in 2D but the array would
ideally surround f in 3D.) (b) More typical PAT measurement setup using a finite-sized linear array
of detectors. This is the setup used for the tutorial in Sec. 4.5. (c) The acoustic time series mea-
sured by the linear array. (d) A PAT image reconstructed from these time series using the classical
time reversal approach, Sec. 3.1.3, showing arc-like artifacts due to the limited view detection.

1 [t NAsr 1
;/0 g(xs,t )dt o 4ﬂ(ct)2 As—ﬂctf(X)dA’ ©

where dA is an area element of the surface given by the spherical shell |x; — x| = ct. This
shows that the time average of g between times 0 and ¢ equals the spatial average of the initial
pressure f(x) over a spherical shell of radius ¢t centered at x,. More concisely, we can write
Gsm = Rmf(x), where Ry, is the spherical mean Radon transform, and gg, =t~ [ g(x,, 1')dt’
is the spherical mean data. Some of the literature relevant to PAT image reconstruction considers
the data in this form."*

2.1.4 Acoustic, optical, and spectroscopic operators

Before discussing PAT inverse problems, it will be helpful to define three operators describing
the forward or direct problems (see Fig. 2). First, the operator .4, a linear mapping from the initial
acoustic pressure distribution f to the measurements g under additive measurement noise &,
which is based on Eqgs. (1) and (7):

g=Af +e. )

A maps from image space X, to data space Y. Second, the operator , a nonlinear mapping from
the absorption coefficient yu,, to the initial pressure distribution f, which is based on Egs. (2)-(4):

C — L — Mo — Flpe) — f — A — 9

Chromophore Egs. Absorption Eqs. Initial acoustic Eas. Measured acoustic
concentrations (5),(11) coefficients (2) —(4), (10) pressure (1), (7),(9) time series

Fig. 2 The three operators describing the PAT forward problem: spectroscopic L, optical F, and
acoustic A. (Blue indicates the image space X and red the data space Y.)

Journal of Biomedical Optics 112903-5 November 2020 « Vol. 25(11)



Hauptmann and Cox: Deep learning in photoacoustic tomography: current approaches. ..

f:]:[/ua](/la)' (10)

F maps from image space X, to image space X . Finally, a third operator maps chromophore
concentrations to absorption coefficients, from X¢ to X, , based on Eq. (5):

U, = LC. (11)

2.2 PAT Inverse Problems

There are two main inverse problems in PAT, corresponding to the acoustic and optical forward
operators described already. First, an acoustic inversion from the measured time series to an
estimate of the initial acoustic pressure distribution, i.e., an estimate of .A"g, and second,
an optical inversion which attempts to recover quantitatively accurate estimates of optical coef-
ficients (or related properties), e.g., an estimate of F~'(f). It can be shown' that the acoustic
inverse problem is well-posed when sufficient data have been measured, but what constitutes
sufficient data? The data measured by a closely spaced array of omnidirectional, broadband,
noise-free point detectors arranged such that all the rays passing through every point in
the imaged object reach at least one of the detectors would be sufficient data. For example,
if ideal detectors are positioned on the surface of a hemisphere at a spacing of A,;,/2, where
Amin 1 the shortest wavelength generated (to satisfy the spatial Nyquist criterion), the sound
speed is constant everywhere, and the object lies inside the hemisphere’s convex hull—the
“visible” region®**—then the acoustic inversion will be well-posed. Given the stringency of these
requirements, it is unsurprising that real experimental settings will often diverge from this ideal,
leading to inversions that are no longer well-posed. One challenge for the reconstruction, then,
relates to dealing with incomplete or imperfect measurement data. There are also challenges
relating to the forward operator. These issues are outlined as follows as it is in tackling these
issues that DL may be able to make the most useful contributions.

2.2.1 Incomplete or imperfect data

For the acoustic inversion, the data could be incomplete or imperfect for several reasons.

e Noise is present in any real measurement.

o Detector responses are never perfectly broadband or omnidirectional. Compromising on
these characteristics is sometimes necessary in order to achieve sufficient detection
sensitivity.

o Limited-view detection, in other words insufficient coverage of the object, perhaps because
of the limitations of the available hardware, e.g., a 2D linear array to image a 3D object,
or due to restricted access to the object.

o Undersampling in space or time, perhaps in order to achieve faster data acquisition, or due
to hardware constraints.

In the optical inversion, when considered separately from the acoustic inversion, the input data
are images of the initial pressure distribution f obtained from the acoustic inversion. There are
two ways in which this data can be deficient as follows.

o Artifacts may be present in the image data due to an imperfect acoustic reconstruction.

o Wavelengths. The data must contain images at a set of wavelengths chosen such that the
spectroscopic aspect of the optical problem £~! is well-posed.

2.2.2 Inaccurate forward operators

Equations (1)—(4) are broadly considered to capture the physical phenomena relevant to PAT, but
to solve practical problems they must be implemented as numerical models. There are two ways
in which these models can differ from the ideal.
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o Simplifying approximations are often made to the forward operators in order to reduce the
complexity of the computations necessary to implement them as numerical models. For
example, the radiative transfer equation [Eq. (3)] is often approximated using a diffusion
approximation, and the wave equation [Eq. (1)] is sometimes substituted with a simpler
model, e.g., based on rays.

o Inaccurate model inputs. Although the focus in experimental settings is usually on the
accuracy of the measurement data, the accurate determination of the auxiliary parameters
on which the forward operators depend is often just as crucial. For example, the acoustic
operator A depends on the sound speed and how it varies within the tissue, which is rarely
known to a high degree of precision. And the optical operator F not only requires knowl-
edge of how the tissue was illuminated but also of the tissue’s scattering properties, both of
which can be hard to determine accurately.

This latter problem, the difficulty of accurately measuring the necessary model inputs, in par-
ticular the sound speed and the optical scattering distributions, has led some researchers to
consider them as additional unknowns in the inverse problem.***> These inversions have been
shown to be less we:ll—posed36’37 than the inversions of A and F, and additional data or
constraints are usually required to find meaningful solutions.

2.2.3 Statistical framework: noise models and priors

The question naturally arises as to what can be done to improve the image reconstruction when
the data are imperfect or the forward model is only known approximately. An approach that
sounds like common sense, but in practice can be challenging, is to try to find the reconstruction
f that is most probable given the data g. This requires a statistical framework,*® which also
provides a way to incorporate in the reconstruction any other information that is already known
about the final image, the data, or the operator, in order to constrain the solution to one that has a
higher probability of being correct. Specifically, we want to find the posterior probability dis-
tribution z(f|g), or some related quantity that characterizes the most probable reconstructions.
Here the notation z(f) is used to denote the probability density function of f, and z(f|g) is the
conditional probability density of f given g. In the Bayesian framework, we can incorporate our
prior knowledge about the problem via Bayes’ formula:

(flg) & #(glf)x(f), (12)

where z(f) incorporates prior knowledge of the solution f, and z(g|f), called the likelihood,
incorporates the known noise statistics using the forward operator A. For example, if the noise
in Eq. (9) is normally distributed with zero mean and variance o2, we can express the likelihood

as38

1
wtalf) xexp = 512 147 - o2 ). a3

Even though in many applications, we might not be able to explore the full posterior distribu-
tion z(f|g), the Bayesian framework can provide guidance for the interpretation of specific
image reconstruction approaches. For instance, computing the maximum a posteriori (MAP)
estimate relates to finding the minimizer in variational approaches, as we will discuss later in
Sec. 3.1.4.

Classically, both the likelihood and the prior are explicitly modeled and might therefore
be limited in their expressibility. Hence a natural question arises in the context of this study: Can
we use learning-based models instead of analytical models to generalize this approach?
In particular, two ways in which learning-based methods could be incorporated are as follows.

(i) Learning a prior z(f) that describes the unknown initial acoustic pressure distribution better.
(ii) Compensating, in the likelihood z(g|f), for model uncertainties or complex noise statistics.

Journal of Biomedical Optics 112903-7 November 2020 « Vol. 25(11)



Hauptmann and Cox: Deep learning in photoacoustic tomography: current approaches. ..

In DL, it is conceptually easier to address the estimation of a prior, as it relates to the training set,
as we will discuss in the later sections; it is not so straight-forward to incorporate model uncer-
tainties into the likelihood estimation. A useful direction on how to tackle this is given by the
well-established approach of Bayesian approximation error modeling.*®*° In this approach,
modeling errors in the forward operator A are estimated as normally distributed and explicitly
corrected in the likelihood term [Eq. (13)]. This approach has been applied in PAT to compensate
for uncertainty in the measurement parameters (model uncertainty).*'**

2.2.4 Image reconstructions

Although the two inverse problems described already, the acoustic and optical inversions,
are the fundamental image reconstruction problems in PAT, variations on them are often used
in practice. Common PAT reconstruction problems that appear in the literature are as follows.

o Reconstructing an image of the initial acoustic pressure distribution from the measured
time series data A~ 'g.

o Reconstructing an image of the optical absorption coefficient from initial acoustic pressure
distribution images F~!(f).

o Reconstructing an image of optical absorption coefficient directly from the measured time
series data (AF)~!(g).

¢ Reconstructing images of quantities related to optical absorption, e.g., chromophore con-
centrations or blood oxygenation, from a multiwavelength set of initial acoustic pressure
images (FL£)~!(f).

o Reconstructing images of quantities related to optical absorption directly from a multiwa-
velength set of time series data (AFL)™(g).

Research has already begun on applying DL to several of these tasks; this literature will be
reviewed in Sec. 5. The next two sections will give an overview of the classical approaches
to PAT image reconstruction and a short tutorial on the kinds of DL that are being used for
image reconstruction.

3 Classical Approaches to PAT Image Reconstruction

DL can be used to complement or augment current approaches to PAT reconstruction or replace
parts of them. For this reason, as well as to provide context, this section describes several widely
used “classical”—i.e., not learning-based—approaches that have been used for solving the PAT
inverse problems. This section is not intended to be a comprehensive review of classical methods
for PAT image reconstruction, for which the literature is large, but for later reference.

3.1 Acoustic Reconstruction

Here we consider the acoustic inversion of PAT, i.e., the linear problem of solving Eq. (9) for f,
the initial pressure distribution, given g, the measurement data. We will denote a generic recon-
struction operator, or data-to-image mapping, by AT:Y — X + throughout this review. Let us now
discuss specific choices for such a mapping.

3.1.1 Backprojection and beamforming

Algorithms based on the idea of backprojection are widely used in PAT. This terminology comes
from X-ray tomography, in which the forward operator (the linear ray transform) maps from
image to data space by integrating the target along a set of straight lines for each detector, and
the backprojection operator maps from data to image space by putting the data back along those
straight lines and summing over all detectors. In the X-ray case, these dual operations are also
adjoint; the backprojection operator is the adjoint of the forward operator.** In PAT, the situation
is slightly different. The forward operator A maps from image space X, to data space Y by
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integrating through f along a set of spherical shells of radius # = |x — x,|/c centered on the
detector points x, (see Sec. 2.1.3). Correspondingly, the backprojection operator A* maps a
function of x; and ¢, from data space Y to image space X, by putting the data back onto the
same spherical shells with the mapping ¢ — |x — x,|/c, and summing over all detector points x;.
For some function h(xg,?), which might be the measurement data or some function of it,
the backprojection operator is

(A*R)(x) = / g ) e /e AB ). (14)

©

where d© is an area element on the measurement surface G. On the other hand, the adjoint
operator A* is given by**

wow = [ [; % (xm] a8 () (1)

4rz|x — x,| ot i—lv—x,|/c

which is clearly a backprojection, but not of the data g (see also Sec. 3.1.4). When the data
are processed before backprojection (or sometimes the image is processed after backprojection)
the resulting algorithm is often referred to as a filtered backprojection. Filtered backprojection
formulas for PAT have been found for a variety of measurement surface geometries,?>2745:46
Perhaps the most well-known, called the “universal backprojection” algorithm,* gives exact
reconstructions for detector points covering a spherical, cylindrical, or planar measurement
surface, and can be written as

BB s

where a is the angle between the inward normal to & and the vector (x — x;), and Q; is the solid
angle of © as seen from a point x € Q, e.g., Q; = 47 when & is a sphere. A 2D version of this
has also been derived:*’

___4 o 1 E g(xsvt)
Sfap(x) _QSCZ/@(/M—%/C \/Wat< . )dt)x(x,xx)cos(a)dG(xs), 17

where the weighting factor x(x, x,) = |x — x| for the universal backprojection algorithm, but has
also been treated as a learnable parameter (Sec. 5.1.2).

Linear array transducers of the kind used in conventional ultrasound imaging are increasingly
being used for PAT, with backprojection-type formulas commonly used for image reconstruc-
tion. In this context, image reconstruction is sometimes referred to as “beamforming” and the
backprojection operation A* is descriptively dubbed “delay-and-sum.” Linear arrays are typi-
cally short, consisting of just 128 bandlimited detection elements focused in a plane, so the
image reconstruction is very ill-posed. Many variations of backprojection-type algorithms with
different pre- and postprocessing steps have been explored to try to maximize the image quality
given these severe constraints.***° In DL approaches to PAT image reconstruction, backprojec-
tion/beamforming-type algorithms have been used widely to map from data space Y to image
space X before and after post- and preprocesssing networks, respectively (see Secs. 4.3.2, 5.1,
and 5.2).

3.1.2 Series solutions

The first analytical solution for f(x) was found in the form of an infinite series, and more have
since been derived.”>>*>52 A formula for the case of detection points lying on a plane is of
particular interest because it is in the form of a Fourier transform, which can be computed effi-
ciently using the Fast Fourier Transform.”® The solution relies on the fact that any acoustic wave-
field p(x, t) can be written as a sum of travelling plane waves whose temporal frequency  and

wavevector k = (ky, k,, k3) are linked by the dispersion relation @ = c|k| = ¢\/k37 + k3 + k3.
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The solution takes the form:
F) =F{F(K)}. Flki ko, o) = Bky. ky. 0)F12{{C {g(x1. x2.0)}}}.  (18)

where B(ky, ky,w) = \/(w/c)* — ki —k3/w, & and € are Fourier and Cosine transforms,
respectively, and f (k) is obtained by algebraic transform from f(k;, k,, ) using the dispersion
relation. In DL, this method has been used as a component in learned iterative reconstructions
(see Sec. 5.4.2). When used with linear array transducers, this method and its variants are some-
times referred to as “Fourier beamforming.”

3.1.3 Time reversal

Perhaps the most physically intuitive algorithm is based on the concept of time reversal. >~
Consider a measurement surface & surrounding a region supp(f) C Q. Imagine the photoacous-
tically generated waves propagating outward and being measured as they pass through the
surface G. After a suitably long time 7', the acoustic field in Q will be zero (guaranteed in
a 3D homogeneous medium by Huygens’ principle®®). If the measured pressure g(x;,?) were
now reproduced on & in time-reversed order, starting with g(x,, T'), then the acoustic field in
created by the in-going waves would reproduce the out-going wavefield exactly but backward in
time. In particular, the field at t = 0 would be the initial acoustic pressure distribution f(x).
Based on this idea, time reversal image reconstruction uses a numerical acoustic model to solve
the following time-varying boundary value problem for the time-reversed field p,(x,,), from
time 1, =0to T:

(art - CZA)[),(X, tr) = O’ pr(xsv tr) = g(xs’ T— tr)’ Pr= atpr(xv 0) =0. (19)

The solution p,(x,T) = f(x) for x € Q.

In DL studies, the time reversal approach is sometimes used for comparison with network
approaches, but care must be exercised here to ensure a fair comparison. To help elucidate two
problems with time reversal, note that the time-varying Dirichlet condition p,(x,,t,) =
g(x,, T — t,) is equivalent to reintroducing the measurement data as a source term within a reflec-
tive cavity defined by the measurement surface &.>* First, then, time reversal is not a good choice
when using data detected on a sparse array of points because during the time reversal procedure
they act like point scatterers. Second, when the true sound speed is spatially varying but the
reconstruction uses a homogeneous sound speed, the reflective effect of the boundary condition
can trap artifacts in the image region.’’ In these scenarios, time reversal may not be the best
method for comparison. Furthermore, when the sound speed is spatially varying, resulting in
multiple scattering, the requirement that the acoustic field in © will fall to zero in a finite time
T is no longer satisfied. One solution®® is to use the following iterative scheme:

D) = f0) — ATR( A () — g) (20)

where A™ signifies the time-reversal operator.

3.1.4 Variational approaches

The iterative time reversal algorithm points to a more general approach to reconstruction as it
looks very similar to this gradient descent scheme:

f(n—H) :f(n) _,,lvf(c/' _ f(n) _ nA*(Af(n) _g)’ (21)

which solves the least-squares minimization problem:

1
= arg;ning(f)v E(f) =5 IAf = gli3. (22)

where f* denotes the optimal solution. [The similarities between Egs. (21) and (20) become even
clearer if we observe that the adjoint operator .A4* can be implemented numerically in a similar
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way to the time reversal operator A except that the pressure time series are reintroduced to the
domain in time-reversed order by adding them to the existing field rather than enforcing the
pressure at the detector points.**] The idea of posing the image reconstruction as a numerical
optimization is appealing,*%>°! because it provides a very flexible framework both for how
the forward operator is defined (e.g., the sound speed could be spatially varying) and for tackling
ill-posedness in the inverse problem. Equation (22) will have a unique solution when g is a
complete set of ideal data. However, if g is incomplete or imperfect then Eq. (22) may not
have a unique solution or overfitting (in which the model starts to fit to the noise in the data)
may become a concern. Early stopping of the iteration in Eq. (21) is one way to avoid over-
fitting, but a more general approach to restricting the solution space is to add another term to
the functional in Eq. (22) that expresses prior information about the kind of solution that is
expected, e.g., non-negativity of solutions and smoothness or sparsity conditions. The problem
then becomes

1
fr=argmin€(f),  E(f) =3 IAf = gl + aR(). (23)

where the regularization parameter @ balances the importance placed on the first term—the data
consistency term—and the second term R, which encodes the prior information about f. There is
an extensive literature on methods to solve minimizations such as this.®*% If the regularization
term R(f) is differentiable, one could simply employ a gradient descent [Eq. (21)] with
adR /of. If not, another approach to computing solutions iteratively is the proximal gradient
method, which means computing the iteration:

F0+D = proxg (f<”) — A (AfM — 9))» 24

where A*(Af" — g) is the gradient of the data consistency term and proxg_,,. the proximal
operator, takes the updated image estimate and projects it into the constrained set defined
by the regularization, or in other words the space in which the solution is thought to exist.
It is formally defined as the minimization problem:

. 1
proxs () = argmind R () + 5 1 =13 - 23
y

The formulation as a minimization problem in Eq. (23) is directly connected to the Bayesian
formulation in Eq. (12) and corresponds to maximizing the posterior distribution 7z(f|g) to
find the most likely reconstruction f. This represents a point estimator known as the MAP
estimate.®® In this context, the negative logarithm of the prior distribution directly relates to
the regularizing term, —log z(f) « R(f). This general framework provided by the variational
approach has inspired several learned iterative approaches to PAT reconstruction (see Secs. 4.3.3
and 5.4).

3.1.5 Matrix formulation

The acoustic forward operator A is linear and so can, in principle, be discretized and written as
a (large) matrix. When this matrix can actually be explicitly computed, the image reconstruc-
tion problem has been reduced to a matrix inversion and all the machinery of linear algebra, and
the associated methods of regularization, can be brought to bear to solve it. This includes the
variational approaches above in Sec. 3.1.4. For instance, if one considers a quadratic regulari-
zation in Eq. (23), such as R(f) = ||f]|5, then the solution can be computed in closed form and
is given by

fr= (A" A+ ald)t A%g, (26)
where Id denotes the identity, which is sometimes called a Tikhonov-regularized solution.
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There are many methods that can be used to discretize the forward operator, from pseudo-
spectral methods* to semianalytical approaches.** However, whether it is convenient—or even
possible—to compute and store .4 explicitly as a matrix will depend on the number of detectors
and the size of the image, and whether sparsity or other structures in the matrix can be
exploited.®® In fact, we will make use of a matrix representation for A in the tutorial part of
this review (Sec. 4.5), as the problem under consideration is sufficiently small.

3.2 Optical Reconstructions

This section briefly summarizes classical approaches to solving the nonlinear Eq. (10) for
the absorption coefficient or related quantities. From Eq. (2), we can see formally that
te = F U (f) = f/(Te(u,)). An empirically determined value for T is sometimes used, or,
when the final quantity of interest is a ratio of concentrations, see Eq. (6), I" is assumed to
be constant with wavelength and cancels out. The dependence of the fluence ¢ on y,, however,
needs to be considered carefully.

3.2.1 Noniterative approaches

A simple approach to deal with the dependence of ¢ on y,, but one with questionable accuracy, is
to ignore the dependence and apply the spectroscopic inversion directly to the PA data, £7'f.
This is sometimes known as linear unmixing. Despite its obvious flaws, this stance has been
taken (usually implicitly) in many experimental papers, in which the PA spectrum at a point f(4)
has been assumed to be proportional to the absorption spectrum at that point p,(4). The
difference between f(4) and u,(4), which linear unmixing ignores, is known as spectral
coloring. A better approach, but still one whose accuracy needs to be demonstrated on a
case-by-case basis, is to approximate the fluence using estimated average background absorption
and scattering values, and suppose that this fluence remains unchanged by small changes in the
optical absorption coefficient. In some cases, the fluence distribution can be measured directly
using a second imaging modality in addition to PAT.°*®” However, this requires complementary
hardware to make the additional measurements, and it is difficult to achieve the same spatial
resolution for ¢ as for f (or one may as well measure just the fluence distribution and not
do PAT at all).

3.2.2 Fixed-point iterations

If the scattering is known, then the absorption coefficient can be found using a model of light
transport, such as Eq. (3) or a suitable approximation, to calculate both the fluence and the
absorption coefficient iteratively using the fixed point iteration:®®

W5, 0) = £ 2)/ T (5, 7). @

3.2.3 Variational approaches

As with the acoustic inversion described in Sec. 3.1.4, casting the optical inversion as
a minimization problem allows the various constraints and prior information to be included
systematically. Here, the inverse problem for the absorption coefficient is stated as

1
ﬂZ()C) = arg ming(”a)’ 5(/’%) = 5 H‘Fbla](iua) - f”% + aR(ﬂa)’ (28)

Ha(x)

and a similar expression can be written for the oxygenation saturation or other quantities
of interest. As, from Eq. (2), F(u,) :=Tu,p(p,), the functional gradient is given by
V,,E =T(u,D¢p + ¢), where D¢ is the Fréchet derivative of ¢, the form of which will depend

on the particular model of light transport used.*#>%
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4 Tutorial Introduction to Deep Learning for PAT Image Reconstruction

4.1 What Role Could Deep Learning Play?

How can DL help to solve the challenges posed by the twin problems of incomplete data and
inaccurate forward models outlined in Sec. 2.2? Or are there other ways in which DL can be used
to enhance PAT image reconstruction? There are many areas in which DL could make an impact.
For example, a DL network could be used to

o correct for missing or corrupted data in the measured time series data (preprocessing);

e reconstruct images from incomplete or imperfect data given the forward operator (effec-
tively learning prior information to regularise the solution);

o approximate a forward operator (e.g., when it is difficult to write an accurate and computa-
tionally efficient forward model explicitly);

e approximate an inverse operator (even when the data is perfect and the forward operator
known this may speed up the image reconstruction);

o remove artifacts and noise from reconstructed images (postprocessing);
e segment images;

o classify or label images or regions of images.

(As mentioned in Sec. 1, the last two points are out of the scope of this review.) An important
attribute of a DL network is the speed with which it can process an input. For small networks,
this can be very fast, which may be useful in settings where reconstructions are required on short
time scales such as real-time or dynamic imaging. However, the speed of evaluation will depend
on the size of the network and the size of the input data. It is also important to keep in mind that
the final reconstruction speed will still depend on how the forward operator is utilized in the
processing pipeline.

The motivation to use DL in image reconstruction, which these conceptual advantages
provide, can readily be followed by action thanks to the availability of easy-to-use DL tools,
such as TensorFlow’® and PyTorch,”" which make employing these methods straightforward.
Furthermore, the tendency of the machine/DL community to provide open-source algorithms
and data accelerates the development of methods and makes it simpler for researchers to try
approaches. Consequently, we provide the codes accompanying this review along with a basic
example of training and test data.

4.2 Brief Introduction to Deep Learning

This review concentrates on the application of DL, by which we mean in particular deep neural
networks, to image reconstruction tasks in PAT. Specifically, we will concentrate throughout
this section on the acoustic inverse problem, so we are interested in finding a mapping from
the measurement data g € Y to the initial acoustic pressure f € X;. The driving incentive is

the hope that a reconstruction operator A; 1Y — X, that is parameterized by a set of learnable
parameters 6, such that

f=Alg) (29)

can give better (faster, more accurate) reconstructions than classical approaches. The mapping
in Eq. (29) may be a composition of model-based parts, involving a known operator describing
the acquisition geometry and physics, and pure learning-based components. Before we can
review common approaches and network architectures, we will give a short introduction to
DL and the main network components. We will concentrate here on a high-level overview
to help develop an intuition for the operations involved. For a more extensive review, see for
instance.”>"*
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Fig. 3 The ith neuron in one layer of an artificial neural network takes an input vector h° and
computes an output vector h' according to Eq. (31).

4.2.1 Deep neural networks

A deep neural network, denoted here by the nonlinear operator Ay, maps an input vector to an
output vector. The network consists of several “layers,” each of which is a composition of an
affine linear function with learnable parameters and a nonlinear function (often referred to as the
“activation function” but referred to as a nonlinearity here). The term DL refers, roughly, to
networks that consist of multiple layers, in contrast to shallow networks consisting of only a
few layers.

Let us now formalize the notion of a layer. Given an input vector h° = { h?};:l € R/, where

j€J =A{l,...,J} and an output vector h' = {h!}_, € Rl, where i€ Z ={1,...,1}, a

linear map given as a matrix C € R™/ a vector b € R/, and a point-wise nonlinear function
¢@:R — R, then one layer £ in a network is given by

L(h%) = p(Ch® + b) = h'. (30)

In the literature, the term layer is used somewhat ambiguously. Here it will be used to refer to
both an operation and its output, not just the output. One exception is the input layer, which
refers to just the input data with no prior operation. The individual neurons in such a neural
network are now the mapping to one element of the output vector, see Fig. 3 for an illustration.
If we write this out for the above case [Eq. (30)], then the result of the ith neuron is the ith
element of the output vector /! and each neuron sums over all input elements of h, with a
common bias b;:

hl = ¢<Zci~1h9 + bl-) for eachi € T. €1y
jeJ

The network type is essentially defined by the linear mappings in each layer, defined by the
structure of the matrix C.

4.2.2 Fully connected layers

The basic choice for C is a dense matrix, which gives a fully connected layer as all the inputs are
related to all the outputs. We then obtain a simple L-layered network by the composition of L
fully connected layers. This network can be expressed as the composition of several layers £, for
l=1,...,L to obtain

Wt = Ag(h) = (8L o &1y o... o &) (h°). (32)
For example, if we write this out for a two-layer network, we get the relation:
h? = @(C*h' + b?) = p(C*p(C'h° + b') + b?). (33)

In the general case, the trainable parameter set 8 of the network Ay is given by the matrices and
the bias vectors, thatis @ = {C!, C'~!,...,C', ', b"=', ..., b'}. This basic network architecture,
consisting of multiple fully connected layers, is the basis for many deep neural networks.
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When using fully connected layers in imaging applications, the input, either an image or other
measured signals, must be reshaped into a vector for the input layer. If one then aims to extract
some relevant low-dimensional information from the input, the dimensions of successive layers
will be gradually decreased until the desired output dimensions are reached. An often-used net-
work architecture worth mentioning in this class is termed an autoencoder. Here the input is first
encoded using a contracting path to extract a low-dimensional representation of relevant features
and then subsequently decoded using an expanding path to represent a clean version of the input
signal. Input 4° and output 4 typically have the same or similar dimensions.

4.2.3 Convolutional neural networks

Often the values in image pixels or voxels are related in some way with those in neighboring
pixels or voxels, e.g., both may be part of the same image feature. For applications of DL to
imaging, therefore, it seems wise to take spatial relations, and especially local relations, into
account. A fully connected layer does not explicitly maintain these spatial relations, as all inputs
are connected to all outputs without reference to their respective spatial positions. In other words,
the linear mapping C in Eq. (30) does not have any predetermined structure. It is possible, how-
ever, to think of structures for C that do retain spatial information and can use local features in the
input, such as edges, to encode such features more efficiently in the output. Convolutions, espe-
cially with small filters—3 X 3 say—are a popular and very successful choice for such opera-
tions, as these are also translation equivariant and hence encode the same local features under
translation of the image and are agnostic to the image size. (We say that a function is translation
equivariant if translating the input and then applying the function is equivalent to applying the
function followed by translation of the output.) Additionally, localized filters have the advantage
of leading to linear mappings with sparse structure that can be efficiently implemented without
an explicit matrix representation. In this case, instead of learning the whole matrix C, one needs
to learn only the filter coefficients. Usually multiple such filters are used, each one referred to as
a “channel” here. Networks using this idea are called convolutional neural networks or CNNs.

Consider an application to imaging in R?. The input is either a single or multichannel image
= {h? IS R’”X’"}]J.:l € R™m™/ where j € J = {1,...,J} denotes the input channels, and

similarly an output 2! = {h} € R™"}_ € R™"X! wherei € T = {1,...,I} denotes the out-
put channels. (These images are square, but this can straightforwardly be extended to nonsquare
images.) The affine linear mapping is then defined by a set of [ filters w; € R"»>*"*/ where
w; = {w; ; € R">" }]1:1, and biases b € R/, where each output channel has one bias. The con-

volutional layer that maps between the two multichannel images h° and &' is then defined for
each channel as

h! = (p(Zwi_j * hY + b,-) for eachi € T, (34)
jeJ

where * denotes a discrete convolution (see Fig. 4). The set of parameters in this case is given by
the coefficients of the filters w; and biases b;. Each output channel has one scalar bias and the
input and output of each channel are connected by one specific filter. Thus we could consider
an analogy here: in a CNN, each channel in the convolutional layer [Eq. (34)] acts similar to
a neuron in a fully connected layer [Eq. (31)] with the filter components w; ; analogous to the
point-wise weights C; ;; compare Figs. 3 and 4. We also note that the convolutional layer
[Eq. (34)] could be written in the general form Eq. (30) by vectorizing the input and representing
the convolution as a (sparse) matrix.

In this paper, in common with much of the image processing literature, we use ‘“image
resolution” to refer to the number of pixels or voxels in an image, so an image with
128 x 128 pixels has twice the image resolution of one with 64 X 64 pixels. The same term
is used in imaging physics with a different meaning, there referring to the smallest resolvable
features in an image. For example, a blurry image consisting of a large number of pixels would
have a high resolution in the terminology we use here, but a low resolution in the sense that the
fine features in the image are not distinguishable. An important feature of CNNs is the fact that
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Fig. 4 One layer of a CNN. (a) The input, consisting of J channels {9, ..., h%}, is convolved with
the [ filters w;, then the nonlinearity ¢ is applied and biases b; added (not shown) to give the output
in I channels, {h], ..., h} }. (b) In analogy with Fig. 3 for the fully connected network, the ith output
channel of a CNN takes an input h° € R™™ and computes an output h' € R™™/ according
to Eq. (34).

each layer maps between multichannel images of the same (or similar) resolution. Therefore, a
CNN is a natural choice to represent data-to-data or image-to-image mappings, rather than map-
pings between spaces with different dimensions such as data-to-image. Nevertheless, in many
applications there are reasons why it might be desirable to downsample input images during the
processing (e.g., memory constraints, sparser representation, and wider receptive field) and
hence many architectures include downsampling operations, called pooling layers, which reduce
the image resolution using mean or maximum filters, for instance. This will become clearer in the
following section on network architectures, specifically in Sec. 4.3.2. By combining convolu-
tional and fully connected layers, we can define the majority of network architectures that are
used in the literature for image reconstruction. The specific networks depend on the task for
which they are employed and hence we will discuss the particular architectures later in this sec-
tion. Let us now focus on how the network parameters are learned.

4.2.4 Learning task

After defining the network architecture, the parameters of the network need to be determined.
This is done by learning them from a set of training data. Before this can be done, we need to
define the actual learning task that will determine the network’s mapping properties. That is, we
want train the network to perform a specific task, such as either reconstructing or denoising an
image, or in other applications to perform segmentation or classification. More precisely, given a
network Ay we need to find an optimal set of parameters 8%, such that our network fulfils the
desired mapping property, i.e., it does what we want. The training of the network is nothing more
than an optimization problem to find the optimal set of parameters %, which can be formulated
in various ways as we will summarize shortly. Specifically, we will consider the reconstruction
task of recovering the initial pressure f from the measurement data g given the parameterized

reconstruction operator AZ, such that Eq. (29) is fulfilled.

Supervised training. The first idea that comes to mind is to minimize a distance function
between the desired output—the known ground truth—and the actual output of the network.
This leads to supervised training, in which the optimization problem is formulated with knowl-
edge of a desired ground truth in order to find the parameters of AZ,. For the optimization,
we need pairs of measurement data g; and corresponding ground truth f; fori=1,...,3.
The set of pairs {(g;, fi)}7_, is called the training set. Next we need to define how to measure
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the closeness of the resulting reconstruction. For that purpose, one typically formulates a loss
function in the L?”-norm, such as

Lo(fi.90) = 1 A3(9:) = fill]. (35)

The learning task is to find an optimal set of parameters 6* in the space of possible parameters ®
that minimizes Eq. (35) with respect to the given training set:

1 3
0" =arg min = > Ly(f;.g)-
g 961331:1 H(fl’gl) (36)

In fact, one is not limited to loss functions of the form Eq. (35) and depending on the learning
task other more suitable choices can be made. Additionally, one can add regularization terms to
the loss function, either on the output of the network or even on the parameters, for instance
requiring sparsity by minimizing the L'-norm ||6||,, where the 1-norm here acts element-wise
as usual.

Finding a set of optimal parameters 8 as formulated in Eq. (36) leads to an optimization
problem and hence can be solved with suitable optimization techniques. Here gradient-based
methods are typically used in DL, where the gradients for the update are computed via
backpropagation.’”>’® The most common optimization strategies are stochastic gradient methods,
where the stochasticity refers to randomization in the subset of training samples (batches), such
as the popular adaptive moments estimation algorithm Adam.”’

Alternative training regimes. Although the majority of learned image reconstruction
approaches applied to PAT to date have been fully supervised, one current direction within the
DL community is the investigation of possible alternative training regimes. In particular, these
are concerned with cases in which only a small number of input and ground-truth pairs are
available. Such approaches are typically referred to as semisupervised or self-supervised training.
These developments will not be covered extensively in this review, but we will discuss some
possible directions on how to move away from fully supervised training in the conclusions.
Roughly speaking, what these approaches have in common is that instead of requiring closeness
to a known ground truth for all data pairs, we define an auxiliary measure on the goodness of
reconstructions. For instance, one could think of a data consistency term, .AA‘Z (9) — ¢ % that is
used in a similar way to the concept of cycle consistency in the computer vision community.’®
Related directions use the concept of adversarial networks, in which a discriminator is used to
evaluate how well reconstructions resemble “realistic” ones during the training procedure.

In summary, regardless of the chosen training regime, defining the learning task leads to
an optimization problem, where we aim to find an optimal set of parameters for the network
architecture with respect to a chosen measure and training set.

4.3 Architectures for Learned Reconstruction

The reconstruction task in PAT can be addressed in various ways, as outlined in Sec. 3, and since
learning-based reconstruction algorithms are often inspired by these classical methods there is a
wide range of possible approaches. In an attempt to classify learned reconstructions, we could
divide the possible approaches into three classes by the number of times the physical model, the
forward operator A or a related operator, is involved in the reconstruction process: never, once,
and multiple times. Four common strategies that are directly related to classical schemes are
illustrated schematically in Fig. 5. (The middle two strategies in Fig. 5 fall into the same class
in this classification.) In the following, we discuss these three classes of approach on a concep-
tual level, giving one example of a standard architecture for each. As mentioned already, we will
concentrate here on the acoustic reconstruction problem [Eq. (29)]; extensions and applications
to the optical reconstruction problem will be discussed in the literature review in Sec. 5.6.
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Fig. 5 Four different approaches to using a DL step (a network) within a PAT image reconstruction
framework, i.e., four types of learned reconstruction operator Aj. (1) Fully learned A) = A,
[Eq. (37)]. (2) Data preprocessing and reconstruction A; = A" o Ay. (3) Reconstruction and image
postprocessing AZ} = Ay o A" [Eq. (38)]. (4) A learned iterative reconstruction based on gradient
descent [Eq. (42)]; see Fig. 15 for another example of a learned iterative reconstruction scheme.
Red indicates the data space Y and blue the image space X;.

4.3.1 Fully learned approach

In the fully learned approach, the whole learned reconstruction operator AZ) is given by one
network architecture, i.e.,

Al = Ay, (37)

where Ag:Y — X,. At first sight, such fully learned approaches seem promising as they elimi-
nate the need for a potentially expensive reconstruction operator. However, the “no free lunch”
concept applies here, as this improved reconstruction speed comes with a major limitation, which
will be discussed below. First, though, we discuss the potential advantages. The forward operator
A:X; — Yisnonlocal in nature. For instance, a point source f € X has a spatially global effect
on the measurement data g € Y (although it is localized in time). Similar nonlocality of data-
image relations is observed in most tomographic inverse problems. A fully connected layer has
filter coefficients connecting each input to each output, and they can all be different, so it can
cope with nonlocality in the data-image relation and can represent any linear mapping. In par-
ticular, the linear forward operator A could be learned by a fully connected network. (It could
even be learned by one fully connected layer with no nonlinearity, although that would just be A
represented as a dense matrix, which could be computed directly rather than learned.) Also an
inverse mapping such as the backprojection .A* in Eq. (14) can be learned by a dense layer and in
particular by a composition of dense layers with nonlinearities. In a CNN, on the other hand, a
layer acts only locally, meaning an output pixel is only related to nearby input pixels. A fully
connected network might therefore seem, at first glance, a better choice than a CNN for this task.
(Some ability to learn nonlocalities can be regained using multiscale CNNs such as the U-Net, as
described below in Sec. 4.3.2) Another potential advantage of a fully learned approach, depend-
ing on the particular architecture, is that it can provide reconstructions quickly, with low latency,
as no explicit model evaluation is required.

The use of a fully connected network, however, has a major limitation similar to the problem
faced by matrix representations of operators for high-dimensional problems, in that we need to
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Fig. 6 A fully connected network similar to the AUTOMAP architecture.'! Three dense layers with
ELU nonlinearity and bias are followed by a small CNN of 3 layers with 32 channels followed by
a final CNN layer with 1 channel for the output. The ReLU nonlinearity on the final layer imposes
a non-negativity constraint.

learn a dense matrix of size M X T, where M is the total number of pixels, or voxels, and T is the
product of the number of detectors and the number of sampling points in time. Let us for example
consider a 3D setting with m X m X m = M voxels and m X m X t = T measurement points,
where m = 64 and t = 128. Then a single-dense layer, mapping between data and image space,
represented in single precision (32 bit) would occupy ~500 GB. Thus reasonable applications of
this approach are limited in practice to two-dimensional problems. Also the large number of
learnable parameters necessitates a large training set for the training procedure to avoid over-
fitting to the training samples. Additionally, as the fully connected layer associates each point in
the input with the output nodes, the trained network depends specifically on consistent dimen-
sions in the data space as well as image space, and hence the acquisition geometry. For PAT, this
means that one needs to train a separate network if the measurement setup changes, such as the
number or location of the sensors, or the time-sampling points, or if there is a change in the sound
speed distribution, for example.

One could append a small CNN to the fully connected layers to exploit spatial features in the
output from the fully connected layers to produce the final reconstructions. This thought leads to
the architecture known as AUTOMAP,'" originally devised for magnetic resonance imaging.
A version of this kind of network is shown in Fig. 6. In our case, the input to the network
is given by the time-series of measured acoustic pressure. For the application of the fully con-
nected layers, the input must be flattened or vectorized, i.e., reshaped into a vector, before being
passed to the network. The vector output of the fully connected layers is reshaped into an image
and postprocessed by a small convolutional network to produce the final output (Fig. 6). This is
just one architecture that uses fully connected layers and there are many variations on this theme,
some of which are discussed in Sec. 5.3.1. This network can be thought of as a learned, regu-
larized backprojection operator (the fully connected layers) followed by a postprocessing net-
work to improve the image (the convolutional layers). This way of seeing the network leads us
directly to the next approach, in which a classical backprojection operation is first performed
with knowledge of the physical model and the network acts on the output in image space.

4.3.2 Reconstruction and postprocessing

A major limitation of the fully learned approach is the inflexibility with regard to the acquisition
geometry and acoustic properties, i.e., each network is specific to a fixed arrangement of the
detectors and the sound speed. This can be overcome using an explicitly model-based (classical)
reconstruction from measured time-series to image space as an initial reconstruction step. This
allows for potentially higher image resolutions to be used, as the memory burden of the fully
connected layers has been removed, and potentially facilitates efficient initial reconstructions
using approximate and computationally cheaper models. In other words, if we substitute the
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fully connected part in Fig. 6 with an explicitly known reconstruction operator A", we arrive at
the approach of an initial analytical reconstruction followed by a learned postprocessing step.
More precisely, let AT:Y — X + be an analytically known reconstruction operator that is ideally
known to be robust (small changes in the input give small changes in the output). For example,
A" could be A* or A* or another approximation to .A~'. Then one can train a CNN to remove the
reconstruction artifacts that arise from using A".”*" In the PAT case, these artifacts can range
from blurred out edges and noise to more severe undersampling and limited-view artifacts.
The learned inverse mapping is now given as

Al =Ny o AT, (38)

where the network Ay:X, — X, maps between the same space. The main advantage in this
approach lies in the analytical knowledge of the reconstruction operator, and so the network
can be designed to focus instead on exploiting the structure in reconstruction artifacts in order
to remove them. Computationally, the evaluation time of the neural network is usually negligible
and reconstruction times are typically limited by the complexity of the reconstruction operator.
It is important to notice that the evaluation of the reconstruction operator can be decoupled from
the training process and just used when creating the training data, and hence this approach is also
advantageous in the training phase if the reconstruction operator is expensive to evaluate.

For learned postprocessing, typically one employs a high-capacity and particularly expres-
sive network, i.e., one with many layers and learnable parameters, that are capable of learning
complicated image priors. The most prominent architectures for this application are based on the
U-Net,*® which can be roughly described as a multiscale convolutional autoencoder. More pre-
cisely, instead of applying convolutions only on the full resolution image, the network includes
down-sampling layers that reduce the image size in order to extract larger spatial features. The
extracted coarse features are then subsequently upsampled to construct the final image.
Intuitively, this process can be related to the principle of multiresolution analysis, such as the
wavelet decomposition,®""8? where the input image is decomposed into a fine-to-coarse basis.
For image reconstruction tasks, instead of passing the reconstructed image f, = A'g directly
through a network to produce the output image:

f=Ro(fo) = Ng(ATg), (39)
the learning task is typically reformulated as a residual problem:
I=Tfo+Ms(fo), (40)

in which a correction to the initial image is learned. This is motivated by the notion that the
network can be used to identify noise and artifacts to remove from the image. Such networks
are often referred to as residual networks, such as a residual U-Net,® for which a basic archi-
tecture (with three scales) is illustrated in Fig. 7. The classic U-Net architecture®® has five scales;
we use fewer here due to the small image size in the experiments. In the encoder part of the
network, the left side, in each scale we employ two convolutional layers, followed by a down-
sampling of factor 2. This downsampling is done by a max-pooling operation, which takes the
maximum value in a window of 2 X 2 and reduces the image size. The numbers on top of each
bar indicate the number of channels and, as can be seen, the number of channels is increased as
the resolution is decreased. For the decoder part, we follow a similar approach of using two
convolutions in each scale followed by an upsampling by factor two with a transposed convolu-
tional layer. The final result is then added to the input via the residual connection. A particular
design choice in the U-Net is the use of skip connections that connect the encoder and decoder
parts at each scale by a concatenation. The reason for using these skip connections is two-fold.
Computationally, they stabilize the training procedure by avoiding the problem of vanishing
gradients in very deep networks. Additionally, the skip connections help to preserve the finer
structures in the higher resolution scales. It is interesting that even though CNNs are translation
equivariant, the U-Net is able to learn local dependencies due to the decomposition into the
coarser scales and the resulting large receptive field. Thus the postprocessing approach proves
powerful even in applications with strong local dependencies, such as limited-view problems.
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Fig. 7 A residual U-Net with three scales with two convolutional layers at each scale in the encod-

ing and decoding paths and concatenating skip connections. The number of channels in each
layer is shown above it.

On the downside, such large capacity networks tend to overfit to the training data if training data
are scarce, but still need considerably fewer training samples than the fully learned approach. We
will discuss this further in the experimental part in Sec. 4.5. Additionally, the output depends
solely on the quality of the initial reconstruction and the capability of the network to correct for
these shortcomings. Therefore, without further modifications, we cannot guarantee that the
reconstructed image is optimally consistent with the data—one possibility to overcome this will
be discussed next.

4.3.3 Model-based learned iterative reconstruction

In order to improve data consistency of the reconstructions, one could use the forward operator
multiple times in the reconstruction procedure and not only for an initial reconstruction. We call
such approaches learned iterative schemes, as neural networks are interlaced with evaluations
of the forward operator A, its adjoint A*, and possibly other hand-crafted explicitly known
operators. Typically, such learned iterative schemes outperform other learned reconstruction
approaches in reconstruction quality,”!*!®#3 but come with a higher computational complexity.
We also observe that this allows for the use of smaller networks, as the reduced network capacity
is compensated for by providing more informative inputs to the network. We will introduce
the concept with a simple learned gradient-like scheme.!*3* For instance, minimizing the data
consistency term D(f; g) = 3 [|.Af — g|3 in a gradient descent scheme, as in Eq. (22), could be
formulated as a network with the updates:

Ao(f.V;D(f;9)) = f —OV;D(f;9) = f —OA (Af — g). (41)

Comparing with Eq. (21), we see that the only learnable parameter of the network is the step
length 6 € R. Extending this idea, we can devise a learned gradient scheme using a CNN
Ag: Xy X Xy — Xy to compute the update in Eq. (41) and iterate the process such that

FD = A (W, A (Af™ —g)). n=0,....N—1. (42)

Here each network Ay has its own set of parameters. The iterative process in Eq. (42) then
defines a reconstruction operator when stopped after N iterates:

Aj(g) = ™), 43)
where

0= (0.....0n1).
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Fig. 8 (a) Unrolled network for two iterations of a learned iterative reconstruction as given by
Eq. (44). (Red indicates the data space Y and blue the image space X;.) (b) The architecture
for the residual blocks A, , consisting of 3 convolutional layers of 32 channels with ReLU non-
linearity, followed by a linear convolutional layer with 1 channel to give the update for the next
iterate. The network parameters 6, are different for each block (each iteration n). VD" denotes
the gradient of the data consistency V/D(f("; g) = A*(Af") — g).

with an initialization, such as the adjoint of the measurement data f(°) = A*g. The initialization
is essential in this approach as it maps from data space Y to image space X, whereas the net-
works only map from X, to X . Each network Aq , is a learned updating operator for the nth
iterate and we can see a conceptual similarity of Eq. (42) to the proximal gradient descent scheme
in Eq. (24), which provides a way to interpret the learned updating operator similar to a proximal
mapping. Such learned iterative approaches are also known as model-based learned reconstruc-
tions, as the learned reconstruction operator .AZ repeatedly uses the explicit forward and adjoint
operators. Clearly, this leads to an increased complexity depending on the number of operator
evaluations required, but the additional knowledge supplied to the networks allows the use of
smaller architectures to achieve similar, or even superior, reconstruction quality compared to the
previously discussed approaches.

A basic network architecture for this task is illustrated in Fig. 8. The whole unrolled recon-
struction is shown, for two iterations, in Fig. 8(a) and the architecture of the residual blocks,
based on the residual network ResNet,® is shown in Fig. 8(b). At each iteration, the current
reconstruction f") and the corresponding gradient of the data consistency term V D(f (), g) =
A*(Af") — g) are concatenated into a two-channel input to the learned updating operator Ay,
This input layer is followed by 3 convolutional layers with 32 channels, 3 X 3 filters, ReLU
nonlinearity, and bias. The final layer (3 X 3, linear, no bias) reduces the 32 channels to a single
residual update to be added to ") such that we can rewrite the learned update equation in
Eq. (42) as

FUD = O A, (F), AT (A = g)). @

The last convolutional layer does not use a nonlinearity as the residual updates need to be able

n+1) is used

to be both positive and negative. After each residual block the intermediate result £
to compute the new gradient V,D( flntD), g), which is then passed on to the next residual
block.

By using smaller networks than in the postprocessing approach, with both the current iterate
and the gradient information as inputs, the networks rely less on prior knowledge from the train-
ing data and rather learn a desirable combination of both inputs. In fact, the gradient of the data
consistency contains information on where the image needs improvement to fit the observed
data. Just as importantly, smaller networks are less prone to overfitting and so require less train-
ing data. This aspect is further emphasized by a recent study that showed using explicitly known
operators in the network architecture does indeed reduce the training error.’® As the operator is
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used repeatedly in the reconstruction process, this also allows for some flexibility in acquisition
geometry that the network can be applied to. Many extensions of the basic learned gradient
scheme have been proposed in the literature and applications will be discussed in Sec. 5.4.1.

4.4 Generating Training Data

The training set will define the features learned by the network. This essentially defines the
probability distribution describing our images of interest, in other words, the prior of possible
images z(f) in the Bayesian framework [Eq. (12)]. This directly addresses the first point raised
in Sec. 2.2.3 of how to learn a better prior. For many biomedical applications, it is difficult to
handcraft informative priors that represent structures of interest, e.g., blood vessels, and so the
alternative approach of learning a prior from a set of sample images is appealing. The choice of
the training data set then becomes highly important as it defines the prior distribution. A suitable
training set will have two primary features: good representation of the relevant structures, and
enough variety to represent the image distribution. In established medical imaging modalities,
such as magnetic resonance imaging, one can use large databases of highly sampled gold stan-
dard reconstructions as ground-truth images. In PAT, such a database is not currently available,
and, furthermore, many scanner geometries are not able even in principle to collect complete
data. There are therefore essentially two options for creating a training set: simulate synthetic
data as realistically as possible, or define a high-quality (albeit imperfect) reconstruction using a
classical inversion method as the ground truth. It is important to emphasize that the training set,
together with the training regime, determines the reconstruction quality one can expect. For
instance, in a fully supervised setting with only reconstructions from classical inversion methods
as the ground truth, the network would not be expected to provide better reconstruction quality
than the classical approach, although it may be able to compute the images more quickly.
On the other hand, if augmented training sets or semisupervised approaches are employed, more
complicated priors might be learned and classical methods may be outperformed in reconstruc-
tion quality.

4.4.1 Synthetic training data

The first step in the creation of synthetic training data is to define the ground-truth images
fieX ’ fori = 1,..., 3. From these ground-truth images, we can then simulate the correspond-
ing synthetic measurement data g; € Y according to Eq. (9). Note that this includes the simu-
lation of measurement noise. The pairs of ground-truth image and synthetic measurement data
then define the training set {(g;. f;) € Y X X;}7 . In PAT, we are often interested in imaging
vasculature, so we need a way to create a large enough set of images with relevant vessel struc-
tures. A standard way to obtain such structures is to use other imaging modalities that provide
images or volumes of vessels and then to segment them to extract the relevant vessels as a
ground-truth image. For the following experiments, we designed two datasets from different
image databases. The first set was created from a set of lung CT scans®’ via vessel segmentation
and projection to two dimensions, and the second set was taken from retina scans®® with a

(a) Piece-wise phantom (b) Smooth phantom

f

<]

hL- 4

Fig. 9 Example images for the two data sets used in the experimental section: (a) phantoms
promote piece-wise constant or linear features and (b) promotes smoother features.
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segmentation provided. As Fig. 9 shows, these two sets have very different characteristics, one
having piece-wise constant features the other smoother features; in other words, the prior dis-
tributions z(f) are different. As we will see, this difference will have a major impact on the
reconstructions obtained depending on how the two training sets are used in the training and
testing. (In this particular case, as an alternative to the segmentation of vessel structures from
other modalities, one could imagine creating ground-truth images by, for example, using vessel
growing algorithms® to create a large set of synthetic training data.)

4.4.2 Experimental training data

An alternative to synthetic training data is to use measured data for the creation of the training
set, i.e., start with measurement data g; € Y and create a reference reconstruction f; € Xy. In this
scenario, ideally one would have complete measurement data available that can be used to create
a high-quality reference reconstruction, for instance with a variational approach, Sec. 3.1.4. Then
one can either train a network on the pairs of (g;, f;) to speed up reconstruction times, or one can,
retrospectively, undersample the measurement data to obtain §; and train with pairs (g;, f;) to
improve reconstructions from undersampled measurements. In our experience, we have found
that in the application to real measurement data, it is essential to include some experimental data
in the training procedure, as structures and noise can vary significantly from synthetic to exper-
imental data.

4.4.3 Transfer training

A third option is to combine synthetic and experimental data. This is usually a good idea if one
does not have sufficient measurement data available. Here one can exploit a concept known as
transfer training or update training. We refer the reader to two discussions on the topic.”®"!
In our case, the underlying idea is to perform pretraining with a large set of synthetic training
data that represents a good prior for the targets we are interested in. Then after the first training
phase on the synthetic data, we can update the obtained parameters with a shorter training on the
limited set of available measurement data. This fine-tunes the network parameters to the char-
acteristics of the experimental data, for instance by adjusting threshold capabilities to the noise
level. This update is typically done with a reduced learning rate. Sometimes, rather than updating
all parameters of the network, the majority are fixed and only the first and/or last layers are
updated with the new data.

Finally, we remark that here self-supervised training regimes, as mentioned in Sec. 4.2.4,
might be promising in the transition to experimental measurement data, although this area has
not yet been widely explored.

4.5 Comparison of Learned Image Reconstruction Approaches

In this section, we use the synthetic data sets introduced above to examine the performance of the
three learned image reconstruction approaches described in Sec. 4.3 with respect to accuracy and
robustness. We consider a 2D limited-view scenario with a line detector at the top of the domain,
as illustrated in Fig. 10. For simplicity, we create a matrix representation of the acoustic forward
model as described in Sec. 3.1.5 by sampling the forward operator with k-Wave.”” Since this
section serves in part as a tutorial, we will describe the individual steps required to set up the
experiments in detail.

4.5.1 Experimental design

Here we describe the steps necessary to train and evaluate the “reconstruction and postprocess-
ing” reconstruction approach as outlined in Sec. 4.3.2. This will cover all the concepts needed to
set up the examples for the other learned reconstruction approaches.

1. Data acquisition geometry and definition of the forward operator. The essential first step
is the definition of the imaging setup under consideration, which also defines the forward
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(a) Limited-view (b) Measured acoustic (C) Initial reconstruction
detector array time series using the adjoint

Detector position
"'l- -

Fig. 10 lllustration of the experimental setup for the examples. (a) We consider here a limited view
geometry in two dimensions with a line detector on the top of the domain. (b) The corresponding
time series measurements. (c) The initial reconstruction obtained by application of the adjoint to
the measurements.

operator A. Here we chose a limited-view planar acquisition geometry in a two-dimen-
sional domain, see Fig. 10, and we use k-wave”? for the PA time series simulation in
MATLAB. For flexibility in the training data creation and reconstruction, we use a matrix
representation of the forward operator by sampling each pixel in the image domain; this is
done in the script: createForwMat . m. The resulting matrix is saved to disk, so it can be
loaded within the learning framework in Python for data creation and reconstruction in the
following. To enable readability by Python, we added the flag -v7.3 in MATLAB when
saving the mat-file. Additionally, when loading the matrix in Python, it will be transposed,
so we transpose the matrix before saving.

2. Training data creation. First, we need to choose the set of ground-truth images { f; }?:] we
want to use for the training, i.e., one or both of the sets described already and shown in
Fig. 9. Then we create the corresponding synthetic measurement data using the matrix
form of A to create g; = Af; + ¢;, where ¢; is normally distributed noise added to the
measurements with standard deviation of 1% of the maximum measurement amplitude.
We then create the initial reconstruction using the adjoint, such that fi° = A*g;. Recall
that in the matrix representation, the adjoint corresponds simply to the transpose. The
training set {(f1, f;)}7_, for supervised training has now been generated. Test and
validation sets can be created in the same way. These preparations are done in the script:
callNetwork.py. For the other experiments, with the fully learned approach and
learned iterative schemes, we can just use the generated data as input and hence the set
is given by {(gi»fi)}?:r

3. Network selection and training regime. Given the training set, we can now set up the
network and define the training regime. All the relevant functions can be imported from
the supplied script: PATnets . py. For this case, we choose a classic residual U-Net for
the network Ay, and as a loss function the classic squared #2-norm for supervised training.
We note, that the code package provides a set of standard architectures that can be called
instead of the U-Net. Then the optimization problem reads as

13
0" = argmin— Ao(f5°) = fill5- (45)
emin >~ IA(T) - £l

The optimization is performed with the Adam algorithm, initial learning rate 10, batch
size 4, and a total of 5 x 10* iterations.

4. Training supervision and evaluation. During the training, we need to ensure both that our
cost function is minimized and converges and also that the learned parameters generalize
to other samples not contained in the training set. To achieve this, we use the visualization
support provided by tensorboard,”® which can then be called locally from a web browser to
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provide real-time supervision of the training procedure. After the training, the optimal set
of parameters 6* can be saved for later evaluation, or a direct evaluation can be performed.
For evaluation, we load the test set and record the average reconstruction quality.

4.5.2 Reconstructions: robustness and generalization

In this section, we will evaluate the three reconstruction approaches described in Sec. 4.3, fully
learned, postprocessing, and learned iterative reconstruction, following the four-step process
outlined above. In particular, we will examine how these methods compare in generalizability
with respect to changes in the data sets they are trained on. For that purpose, we will consider
three scenarios for the training and test sets as follows.

(1) Consistent sets. Trained on the retina data [Fig. 9(b)] of 1000 samples and tested on a sep-
arate but consistent test set from the retina data with 151 samples. This corresponds to
a scenario where the priors are the same, 7oy (f) = Zyain(f)-

(ii) Different test sets. Trained on the retina data [Fig. 9(b)] and tested on the lung CT set
[Fig. 9(a)] with 151 samples. This corresponds to a scenario where the priors are different,
”lest(f) 5& Ttrain (f)

(iii) Combined set: Trained on both data sets with a total of 3760 samples and tested on a sep-
arate combined test set with 308 samples. Here the priors are consistent, but more compli-
cated than in (i). We emphasise that this training set is also larger.

We trained the three reconstruction approaches for each scenario using the same training regime,
as outlined in Sec. 4.5, with minor tuning as necessary to ensure the parameters are close to
optimal. This ensured the results were representative and allowed useful conclusions to be
drawn. Nevertheless, as we will see below, not all of these architectures are conceptually the
right choice for the scenarios under consideration and it was not possible to improve the per-
formance significantly through further parameter tuning. Note that the fully learned approach
uses a regularizer of the learned parameters |||, to reduce overfitting.

Let us first discuss the obtained reconstructions from a visual perspective. The results
obtained for the first case (i) are displayed in Fig. 11. Most striking here is the result obtained
by the fully learned approach, which clearly falls short in reconstruction quality compared to the
other two approaches. We observe that this is primarily due to the limited size of the training data
and hence the network strongly overfitting, even though we use regularization to reduce this.
This is clear from the training error plots shown in Fig. 12. In contrast, the other two approaches
correctly learned some form of representation of the prior ., from the training data.
Consequently, the reconstructions for case (i) are visually close to the ground truth. In particular,
we can see a good reconstruction quality close to the detector, but on the boundary where
limited-view artifacts are stronger the reconstructions lose quality.

Phantom Postprocessing Learned iterative

Fig. 11 Reconstructions obtained for test case (i) with consistent priors zieei (f) = myain(f). Trained
and tested on the piece-wise constant phantoms. The fully learned approach does not perform
satisfactorily due to strong overfitting to the training data, whereas the other two approaches are
able to produce quantitatively and qualitatively superior results, but still exhibit errors in the
reconstruction.
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40 ® Learned iterative: test loss
©® Fully learned: training loss
® Fully learned: test loss

PSNR

Training iterations

Fig. 12 Training curves for the fully learned approach and learned gradient descent in comparison
for case (i), exported from the tracking tool tensorboard. Although both approaches have a ten-
dency to overfit the training data during training, the fully learned approach does suffer more
compared to the learned iterative reconstruction.

For the second case (ii), the results are shown in Fig. 13. It is clear, on the first sight, that the
networks produce results according to the learned piece-wise prior from the training data, as one
would expect. Additionally, all the algorithms show a deterioration in reconstruction quality
from the consistent case (i). For the postprocessing and learned iterative scheme features close
to the detector are to some extent correctly reconstructed, but they struggle further away. The
fully learned approach, due again to strong overfitting, produces a result with very limited resem-
blance to the ground truth. One interesting feature is that the networks, and especially the learned
iterative scheme, tend to smear out features where there is uncertainty in the reconstruction.

In the final case (iii), the training samples are combined and so the size of the training data set
is increased. The results are shown in Fig. 14. There is a clear improvement over the second case,
as the test data are consistent with the mixed prior, and both approaches that use a model in the
reconstruction do fairly well in reconstructing the target. There is a slight influence of the mixed
prior visible in the results, as the reconstructions for the piece-wise constant phantom exhibit
some smoother features related to the smooth phantoms. Finally, the fully learned approach
seems to struggle with the mixed priors, but the reconstruction is still arguably closer to the
ground truth than in the other cases, as the increased training data reduced the overfitting.
Nevertheless, the result is still not satisfactory.

These observations are supported by the quantitative values shown in Table 1, which shows
the mean and standard deviation over the whole test data for each case. We computed the peak-
signal-to-noise ratio (PSNR), which is a logarithmically relative root mean squared error and
hence related to the quantity we minimized in the training. Additionally, we computed the
structural similarity index measure (SSIM) as an indication of the perceived similarity in the

Phantom Fully learned Postprocessing Learned iterative

Fig. 13 Reconstructions obtained for test case (ii) with inconsistent priors mes(f) # 7yain (f)-
Trained on the piece-wise constant phantoms and tested on smooth phantoms. All methods strug-
gle to produce satisfactory results and one can see that the piece-wise constant prior from the
training data is reproduced by each method.
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Phantom Fully learned Postprocessing Learned iterative

Fig. 14 Reconstructions obtained for test case (iii) with consistent priors mgt(f) = myrain(f).
Trained and tested on combined phantoms with piece-wise constant as well as smooth features.
The reconstruction quality of the fully learned approach improved slightly compared to the other
test cases due to the larger training set, but it is clearly outperformed by both methods that use
the model in the reconstruction pipeline.

Table 1 Quantitative values for the three test cases in SSIM and PSNR

case (i) case (ii) case (iii)

SSIM PSNR SSIM PSNR SSIM PSNR

Fully learned 0.624 +£0.181 13.34 +3.54 0.491 +0.182 16.00+2.19 0.592+0.170 17.34 +3.95
Postprocessing  0.946 +£0.042 21.57 +5.85 0.570+0.185 16.56 +2.23 0.902 +0.133 23.22 £+ 5.07

Learned iterative 0.983 £0.025 28.76+8.10 0.679+£0.165 18.284+2.35 0.949 +0.089 28.04 + 5.82

reconstructions. We can see that the postprocessing and learned iterative schemes perform better
in this test, but with a strong deterioration when changing the prior distribution for the test data,
as is also seen visually for case (ii). For case (iii) neither method using a model showed a strong
improvement over case (i), in fact both methods deteriorate in terms of SSIM as the priors are not
perfectly reproduced, although PSNR is either stable or improves for the postprocessing. For the
fully learned approach, PSNR improved considerably with the larger training size, although
SSIM slightly deteriorated, most likely due to the difficulty in reproducing the prior correctly.
This is further an indicator of the large quantity of data needed for the fully learned approach to
work well. Similar observations are made by Baguer et al.:** in their overview, they show that a
fully learned approach only performs well with large amounts of data, which explains in parts the
poor performance in this limited data setting.

5 Deep Learning in PAT—Literature Review

The majority of the journal articles in which DL techniques have been applied to PAT image
reconstruction are concerned with the acoustic part of the reconstruction and there are fewer
papers tackling the optical part. Most of the sections that follow will therefore focus on the
acoustic reconstruction. The papers concerned with DL approaches applied to the optical recon-
structions will be reviewed in Sec. 5.6. We also draw attention to related reviews on the matter of
optical imaging and/or learned image reconstruction.'>%>=7

5.1 Postprocessing

Early approaches to learned image reconstruction concentrated on the reconstruction and post-
processing approach as outlined in Sec. 4.3.2. The work by Antholzer et al.”**** investigated
the approach of using filtered backprojection (Sec. 3.1.1) to reconstruct an initial image and then
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train a U-Net, with five scales, to do postprocessing. This was in a sparse and limited-view
data setting and followed the residual learning approach® given by Eq. (40). Similar to our
observations in Sec. 4.5, the authors report that consistent training and test data, i.e.,
Test(f) R Tgain (f), is crucial for optimal performance of the trained network;” this seems to
be more so in the case of limited-view detection geometries. This observation was confirmed
and clearly demonstrated in the study by Guan et al.,'® who proposed a dense U-Net to amelio-
rate this negative effect. Other extensions have been proposed too: using a leaky ReLU
nonlinearity'”! or using the first iterate of a model-based iterative approach (Sec. 3.1.4) instead
of a backprojection-type reconstruction.'”> Awasthi et al.'”® proposed combining a reconstruc-
tion obtained with the adjoint with the first iterate of an iterative algorithm in a learned fusion
process.

In comparison to other approaches, U-Net-based networks generally performed better than
other architectures, e.g., compared to a simple three-layer CNN,” VGG,'"! and compared to
applying U-Net directly to the measurement data ¢,'* especially with respect to robustness.
It is interesting that Antholzer et al.” compare their results to a classic #'-regularization
approach for compressed sensing and report that when the system matrix is randomly sampled,
and hence undersampling artifacts change as well, the classical variational approach clearly
outperforms the network-based postprocessing approach. This enforces the observation that
consistent training and test data is needed for this approach to be successful.

5.1.1 Application to in vivo imaging

In an extensive study, the U-Net-based postprocessing approach was successfully applied to
in vivo measurements'® and showed clear improvements over backprojection-based algorithms
when the data were undersampled or detected over a partial aperture (limited-view problem).
Hariri et al.'° showed that this approach can improve in vivo imaging when using low-fluence
sources. The observation of improved visual performance for in vivo applications was also
reported in other studies.'?”18

5.1.2 Extensions of the postprocessing approach

The primary problem with the postprocessing approach is that the result depends on a network
that is determined only by the information content of the training data and not the physics of
the problem. To tackle this, Antholzer et al.”>*® proposed a nullspace projection to ensure
data consistency after postprocessing. In other words, only components in the nullspace N(.A)
of the forward operator .4 are added to the reconstruction and as such do not change the data
consistency term ||Af — g||3. The solution therefore takes the form

f = fo+ PxyNo(fo)s (46)

where Py 4 denotes the orthogonal projection to the null space. Schwab et al.'"™''” combined
postprocessing by a U-Net with a learning-based filter in the backprojection step [« in Eq. (17)]
to improve initial reconstructions from limited-view measurements.

Recently, LED-based excitation systems have become popular but because of their low-
power output many averages (thousands) are required to improve the signal-to-noise ratio.
The resulting long-duration measurements are sensitive to motion artifacts. To compensate for
this, Anas et al.''' proposed using a recurrent neural network, a convolutional LSTM net-
work,''>!!% to exploit the temporal dependencies in the noisy measurements. They report a
considerable improvement over single-frame postprocessing. In our opinion, this explicit con-
sideration of the temporal aspect with recurrent units is more promising for low-power systems
than just postprocessing with a U-Net.!'* With a similar motivation to expand on the information
before postprocessing, Kim et al.!'> proposed to use the delay part of delay-and-sum but without
taking the sum [Eq. (14) without the integral]. The resulting 3D input is then processed and
collapsed by a U-Net to produce the final reconstruction.
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5.1.3 Beyond fully supervised training regimes

A possibility to provide an uncertainty estimation for reconstructed images by the postprocessing
approach was investigated by Godefroy et al.''® The authors proposed to train a U-Net with
Monte Carlo (MC) dropout to provide reconstructions and an uncertainty estimate. Here a set
of images is sampled with the MC dropout procedure, which provides a reconstruction (the mean
of these images) and a standard deviation indicating instabilities in the reconstruction.
Finally, we observe that the approaches here were all trained in a supervised manner
by minimizing an explicit loss function given by the #! or #? error. In a recent study, Vu
et al."'” explored the possibility of using a generative adversarial network (GAN) to process
the image. In this setting, the U-Net is interpreted as the generator producing a clean PA image
and the discriminator acts as the loss function evaluating reconstruction quality. GAN-based
approaches lead the way to applications where no paired training data are available.

5.2 Preprocessing

In a similar manner to the previous approach of using a network for postprocessing reconstruc-
tions, one can instead focus the learning task on the data side and then use a classical recon-
struction algorithm (Sec. 3) to obtain the PA image; see Fig. 5. In this sense, we reformulate the
learned postprocessing reconstruction operator in Eq. (38) to its analogue for learned prepro-
cessing as

Al = AT o A, 47)

Here the network A, can act as a denoising and artifact removal step on the data side to make
the inversion step easier (essentially it changes the learning task from an inversion step to a
denoising step).

5.2.1 Artifact removal for source localization

Defining a clear purpose for an application enables the formulation of task specific processing
algorithms, for instance in the case of tracking applications as explored in the work by Allman
et al.'"®12% Here the aim is to localize a point-like source and to this end it is essential to dis-
tinguish clearly the true signal from noise and artifacts. The authors propose to use an object
detection and classification approach to separate artifacts from the true signal. Their approach is
based on a network architecture known as faster R-CNN'?! that produces a classification
between signal and artifact, a confidence score and locations as a bounding box. After a sub-
sequent artifact removal step, the final PA image is reconstructed using beamforming
(Sec. 3.1.1). The authors show that their networks for accurate source location trained on simu-
lated data can be transferred successfully to experimental data,''® as well as ex vivo and in vivo'*?
measurements.

5.2.2 Sampling and bandwidth enhancement

The PAT reconstruction problem is well-posed if perfect measurement data are available (see
Sec. 2.2). One approach to preprocessing is, therefore, to aim to produce ideal data for the inver-
sion from the nonideal measurement data. This was investigated in the work by Awasthi
et al.'>*!>* The authors considered a sparse data (but full-view) scenario with limited bandwidth
detectors and trained a network to produce high-quality data from the degraded input. In par-
ticular, the network attempted to upsample the data from 100 detectors to 200, to denoise it, and
to increase the bandwidth. The improved data were then reconstructed by filtered backprojection
(Sec. 3.1.1). Two architectures were used for Ay: a simple seven-layer CNN'?* and a U-Net-
based architecture.'?* In general, the U-Net architecture performed better, but it is interesting
that for low noise, the simple CNN architecture was highly competitive. Translation to in vivo
measurements without retraining was successful for both methods.!?*!%*
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Conceptually, such a preprocessing approach can be understood as learning a representation
of the likelihood z(g|f) conditioned with a training set for the images f. Nevertheless, the recon-
struction quality is essentially limited by the goodness of the preprocessed measurement data and
hence we believe this approach is only viable in fairly simple measurement scenarios, such as the
tracking applications discussed above.'!®!2

5.3 Fully Learned

When considering a fully learned reconstruction, it is important to keep in mind that the meas-
urement data g € Y lies in a different spatiotemporal space than the reconstructed images f € X,
and as such a mapping between the spaces ¥ — X, needs to be constructed. In Sec. 4.3.1, we
discussed the nonlocal nature of the mapping, and that in principle a fully connected layer can
account for this. Although the mapping may, therefore, be done by a fully connected layer, we
nevertheless clearly saw in Sec. 4.5 that with a limited amount of data the fully connected
layers are hard to train to achieve high-quality reconstructions. Additionally, we observed that
the CNN following the fully connected layers did most of the visual “heavy-lifting” for the final
reconstruction. This observation is in line with what has been reported in the literature, as dis-
cussed below in Sec. 5.3.1. Following this idea, Shang et al.'* proposed a two-step approach,
where first a fully connected layer is trained to transform measurements into the image space,
and then a U-Net is trained to process the result while the weights of the fully connected layer
are fixed.

5.3.1 Convolutional approaches

Even though there is no clear theoretical justification to use a CNN directly to transform
a spatiotemporal signal from Y into an image in X, as they learn spatially equivariant
mappings, many studies in fact explore this scenario. The strength of convolutional-based
networks lies in their capability to exploit local relations in the data and as such can deal
efficiently with noise in the input. The issue of spatial invariance can be overcome using
multiple pooling layers to increase the receptive field of the network, and the representation
on the coarse scales effectively encodes the locality of the information. This implies that large
multiscale networks are needed to transform the signal into the sought-after PAT image effec-
tively. In early studies by Waibel et al.!** and Grohl et al.,'*® it was shown that using an asym-
metric U-Net to reconstruct the PA image directly from raw sensor data is feasible in a limited-
view setting. In comparison to a postprocessing approach using a U-Net, it was competitive
in terms of mean reconstruction error, but exhibited a higher variance in reconstruction error.
To overcome this, various solutions have been investigated in the literature, including
enlarging the network to increase the capacity.'*”'*® Others proposed to introduce a prepro-
cessing step to provide more informative input to the network, either by a hand-crafted
interpolation'?® or even learned preprocessing with a separate CNN.'*° Note that in the latter
case, the transformation after the preprocessing is in fact done by a dense layer and hence is
the closest to the AUTOMAP architecture discussed in Sec. 4.3.1. In both cases, the prepro-
cessing step seems to be essential to provide an input, reduced in dimensionality, to the
network performing the transform to the image space. Additionally, Tong et al."*° motivated
the preprocessing architecture based on the universal backprojection [Eq. (16)] and provide
time-series and as well as the time-derivative to the network. Lan et al.'*! reduce 120 time
series to 1 by summing them with delays, then feed this single time series into a LSTM
network followed by a fully connected layer and a subsequent CNN to form the reconstructed
image.

Following the discussion in Sec. 5.2.1, there are situations in which the full reconstruction
problem can be simplified to the case where only a source location must be found. This can
be achieved by, for example, using a feature detection network'*” or first forming a recon-
structed image using an extended U-Net then converting to a numerical value for the source
location, #3134
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5.3.2 Discussion of fully learned approaches

In summary, the more advanced fully learned approaches seem to provide a slight improvement
over reconstruction followed by postprocessing with a U-Net. However, the fully learned
approach does not explicitly include the acquisition geometry and sound speed in the inversion
procedure. Although this generality might conceivably be useful, it means that for the network to
be robust to changes in these experimental parameters, the training data must account for the full
range over which they might vary. As we see it, the fully learned approach might therefore be
useful in cases where a measurement device is available with corresponding data-image pairs
(g, f) to be used as training data, but the acquisition geometry and other underlying parameters
needed for reconstruction are not known. (i.e., if it is a “black box™ with examples of known
inputs and outputs but the parameters implicit in .4 are not known.) A fully learned approach
would then provide a way to improve the imaging pipeline without having to go through the
potentially difficult procedure of determining the instrument characteristics. Finally, following
our observation in Sec. 4.5, the fully learned approach needs substantially more training data
than other approaches that involve A explicitly. This might constitute a major limitation when
transitioning to experimental measurement data, where data availability is inherently scarce.
Nevertheless, preprocessing approaches, as in Refs. 129 and 130, are potentially promising in
reducing the hunger for training data.

5.4 Learned lterative Reconstructions

Learned iterative schemes, as described in Sec. 4.3.3, are model-based reconstructions that use
known forward and adjoint models within a learned update. Given the reconstruction operator
.A; in Eq. (43), defined by the iterates in Eq. (42), we can formulate the training task in an end-to-
end manner. This means, given paired training data (g;, f;) € ¥ x X, then an optimal parameter
6" is found by solving the optimization problem in Eq. (36), where the loss function is given as

Lo(f.9) = lAj(9) = fI5 for(f.g) € X; X Y. (48)

Computing the gradient of the loss function with respect to 6 requires performing back-
propagation through all of the unrolled iterates n = 0, ..., N — 1. This requires storage as well
as evaluation of forward and adjoint in each training step for each iterate and hence can be
computationally burdensome and so has mostly been demonstrated in 2D imaging scenarios.

In Ref. 135, the basic learned iterative reconstruction approach has been applied with an
extension to simultaneously reconstruct sound speed as well, which constitutes a learned version
of Ref. 136. Following the illustration in Fig. 8, the authors suggested to also add a residual
connection updating a sound speed estimate together with the reconstruction.

5.4.1 Learned primal dual in 2D

For reconstructions in PAT, the work by Boink et al.'*’~'* has demonstrated the robustness of
these learned iterative schemes to a number of in silico phantoms as well as in an experimental
study. The authors consider an extension to the learned gradient schemes introduced above called
learned primal dual'® (LPD) based on the successful primal-dual hybrid gradient method'*’
(also known as the Chambolle—Pock algorithm). The LPD method can be formulated in
a similar manner to Eq. (42) by learning updating operators in the primal space X, and the dual
space Y:

h(n+1) — r‘e(h(")7 Af(”)’ g)’ (49)
f(n+l) — Ag(f<n>,A*h(n+l>). (50)

In this case, the network I'y operates in data space Y, whereas the network A4 operates in image
space X ;. See also the illustration in Fig. 15, in which it is clearly seen to be an extension to the
learned iterative scheme in Fig. 5(b). In their work,'?’~'* the authors examined the robustness of
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Learned primal-dual

.A*

h

Fig. 15 Schematic of the learned primal-dual reconstruction scheme, a learned iterative recon-
struction based on the primal-dual hybrid gradient algorithm [Eq. (49)]; see also Fig. 5. Red indi-
cates the data space Y and blue the image space X;.

LPD with respect to changes in the target, including the contrast, background, structural changes,
and noise level. They found that if the network is trained only on the basic training data, it
generalizes fairly well with respect to noise (1 dB degradation in PSNR) and structural changes
(3 dB), but is most sensitive to changes in background (7 dB) and contrast (11 dB).!%®
Additionally, the authors combine their learned reconstruction with a joint segmentation that
is learned with the same network as an additional output and is shown to provide increased
robustness compared to a reconstruction by filtered backprojection and segmentation with
U-Net.

5.4.2 Learned iterative reconstructions in 3D

As already indicated, learned iterative reconstruction methods are ideally (and typically in 2D)
trained in an end-to-end manner. Although this can provide an optimal set of network param-
eters, if suitable optimization procedures have been used, it also comes with two computational
challenges. First, the memory footprint of storing and manipulating the network tends to be large
and exceeds single GPU configurations making it necessary to use costly (and often less readily
available) multi-GPU clusters. More significantly, however, during training the loss function
must be evaluated several times, and each of these involves evaluating the forward and adjoint
operators for each iterate. This quickly leads to unreasonable training times for 3D images, espe-
cially when considering large volume sizes, i.e., many voxels, and accurate forward models.

To overcome this limitation, Hauptmann et al.** proposed greedy training for learned gradient
schemes for 3D PAT. That is, instead of looking for a reconstruction operator that is optimal
end-to-end, only iterate-wise optimality is required. For the learned gradient scheme in Eq. (42),
this amounts to the following loss function for the nth unrolled iterate:

Lo, (f™, g) = [|Ag, (f ™, A*(Af™ = g)) = I3 (51)

given the output of the previous iterate £ = A, (f""V, A*(Af"~D — g)) and initialization
f© = A*g. It is important to note that, as only iterate-wise optimality is required and the param-
eters 6, are not jointly minimized over all iterates, such a greedy scheme constitutes an upper
bound on the minimized loss function for end-to-end networks. Nevertheless, this renders the
training procedure feasible since training can be separated from the evaluation of the model; the
gradient of the data consistency term A*(Af (m) — g) used in Eq. (51) can be computed before
the parameter optimization is performed. In their study,®® the authors showed that in this way
a learned iterative reconstruction algorithm can be trained for realistic 3D volumes of size
240 x 240 x 80 in a limited-view acquisition geometry. The results suggest that improved
reconstructions can be obtained compared to both postprocessing with a U-Net and iterative
reconstruction with total variation regularization. Application to in vivo measurement data was
presented after transfer training was performed, as outlined in Sec. 4.4. As the authors use an
accurate, full-wave, solver for the forward and adjoint operators, reconstruction times were still
slow in the order of minutes, but with an 4X speed-up compared to iterative reconstruction with
total variation.

In a follow-up study, ™ the authors considered the use of a faster but approximate forward
model to overcome the slow reconstruction times. Here the fast k-space method discussed in
Sec. 3.1.2 was used for the inverse as well as the forward propagation model, but as the forward
model includes a singularity'*” this results in an approximate gradient only. Following the greedy

141
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training scheme [Eq. (51)], the networks learned to reduce the resulting artifacts to produce a
useful update. Using this fast approximate forward model, the authors achieve a reconstruction
time in the order of seconds, more precisely an 8% speed-up compared to their previous learned
approach,® and 32x compared to iterative reconstruction with total variation. Results are pre-
sented for in vivo measurements of a human target.

Finally, Yang et al.'** extended the previous study using an approximate model'*! using
recurrent inference machines®*!'** for the network architecture. This way the authors are able
to improve reconstruction results for in silico experiments in 2D by 2 dB in PSNR. In conclusion,
learned iterative approaches seem to provide an improvement in reconstruction quality compared
to other learned reconstructions discussed in this review, but come with the major limitation of
reconstruction speed due to the repeated application of the forward model and its adjoint.

1141

5.5 Hybrid Approaches

From the previous sections, it is apparent that most approaches, while having clear advantages,
come with their own shortcomings. To try to mitigate these, a few groups have investigated
hybrid approaches. For instance, to overcome the missing model dependence in the fully learned
approach, the work by Lan et al.'*~'*7 proposed augmenting the end-to-end approaches'?"'>8 by
additionally feeding the network a reconstructed image, either directly into the network at a
suitable location'*’ or with a separate processing branch.'#>!4¢

5.5.1 Augmented analytical approaches

Another route is to incorporate learned methods into classical inversion approaches more explic-
itly than the learned iterative approaches in Sec. 5.4. For instance, by formulating a variational
problem with a learned regularizer in the variational formulation of Eq. (23), such that the func-
tional to be minimized becomes

1
E(f) = IAf = gll3 + aho(f), (52)

and explicit minimization of £(f) can be performed in an iterative algorithm. This approach has
been proposed as the NETT framework'*® and applied to PAT.'*’ The strength of this approach is
in the emphasis on the model in the data consistency term and convergence guarantees under
certain conditions,'*® but time consuming iterative minimization with the explicit forward and
adjoint models is still needed, similar to the learned gradient schemes. Another possibility for an
augmented analytical approach is presented by Schwab et al.,'>* who consider a data-driven
extension of the truncated singular value decomposition, where the network is trained to produce
the singular vectors corresponding to small singular values to improve reconstruction quality.
We emphasize that such augmented analytical approaches are especially important where recon-
struction convergence guarantees are needed, such as in critical clinical applications, but they
seem to fall short in visual performance compared to the most advanced learned reconstruction
approaches.

5.6 Optical Inversions

There is not, to date, a large literature using DL to tackle the optical inversions in PAT image
reconstruction (see Secs. 2.2.4 and 3.2). What there is all assumes that the acoustic inversion has
already been solved, which is to say the initial acoustic pressure distribution f is either given as
the basic measured quantity or has already been estimated by solving .A~!g. The inverse prob-
lems subsequently tackled fall largely into two classes: solving F~'(f) to estimate optical
absorption coefficients or solving (FL£)~!(f) to estimate chromophore concentrations or, more
often than not, blood oxygen saturation sO,. The primary task of the networks in these cases is to
account for the effect of the fluence, which is felt in two related ways: voxelwise it makes the PA
spectra different from the absorption spectra (spectral coloring) and spatially the PAT image is no
longer linearly related to the absorption coefficient distribution. These are related because the
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absorption coefficient at one voxel can affect the PAT image at another through the fluence.
Although this nonlocality of the operator F can be strong, e.g., a large absorber close to the
light source may “shadow” a large part of the image region, for small absorbers the effect can be
quite localized. The first application of machine learning to this problem'>' used “fluence con-
tribution maps” that made this assumption. In the DL approaches discussed below the use of
U-Net-type architectures is common, and it is known that their multiscale nature can help
mitigate the spatial-invariance implicit in CNNs (see Sec. 5.3.1).

5.6.1 U-Net-based optical inversions

Cai et al.,152 in an early contribution, used a variation on the U-Net, named the ResU-Net, to

obtain estimates of sO, and a contrast agent from 2D multiwavelength PAT images. In this
architecture, all the convolutional stages of a standard U-Net are replaced by residual blocks.*
In a similar approach, Yang et al.'>* proposed another U-Net variant, DR2U-Net, the principal
difference being that the residual blocks contain recurrent loops. Both these networks were
shown to outperform linear unmixing £~! f—which ignores the effect of the fluence—in simple
in silico tests.

Chen et al.'>* trained a U-Net to recover a 2D optical absorption coefficient distribution from
a single-wavelength 2D PAT image. The loss term included a TV regularizer. The network
was initially trained and tested with simple simulated examples and then demonstrated on
2D experimentally measured data. The measured training set was augmented by rotating the
images in steps of 1 deg. The one result shown is promising, but the geometric simplicity and
similarity of the training and test cases means the general applicability of the network remains
unclear.

Exploiting the fact the U-Net was designed for segmentation of biomedical images,*” Luke
et al.'> combined two U-Nets, one for segmentation and one for estimating blood sO,, into a
single “O-Net” with common input and output layers. The network input consists of two 2D
slices from two 3D images obtained at different wavelengths, and the output is two 2D images: a
segmentation and a map of sO,. The network gives promising results on simulated data—it is
shown to work better than linear unmixing—but the digital phantoms are simple geometric
shapes. To overcome this concern, Bench et al.'’® performed a similar inversion but using
3D multiwavelength training images generated from vessel-like phantoms within a multilayered
tissue. These images also contained limited-view artifacts from the acoustic reconstruction, and
therefore, incorporated many aspects that would be present in real in vivo data. In these
simulations, the vessel sO, estimates were accurate to within 1% on average, with a standard
deviation of 6.3%.

Yang et al.'> also used more realistic simulated data based on a 3D digital breast phantom,
using a 3D light model, and acoustically processing 2D slices as input to the network to
mimic the limited-view measurements made by a linear array transducer. Their network archi-
tecture, called an EDA-Net, uses the idea of “iterative deep aggregation”'*® to enhance the
basic U-Net. In this architecture, every skip-connection is replaced with multiple nodes at the
same scale, each of which is fed from below by (nonlinear) upsampling. This network was
shown to perform slightly better than ResU-Net and U-Net++'** and much better than linear
unmixing.

In a detailed study, Grohl et al.'*® used U-Nets to estimate the absorption coefficient in vari-
ous ways. In two fluence-estimation approaches, asymmetric and symmetric U-Nets were used
to estimate the fluence map ¢ from time series data g and from initial pressure distribution f,
respectively. (This was subsequently divided out of f to estimate y,.) Also a one-step approach
was described in which an asymmetric U-Net was used to estimate y,, directly from limited-view
and limited bandwidth time series data, i.e., solving (AF)~!g directly. This one-step approach
fared worse than the fluence estimation approaches in the in silico tests, but the comparison is
perhaps unfair. Unlike the fluence estimation approaches, which just have to learn a mapping
from one image space X to another X, , this inversion requires the network to also learn the
mapping from Y to X, from incomplete data.
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5.6.2 Learned uncertainty estimation

All the U-Net variants in Sec. 5.6.1 already mentioned have been shown to give a degree of
accuracy when demonstrated on simulated data (some more realistic than others), that if repeat-
able with in vivo data would be useful in applications. Moving to in vivo data, however, is a
challenge, as discussed as follows in Sec. 5.6.4. One of the difficulties with translating sO,
estimation techniques, for example, to a clinical setting is knowing how much confidence one
should have in the estimates. This problem is tackled by Grohl et al.,'*® who trained a U-Net to
act as an error-estimating network, using {(PAT image, error image)} pairs, to give an estimate of
the uncertainty in the p, estimates. The uncertainty correlated well with the actual error in the
images in this in silico study. The use of a meta-network to observe the performance of a given
estimator and output confidence levels for its estimates is very interesting given the difficulties
inherent to translating quantitative PAT algorithms to in vivo cases.

5.6.3 Learned spectral unmixing

In contrast to the U-Net-based approaches discussed above, which exploit the spatial information
about the fluence that is present in the PA images, pixelwise approaches attempt to solve the
optical inversion using the spectral data alone.

Durairaj et al.'® proposed a two-stage autoencoder architecture (Sec. 4.2.2) to estimate
chromophore concentrations and molar absorption spectra simultaneously. One potentially sig-
nificant advantage of this approach is that autoencoder networks by their nature do not require
ground-truth data for the training. As discussed in Sec. 4.2.2, by having a smaller hidden layer
than input and output layers, autoencoders aim to find a compressed representation of the input.
Durairaj et al. chose the hidden layer to have as many dimensions as there are chromophores
contributing to the data, in the hope that the values at the hidden layer are estimates of the
chromophore concentrations (endmember abundances in their terminology) and the network
weights are estimates of the molar absorption spectra (endmember spectra). Because this
approach aims to solve the ill-posed problem of finding both the concentrations and spectra
simultaneously, it requires strong prior information. As well as a positivity condition, which
is well-justified, they impose the condition that the chromophore concentrations sum to one.
However, this is unrealistic, as there will also be nonabsorbing molecules present in real tissue.
Furthermore, it is not clear how this approach can account for the effect of the fluence on the
PAT images and therefore unclear the extent to which the approach outlined in this preliminary
simulation study will be useful in practice.

A different approach to learned spectral unmixing was taken by Grohl et a who used a
fully connected network with 8 hidden layers to convert pixelwise PAT spectra into estimates of
sO,. The training data were taken from 2D simulated PAT images of vessels, and when the
network was tested with simulated data it gave promising results. With some bravado, this net-
work was then tested in vivo on images of a porcine brain and human forearm, and in the case
of the pig brain “seems to provide physiologically more plausible estimations” than linear
unmixing.

1"161

5.6.4 Training data

As a concluding remark on this section, we note that several classical approaches to quantitative
PAT have been demonstrated over the past decade (see Refs. 3, 69, 162, and 163 and their refer-
ences and citations) but it has proved difficult to translate these methods to work convincingly
with measurement data obtained in vivo, largely due to the challenge of obtaining all the aux-
iliary input parameters with sufficient accuracy under experimental conditions. DL holds the
promise of overcoming this problem by learning the model, thereby not requiring auxiliary
inputs, but a new difficulty arises: obtaining a large collection of experimentally measured
in vivo data with a known ground truth to use for the training. As discussed in Sec. 4.4, there
are two approaches: simulating the data or reconstructing ground-truth images using a “gold
standard” classical reconstruction technique. The papers discussed in this section have used the
former approach of simulating the data, typically using an MC method such as MCX'%* for
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modeling the light propagation and collocation method such as k-Wave for modeling the acous-
tic propagation.”” The degree to which the simulations are realistic will determine how well a
network trained with this data will work on data measured in vivo, and therefore, will determine
the confidence with which any conclusions can be drawn from a study using such an approach.
In conclusion then, the use of DL to tackle the quantitative PAT problem appears to hold promise
but the translation to practical, in vivo, cases remains a significant challenge.

6 Conclusions and Future Directions

The diversity of the work that has been done on learned image reconstruction in PAT in just the
last few years, and the increasing rate at which it is being produced, suggests that the field will
continue to develop for some time. In particular, we notice that already a move has begun
from straightforward proof-of-concept applications of DL to more sophisticated approaches.
Nevertheless, there are many issues that remain to be addressed. For instance, on the one hand
there are model agnostic reconstruction pipelines using fully learned approaches that get a lot of
attention due to low latency. On the other hand, as described already, there are learned recon-
structions that use a physical model in combination with a network, which have been shown to
be more stable and require less training data but are (considerably) slower in providing a
reconstruction. This is in part because accurate numerical models of the physics are often slow
compared to networks. Therefore, a major question remains: Is it possible to obtain network
speed without sacrificing the stability and accuracy that comes from explicitly incorporating
a model?

Another challenge, which hangs over learned image reconstructions with all biomedical
applications, is how to ensure oddities (like a tumor) appear accurately in the image even though
nothing quite like them was in the training data. In other words, how do we ensure the distri-
bution of the training data matches that of the imaged target? And if it does not, will there be
problems, as suggested by results from the tutorial, Sec. 4.5? Could this problem be ameliorated
by ensuring additional constraints, such as data consistency?

To conclude this review, we describe a few current research directions that address these
questions, either by considering new training regimes or by combining physical models with
neural networks in different ways.

6.1 Data Consistency is Important

Many approaches are still missing a data-consistency term and hence the reconstructions
obtained might look realistic but there is no way to assess their correctness. As we have dis-
cussed, there are a few approaches that do consider such data consistency during the reconstruc-
tion and hence provide a possible direction for further developments, such as the null space
approaches discussed in Sec. 5.1.2 or learned iterative reconstructions in Sec. 5.4. Another pos-
sible way to tackle this limitation is using networks that consider uncertainty or provide an uncer-
tainty estimate on top of the reconstruction. First steps in this direction have been taken for
PAT,''¢ see also Sec. 5.6.2, but there is also rising interest in other fields to incorporate such
uncertainty estimates into a learned reconstruction framework,'®~'%" which could be taken as
inspiration.

6.2 Lack of in vivo Training Data

For experimental scenarios, especially in vivo, using simulated training data is risky because it is
hard to ensure the training set distribution matches that of the target.

As the majority of the algorithms discussed already used fully supervised training, these
approaches are primarily limited by the available ground-truth data. As this is seldom a viable
option when developing imaging pipelines for in vivo applications, it may be that different train-
ing regimes will be needed, such as semisupervised approaches, as discussed in Sec. 4.2.4. For
instance, by including a data consistency in the transfer to experimental data (also known as
cycle consistency) or discriminator (GAN) based approaches.'!”
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Another possibility might be to consider the framework of physics-informed neural net-
works,'®® in which the physical model, given by a partial differential equation, is incorporated
directly into the loss function. In this case, rather than the network needing to learn the whole
physical operator from the data, as in the fully learned cases presented already, the network
learns much of the physics by virtue of the terms in the loss function.

6.3 3D Nature of PAT

The high computational complexity caused by the inherently 3D nature of PAT is another chal-
lenge for learned approaches, as computational models tend to be time-consuming and simply
storing the data requires large amounts of memory. Possible methods to overcome this have been
discussed in some recent papers, for instance using invertible networks,'®*!7® which do not
require the storage of intermediate states in the network to compute the gradients for training.
Another idea of how to scale learned iterative schemes to 3D is by computing the forward model
on multiple lower resolutions in the reconstruction process.'”!

6.4 Model Augmentation and Correction

The learned schemes that use a model in conjunction with a network are typically slow, and also
face the additional problem of uncertainty in model parameters, especially the sound speed and,
for the optical inversion, the scattering (see Sec. 2.2.2).

There may be advantages, therefore, of considering different ways to incorporate some of the
behavior of the model equation directly into the network. For instance, by designing or con-
straining networks based on the discretization of the forward model—similar work has already
been done for diffusion equations.'>!”? This way, it is possible to explicitly embed the properties
of the model into the network architecture, with a computationally more efficient (network-
based) solver.

Another possibility is to use approximate models that are faster or easier to compute in place
of the true (expensive) model, and train a network to learn a correction.'”*!”* The error may arise
from an efficient, but inaccurate, numerical discretization of the correct model'*"'”> or because
the accurate model has been replaced with a more-easily solvable approximation.'” We believe
that this direction could be particularly fruitful for PAT as model information is essential to pro-
vide stability and robustness in the inversion, but we need to overcome the two major limitations:
computational speed and the inherent uncertainty in the model parameters. Nevertheless, these
improvements come with a major increase in training times for such networks.

6.5 Trade-Offs and Choices

There are so many options that trade-offs and choices will need to be made in practice. This is not
a problem per se, but rather an opportunity. There are many possible ways in which a network
can be incorporated into the reconstruction pipeline, and the approach that will be best suited to a
particular application will depend on the nature of the application. It is the responsibility of the
designer of the image reconstruction algorithm to consider the trade-offs and constraints, e.g., is
reconstruction speed or a data-consistency guarantee more important? Does the algorithm need
to be able to work well with more than one hardware system? What hardware is available for
the computations?—and construct the algorithm accordingly. This plethora of choice is good,
because it gives sufficient flexibility for properly crafted, well-thought-through algorithms to be
designed to be optimal for specific tasks. The key to realizing that is developing an understand-
ing of the strengths and weaknesses of particular architectures and approaches. We are only at the
beginning of this journey, but we hope this paper has illuminated at least a little of the way along
the path.
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