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Abstract

Significance: The development of ultralow energy photoacoustic microscopy (PAM) on the
clinically relevant pigmented rabbit eye model paves a road toward translation of the emerging
PAM technology in ophthalmology clinics.

Aim: Since the eye is particularly vulnerable to laser damage, we aim to develop an ultralow
energy PAM system to significantly improve the laser safety of PAM by increasing the sensitivity
of the system and reducing the incident laser energy for imaging.

Approach: A multichannel data acquisition circuit with two-stage signal amplification was
specially designed, which, in combination with the application of 3 by 3 median filter in
the spatial domain, significantly improved the signal-to-noise ratio of the PAM system. The
safety of this system was validated by histopathology, fluorescein angiography, and fundus
photography.

Results: Experiments performed on pigmented rabbits demonstrated that, when using this ultra-
low energy PAM system, satisfactory image quality can be achieved in the eye with an incident
laser fluence that is only 1% of the American National Standards Institute safety limit. Fundus
photography, fluorescein angiography, and histopathology were performed after the imaging
procedure, and no retinal or ocular damage was observed.

Conclusions: The proposed ultralow energy PAM system has excellent safety and holds poten-
tial to be developed into a clinical tool for ocular imaging.
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1 Introduction

Due to the optical transparency of the eye, optical imaging methods are highly beneficial in the
field of ophthalmology for diagnosis. Current clinically available optical imaging modalities
include fundus photography, fluorescein angiography (FA),1 indocyanine green angiography,2

optical coherence tomography (OCT),3 OCT angiography (OCT-A),4 and scanning laser
ophthalmoscopy.5 As a novel biomedical imaging method, photoacoustic microscopy (PAM)
has the unique capability to noninvasively explore the optical absorption properties in biological
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tissues with high spatial resolution and deep penetration.6 In PAM, a nanosecond-pulse-duration
laser beam is used to induce localized thermoelastic tissue expansion. The thermoelastic wave
emitted from the target area can be detected by an ultrasonic transducer(s) to extract the optical
absorption information of the targeted area.7 Previous publications including those from our
group have described the basic concept of a PAM ocular imaging system and investigated its
potential applications and unique advantages in ophthalmic imaging.8–11

Laser safety in the visible and near-infrared spectral bands is an incredibly important aspect
in ocular imaging. The transparent eye allows laser light transmission to the posterior segment,
which also means that most of the laser energy will be directly delivered to the photoreceptors.12

Another reason for the sensitivity of the retina to light damage is due to the focusing of incoming
light rays on the retina by the eye’s optical system. Since the photoreceptors, which are the
neurons at the posterior portion of the retina, are extremely sensitive to light, the eye is particu-
larly vulnerable to laser damage.13 Although previous studies have suggested that PAM imaging
of the eye can be achieved using laser fluence lower than the safety limits from the American
National Standards Institute (ANSI),9 laser safety remains a concern for potential clinical trans-
lation of this technology. To further improve the safety of this technology, we have recently
developed an ultralow energy PAM ocular imaging system, as shown in Fig. 1. After drastically
enhancing its signal-to-noise ratio (SNR), the performance of this system working with signifi-
cantly reduced laser fluence was examined via the experiments on a clinically relevant rabbit eye
model in vivo. The safety of this system was validated by histopathology, FA, and fundus pho-
tography, paving the road toward clinical application.

2 Methods

2.1 System Design

The details regarding the optical design of our PAM ophthalmic imaging system have been
described in our previous publications.8,14 A spatial filter was placed after a tunable attenuator
to achieve an approximate Gaussian beam with a diameter of 5 mm. The pulse to pulse laser
energy fluctuation was monitored and recorded by a photodiode (PD) through a beam splitter.
A telescope configuration right after the two-axis scanning system was applied to achieve a
parallel beam with a diameter of 1 mm before the cornea, which led to a relatively small laser
spot on the retina and minimized the variation in spot size caused by the change in distance
between the objective lens and the eye. A laser wavelength of 578 nm where hemoglobin has a
strong optical absorption was selected for imaging. Before imaging, the incident laser energy
before the cornea was measured by a standard PD power sensor (S121C, Thorlabs). Since the
diameter of laser beam is smaller than the dilated pupil of rabbit eye, the measured incident
laser energy before the cornea represents the total intraocular energy used for the safety
calculation.

The generated photoacoustic signal was detected by a custom-built needle ultrasound
transducer with a central frequency of 25.0 MHz and an aperture size of 0.7 × 0.7 mm2

(Optosonic Inc., Arcadia, California). The detected signal was first amplified by a 57-dB
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Fig. 1 Ultralow energy PAM imaging and DAQ system. PD, photodiode.
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low-noise amplifier (AU-1647, L3 Narda-MITEQ, New York) and went through a low-pass
filter (32 MHz, BLP-30+, Mini Circuits). The signal was then sent to a pulser/receiver
(5072PR, Olympus) with programmable gain as the second stage amplifier, whose low pass
filter and high pass filter were set to full BW and 1 MHz, respectively. The further amplified
signal was sent to three different channels of a multichannel data acquisition (DAQ)
system (PX1500–4, Signatec Inc., Newport Beach, California) with 8-bit resolution and
a sampling rate of 500 MHz. To fully utilize the dynamic range of the DAQ system, the gain
of the second stage amplifier was set to 24 dB, which also ensured that the maximal system
noise would not go beyond 60% of the dynamic range of DAQ system. At the same time,
the pulse-to-pulse laser energy monitored by the PD was digitized using the same DAQ card
at the same sampling rate. We have previously reported the lateral and axial resolution of our
PAM system which, by imaging test gratings, were quantified as 4.1 and 37 μm, respectively.11

2.2 Data Processing

The three signals acquired by the three channels of the multichannel DAQ system were averaged.
This step can enhance the SNR by a factor of

ffiffiffi

3
p

because the DAQ system noises associated
with the three channels are independent. After this average, the signal was then normalized by
the recorded laser energy to eliminate the variation due to the laser pulse energy fluctuation.
To further enhance the SNR, a 3 × 3 median filter in the spatial domain was applied to the
signals acquired over the three-dimensional space. This step, although it may slightly reduce
the spatial resolution of the imaging system, could further enhance the SNR by removing the
high-frequency noise. After these data processing steps, a PAM image was then assembled from
the signals acquired via the point-by-point raster scan.

2.3 ANSI Safety Limit

The ANSI Z136.1 laser safety standard takes into account laser wavelength, exposure duration,
repetition rate, illumination spot size, and pupil diameter for ocular exposure. The limits of the
maximum permissible exposure (MPE) for the three types of illuminations include single-pulse
maximum permissible exposure (MPEsp), average power MPE for thermal and photochemical
hazard (MPEaverage), and multiple-pulse MPE for thermal hazards (MPEmp).

9,15 The MPEsp for
single laser pulse energy is the most conservative among the three.

The retinal MPE value depends on the angular subtense of the apparent source α. In laser
scanning ocular imaging, the angular subtense of the parallel beam is determined by the air-
equivalent focal length of the eye and corresponding laser spot size on the retina, which should

be around 17 mm and 20 to 25 μm, respectively.16,17 α ¼ 25 μm
17 mm

< αmin is achieved with intrabeam
exposure of the eye by such a parallel Gaussian beam, where αmin ¼ 1.5 mrad is defined by
ANSI standard for safe use of lasers in ocular imaging.15 The maximum permissible single laser
pulse energy,MPEsp, from a parallel Gaussian beam, as determined by the human pupil diameter
of 7 mm, is 162 nJ.11

2.4 Animal Handling

All the experimental procedures were performed in accordance with the ARVO (The Association
for Research in Vision and Ophthalmology) Statement for the Use of Animals in Ophthalmic and
Vision Research and were approved by the Institutional Animal Care & Use Committee
(IACUC) of the University of Michigan (Protocol PRO00008566, Photoacoustic & Molecular
Imaging of the Eye). Five Dutch-belted rabbits (both genders, 3 to 4 months, 1.5–2.5 kg) were
involved in this study. The details regarding our animal preparation can be found in our previous
publication.8 In brief, the rabbits were first anesthetized with a mixed solution of ketamine
(40 mg∕kg) and xylazine (5 mg∕kg) by intramuscular (IM) injection. The anesthesia was
maintained by vaporized isoflurane anesthetic with 1.5% to 2% isoflurane. The pupils of the
eyes were dilated before performing the PAM imaging with 2.5% phenylephrine hydrochloride
and 1% tropicamide ophthalmic solutions. Topical anesthesia was applied with 0.5% topical
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tetracaine drops prior to initiation of the experiments. The anesthesia level and rabbit state were
monitored during the imaging procedure.

After completion of all PAM imaging procedures, the retina of each rabbit eye was checked
using fundus photography and FA to look for possible damage caused by the imaging procedure.
Then, the rabbit was euthanized by intravenous injection of pentobarbital (Beuthanasia solution,
0.22 ml∕kg I.V, 50 mg∕mL) (Intervet Inc., Madison, New Jersey). The eyeballs were removed
and fixed in Davidson’s fixative solution (VWR, Radnor, Pennsylvania) for 24 to 48 h. The fixed
tissues were cross-sectionally cut in 5-mm sections and embedded in paraffin. Subsequently, the
paraffin-embedded tissues were sliced to a thickness of 5 to 6 μm and stained with hematoxylin
and eosin (H&E) for standard histopathologic evaluation.

3 Results

3.1 Imaging Experiments

The performance of the ultralow energy PAM system was tested by imaging the retinal blood
vessels in the eyes of pigmented rabbits in vivo. Three different pulse energy levels, including
1.6, 3.2, and 4.8 nJ, which are at 1%, 2%, and 3% of the ANSI safety limit, respectively, were
used in imaging. As shown in Figs. 2(a)–2(c), at all three energy levels, the PAM system can
image the retinal blood vessels with sufficient contrast-to-noise ratios. Even in the image
acquired using 1.6 nJ energy (1% of the ANSI safety limit), microvessels in the retina can
be recognized. The image quality was further improved when using higher pulse energy
(3.2 and 4.8 nJ), as demonstrated by additional vessels presented and the higher contrast-to-
background ratios achieved. However, the differences in image quality using 3.2- and 4.8-nJ
laser energy are very small, suggesting that, for the current application, there is no need to use
laser pulse energy beyond 2% of the ANSI safety limit.

To validate the improvement in performance, the same area in the rabbit retina was also
imaged using our original PAM setup working with a laser pulse energy level of 20 nJ, as shown
in Fig. 2(d). As reported in our previous publication,8 20 nJ pulse energy, which is equivalent to
13% of the ANSI safety limit, was the lowest that could achieve acceptable image quality when
using our original PAM setup. Compared to the image in Fig. 2(d), more microvessels (indicated
by blue arrows) can be recognized in the image in Fig. 2(b). In addition, as shown in white
dashed box region, more details of the retinal pigment epithelium layer can be detected with
our ultralow energy PAM system. These improvements demonstrate that the ultralow energy
PAM system working with 3.2 nJ of pulse energy can achieve better imaging of retinal vessels
than the original PAM system working with 20 nJ of pulse energy.

To further quantify the improvement in performance brought by the new design, A-scan
signals from the same location were extracted from volumetric scans leading to the imaging
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Fig. 2 PAM images of retinal microvessels in a pigmented rabbit eye in vivo. (a)–(c) The images
acquired by the ultralow PAM system when using 1.6 nJ (1% of ANSI safety limit), 3.2 nJ
(2% of ANSI safety limit), and 4.8 nJ (3% of ANSI safety limit) of pulse energy, respectively.
(d) The image acquired by our original PAM system when using 20 nJ (13% of ANSI safety limit)
of pulse energy. The white dashed boxes indicate the areas for comparison; the blue arrays
indicate the corresponding microvessels.
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results in Fig. 2, and then the SNR was quantified from each of the extracted A-scan signal.
Figure 3(a) shows the A-scan signals from the same location scanned by the ultralow energy
PAM system when using 1.6 nJ (1% of ANSI safety limit), 3.2 nJ (2% of ANSI safety limit), and
4.8 nJ (3% of ANSI safety limit) of pulse energy, respectively. The quantified SNR are 3.2, 5.8,
and 8.6 dB, respectively. Figure 3(b) shows the A-scan signal from the same location scanned by
our original PAM system when using 20 nJ (13% of ANSI safety limit) of pulse energy. The
quantified SNR is 4.5 dB. As the SNR of PAM is proportional to the applied pulse energy, the
estimated improvement in sensitivity brought by the new design is 9.2 folds.

3.2 Safety Evaluation

Fundus photography, FA, and histology were performed to evaluate possible laser damage in the
pigmented rabbit eyes after performing the PAM imaging. The fundus photograph in Fig. 4(a),
the FA image in Fig. 4(c), and the histology result in Fig. 4(e) were acquired 3 days after the
rabbit receiving PAM imaging. In this safety evaluation, the laser pulse energy used in PAM
imaging was 3.2 nJ (2% of ANSI safety limit). The retinal area scanned by PAM had a size
of 7 mm by 7 mm, as marked by the white dashed box in Figs. 4(a) and 4(c). This area was
also the one that was sectioned for histology examination. To be used as a control, the eye before
performing PAM imaging was examined by the same procedure of fundus photography and FA,
and the results are shown in Figs. 4(b) and 4(d). The eye of another pigmented rabbit without
being scanned by PAM was also sectioned for histology examination, as shown in Fig. 4(f).
Compared to the results from the control, the safety evaluation results from the rabbit eye
acquired 3 days after PAM imaging do not show any detectable difference. Neither on the fundus
photograph nor on the FA can we see any noticeable damage in the tissues before and after PAM
imaging. For the H&E histology photograph, each layer demonstrates normal morphologic
characteristics both with and without PAM imaging.

4 Discussion and conclusion

This paper presents an ultralow energy PAM system developed for ophthalmic imaging. To the
best of our knowledge, it is the first time that retinal imaging can be achieved by PAMwith a very
low laser pulse energy of only 1% of the ANSI safety limit. By applying the two-stage signal
amplification and multichannel DAQ, the dynamic range of the DAQ system was fully utilized,
which helped to distinguish much more detail in the detected signal. In addition, by applying a
3 by 3 spatial-domain-based median filter, the acquired signals were averaged at each time point
to further reduce the system noise. By combining the spatial average in the data processing

(a) (b)

Fig. 3 A-scan signals from the same location in the rabbit retina scanned by different setups when
using different levels of laser pulse energy. (a) A-scan signals acquired by the ultra-low energy
PAM system when using 1.6 nJ (1% of ANSI safety limit), 3.2 nJ (2% of ANSI safety limit), and
4.8 nJ (3% of ANSI safety limit) of pulse energy, respectively. (b) A-scan signal acquired by our
original PAM setup when using 20 nJ (13% of ANSI safety limit) of pulse energy.
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procedure with the electrical average in the DAQ system, each A-scan received an equivalent
average of 27 times. This average, unlike the time-domain signal average utilized in many pre-
vious studies to enhance the sensitivity of PAM, is not performed over multiple laser pulses and,
therefore, does not sacrifice the imaging speed or raise safety concerns of multiple pulse expo-
sure. In addition, the limited field of view of the needle detector causes decreased sensitivity to
the PA response toward the periphery of the image. In the future, a ring-shaped array, which can
be integrated with a contact lens, could overcome this limitation in field of view and further
improve the sensitivity of PAM ocular imaging.

The experiments conducted on pigmented rabbit eyes in vivo demonstrated that the newly
designed system and the data processing method can significantly reduce the laser pulse energy
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Fig. 4 Results from safety evaluation using fundus photography, FA, and H&E-stained histopa-
thology. (a) Fundus photograph of the retina of a pigmented rabbit eye acquired 3 days after PAM
imaging. (b) Fundus photograph of the retina of a pigmented rabbit eye before performing PAM
imaging (control). (c) FA image of the retina of a pigmented rabbit eye acquired 3 days after
PAM imaging. (d) FA image of the retina of a pigmented rabbit eye before performing PAM imaging
(control). (e) H&E histology photograph of the retina of the pigmented rabbit eye scanned by PAM.
(f) H&E histology photograph of the retina of the pigmented rabbit eye that was not imaged by
PAM (control). The white dashed box marks the retina area that was scanned by PAM. NFL, nerve
fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer; PL, photoreceptor layer; RPE, retinal pigment epi-
thelium; CL, choroidal layer; SL, scleral layer.
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required for imaging retinal vasculature. Although the image acquired with the pulse energy at
2% of the ANSI safety limit shows better results, most of the retinal blood vessel can be clearly
distinguished when using the pulse energy at 1% of the ANSI safety limit. Compared with our
original PAM system developed and used in our previous studies,8,11 the pulse energy required
for ocular imaging was reduced by 9.2 times. The excellent safety of the ultralow energy PAM
system for retinal imaging was validated by fundus photography, FA, and H&E-stained histo-
pathology conducted on the rabbit eyes at 3 days after PAM imaging. The results from these tests
confirmed that the PAM imaging working with laser pulse energy at 2% of ANSI safety limit did
not induce any noticeable damage in the pigmented rabbit eye.

In summary, an ultralow energy PAM system was described in this work. Using this system,
PAM imaging of retinal microvessels in vivo in pigmented rabbit eyes was achieved using very
low laser pulse energy which was 1% of the ANSI safety limit. The excellent safety of this PAM
ocular imaging system was validated by fundus photography, FA, and H&E-stained histopathol-
ogy. This successful study on the clinically relevant pigmented rabbit eye model paves a road
toward translation of the emerging PAM technology to ophthalmology clinics.
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