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Abstract

Significance: The creation of fundamentally new approaches to storing various biomaterial and
estimation parameters, without irreversible loss of any biomaterial, is a pressing challenge in
clinical practice. We present a technology for studying samples of diabetic and non-diabetic
human blood plasma in the terahertz (THz) frequency range.

Aim: The main idea of our study is to propose a method for diagnosis and storing the samples of
diabetic and non-diabetic human blood plasma and to study these samples in the THz frequency
range.

Approach: Venous blood from patients with type 2 diabetes mellitus and conditionally healthy
participants was collected. To limit the impact of water in the THz spectra, lyophilization of
liquid samples and their pressing into a pellet were performed. These pellets were analyzed using
THz time-domain spectroscopy. The differentiation between the THz spectral data was con-
ducted using multivariate statistics to classify non-diabetic and diabetic groups’ spectra.

Results:We present the density-normalized absorption and refractive index for diabetic and non-
diabetic pellets in the range 0.2 to 1.4 THz. Over the entire THz frequency range, the normalized
index of refraction of diabetes pellets exceeds this indicator of non-diabetic pellet on average by
9% to 12%. The non-diabetic and diabetic groups of the THz spectra are spatially separated in
the principal component space.

Conclusion: We illustrate the potential ability in clinical medicine to construct a predictive rule
by supervised learning algorithms after collecting enough experimental data.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.26.4.043006]

*Address all correspondence to Anastasiya A. Lykina, aalykina@itmo.ru

Journal of Biomedical Optics 043006-1 April 2021 • Vol. 26(4)

https://orcid.org/0000-0002-1004-1506
https://orcid.org/0000-0002-0812-8071
https://orcid.org/0000-0001-5760-1462
https://orcid.org/0000-0002-6915-6156
https://orcid.org/0000-0002-8035-2422
https://doi.org/10.1117/1.JBO.26.4.043006
https://doi.org/10.1117/1.JBO.26.4.043006
https://doi.org/10.1117/1.JBO.26.4.043006
https://doi.org/10.1117/1.JBO.26.4.043006
https://doi.org/10.1117/1.JBO.26.4.043006
https://doi.org/10.1117/1.JBO.26.4.043006
mailto:aalykina@itmo.ru
mailto:aalykina@itmo.ru


Keywords: terahertz time-domain spectroscopy; blood plasma; diabetes; lyophilization; pellets;
principal component analysis.

Paper 200355SSR received Oct. 31, 2020; accepted for publication Jan. 19, 2021; published
online Feb. 12, 2021.

1 Introduction

Diabetes mellitus is a disease caused by the deficit or reduced efficiency of endogenous insulin
resulting in blood sugar imbalance.1 The development of diabetes is associated with impairments
in the carbohydrate, protein, and lipid metabolism. It is almost always accompanied by a sig-
nificant increase of the blood concentrations of glucose, corticosteroid hormones, and some
other metabolites.1 Protein glycation is a non-enzymatic reaction between the carbonyl groups
of monosaccharides (e.g., glucose and fructose) and amino groups of proteins (e.g., albumin).
Glycation initiates a cascade of protein modifications resulting in the loss of both secondary
and tertiary protein structures.2 Currently, the following tests are used in clinical practice to
diagnose diabetes mellitus and monitor patients, for example, determining the level of glucose
in venous blood plasma by the enzyme method or in capillary blood by an electrochemical
method, as well as determining the level of glycated hemoglobin in whole venous blood by
liquid chromatography.3,4 All these methods require not only expensive equipment, but also
reagents for their implementation. In addition, some studies can only be performed with fresh
blood that cannot be stored for a long time. However, to determine some parameters, blood can
be stored for a long time, but bulky freezers are required to store it. The development of methods
for determining blood parameters and for storing biological samples will reduce the cost of per-
forming diagnostic tests.3,4

Terahertz (THz) radiation and technologies based on it have been actively developed and
increasingly used in many fields of science and technology,5,6 including medical diagnostics
and therapy.7–9 In last five years, THz spectroscopy has been demonstrated as a tool for highly
accurate measurement of even small quantities of sugar molecules in liquid solutions and the
selective identification of different sugar molecules. In terms of biochemical analysis, THz spec-
troscopy can be used for quantitative determination of the global hydration state of sugar
solutions.10 The measured hydration number correlates with the number of carbonyl groups
in the sugar solution. In addition, this number inversely depends on the concentration of dis-
solved compound due to the overlapping of hydration shells and dipole correlation functions of
the solution. Albumin incubation (the main blood plasma protein) with fructose is accompanied
by the formation of covalent bonds between the sugar carbonyl groups and protein amino
groups,2 which decreases the portion of fructose molecule with associated water molecules.
In other words, the amount of free water molecules increases after albumin incubation with
fructose.11

With regard to diabetes diagnosis, THz spectroscopy examines whole blood and blood
plasma of human beings and animals, some liquid models of diabetes, such as aqueous solutions
of glycated albumin or hemoglobin, as well as sugar solutions such as glucose, sucrose, gal-
actose, and other sugars dissolved in different concentrations in water. The experimental data
on the dependence of the absorption coefficient in the THz frequency range on the concentration
of various sugar solutions in the literature are contradictory. On the one hand, one group of
authors claims that the absorption coefficients and refractive index of sugar solutions decrease
with increasing sugar concentration. This effect is caused by the partial replacement of free
water, which strongly absorbs THz radiation, by a component that absorbs less in this frequency
range, namely glucose.12,13 This tendency was demonstrated with such objects: dry sucrose and
water solutions,14,15 albumin incubated with sugars (glucose or fructose),11,16,17 glucose aqueous
solution,10,17,18 monosaccharide (glucose and fructose), and disaccharide (sucrose and treha-
lose),10 fructose and D-glucose,19 rat blood plasma with and without diabetes,20,21 human blood
plasma with and without diabetes,20 and in vivo human palm skin.22

On the other hand, the other group of authors states that the absorption coefficients and
refractive index of sugar solutions increase with increasing sugar concentration. In Refs. 19,
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23, and 24, it was demonstrated that the absorption intensities increase of both aqueous glucose
and fructose solutions with the concentrations increasing, indicating clearly the THz absorption
spectra of these solutions are affected by the amount of glucose or fructose molecules involved.
The same tendency was observed for human blood plasma with and without diabetes24 and on in
vivo ear capillaries of a diabetic mouse.25

This difference between the experimental data of various authors can be associated with the
type of sugar–protein mixture that is (1) glycated protein or (2) mixture of two substances
(the effective medium model). Glycation the protein with sugar (first case) demands using high
temperature, long-term incubation, and buffer. Glycation is accompanied by the formation of
covalent bonds between the sugar carbonyl group and protein amino groups, which decrease
the portion of sugar molecules with associated water molecules. Then the amount of free water
molecules increases and absorption coefficients of these solutions increase.13 In the mixtures of
glucose and protein, without its glycation (second case) results on partial replacement of free
water by a glucose that absorbs less than water in THz frequency range.18 In this case, the absorp-
tion coefficient of sugar solution decreases. This difference between the experimental data of
various authors can also be associated with the features of the experimental schemes of THz
spectrometers, different data processings, or with equipment or samples calibration. Despite
inconsistent data, it can be claimed that THz radiation can be used in the high-precise meas-
urement of sugar levels. For example, it was found out that the THz absorption coefficients and
the blood glucose levels perform a linear relationship.24 This linear correlation indicates that
quantitative blood glucose level analysis is feasible using THz time-domain spectroscopy
(THz-TDS).24

Previous research in THz spectroscopy has encountered difficulties in diagnosing and storing
the liquid whole blood or blood plasma samples. This may also be the cause of the inconsistent
data reported in the literature. Research on tableted samples can solve this problem. Our previous
study has shown26 that from the point of view of spectroscopic studies, the tableted samples
absorb practically no moisture and have low absorption in the THz frequency range. Moreover,
they can be conveniently fixed in a vertical holder for THz-TDS in transmission mode. Since
pellets are the pressed tablets from small-fractional crystals from triglycerides, albumin, and
fibrinogen, their surface contains certain roughness and their internal composition is character-
ized by spatial inhomogeneities of the refractive index. At the same time, they are relatively
uniformed and quasi-flat to effectively transmit THz radiation and can be used in THz holo-
graphic measurements to obtain a spatially resolved distribution of optical properties providing
statistically reliable results. For storing samples in biobanks in medical institutions, pellet sam-
ples also have a number of advantages. Thus the size of a pellet can be hundred times smaller
than an Eppendorf. They can be examined several times, stored at room temperature, and be
more transportable.

The main idea of this work is to propose a method for diagnosis and storing the samples of
diabetic and non-diabetic human blood plasma and to study these samples in the THz frequency
range. There are several technologies for removing water from biological samples. One of them
is lyophilization for liquid samples at high pressure.27,28 The lyophilization method allows get-
ting dry tissue without losing the structural integrity and biological activity of the sample. During
lyophilization, free water is removed from the blood plasma. The hydrogen bonds between the
protein and water are replaced by the covalent bonds between the carbonyl groups of glucose and
the amino groups of the protein.27–29 This method of preparing the studied objects allows their
repeated study and transportation to various research laboratories. Samples of human blood
plasma with type 2 diabetes mellitus and a conditionally healthy participants were used as the
studied objects. The lyophilization of these liquid objects and their pressing into pellets were
performed. To avoid the inconsistency found in the literature, the experimental studies in this
work were conducted on two different THz-TDS, with an approximately similar experimental
schemes, and we calculated the optical properties (absorption coefficient and refractive index)
using the same equations. Moreover, the study of the samples in different laboratories can
improve the accuracy and objectivity of the results. To classify non-diabetic and diabetic groups’
spectra, a diagnostic model based on the THz properties of the studied samples was developed
using multivariate statistics.
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2 Experiments and Methodology

2.1 Method for the Preparation of Blood Plasma Pellets

Venous blood from patients with type 2 diabetes mellitus and conditionally healthy participants
was collected in the Endocrinology Department of Almazov National Medical Research Centre.
This center provides medical care for diabetic patients. Three patients and two participants were
male, age-matched (39- to 43-year old) people. All experimental protocols used in this inves-
tigation were reviewed and approved by the patients, participants, and the Use Commission of
the Medical Centre. Venous blood was collected in the morning after 8 to 12 h of fasting in a tube
with the anticoagulant K3EDTA (Vacutest Kima, Italy). Plasma was obtained for the analysis of
biochemical parameters by centrifugation of whole blood at 3000 rpm for 15 min in a laboratory
centrifuge (Eppendorf 5702R, Germany) at a temperature of þ4°C. Values of biochemical
parameters of blood plasma samples and reference intervals are presented in Table 1 (the level
of glycated hemoglobin was obtained on the whole blood). These parameters were determined
by the enzyme method, immunonephelometric method, kinetic colorimetric method, colorimet-
ric method, and high-yield liquid chromatography. Table 1 demonstrates that the concentration
of glucose, triglycerides, and glycated hemoglobin in the samples of a patient with diabetes
increases 1.5, 2.0, and 2.3 times, respectively.

Human blood plasma samples were frozen at a temperature of −80°C (low-temperature
refrigerator DW-86L388A, Haier, China). Then it was lyophilized by freeze-drying VaCo 2
(ZirBus, Germany) at a temperature of −50°C and a pressure of 3 Pa. Freezing was performed
before lyophilization, since during lyophilization under the influence of high pressure, blood
plasma components can be destroyed. Dried blood plasma was a sponge consisting of biological
crystals. The sponge was destroyed by a metal spatula and crushed to crystals with a size of
several tens of micrometers. The use of a mortar and pestle was impossible, since grinding the
proteins in the composition of the samples would lead to their unwanted adhesion and the for-
mation of round granules.

The lyophilized plasma powder was weighed (analytical balance OHAUS Discovery,
Switzerland) and then placed in a steel press mold. Using the laboratory presses (Enkor,
Russia and Specac, UK) at a certain moulding pressure, the blood plasma pellets were obtained.
Each crystal of pellets contains a certain percentage of lipids (triglycerides), proteins (albumin),
and fibrinogen—all of them normal or glycated (in diabetic case). The thickness was measured
with a micrometer (accuracy about�10 μm) as well as using the technique based on the delay of
the re-reflected THz pulse. Using of the re-reflected THz pulse reduces the error in determining
both the thickness and refraction to 1%. The accuracy of determining the thickness from the
reflections is about 3 μm. As the pellets consist of biological crystals with an average size

Table 1 Biochemical parameters levels in blood plasma samples.

Biochemical parameter
Non-diabetic

sample
Diabetic
sample

Reference
interval Measurement method

Albumin (g/l) 49.10 45.20 34 to 48 Immunonephelometric
method

Glucose (mmol/l) 4.34 6.51 3.30 to 6.10 Enzyme method

Triglycerides (mmol/l) 0.82 1.69 <1.77 Enzyme method

Glycated hemoglobin (%) 4.8 11.0 4 to 6 High-yield liquid
chromatography

Bilirubin (mmol/l) 0.027 0.007 0.003 to 0.020 Colorimetric method

Creatinine (mmol/l) 0.08 0.06 0.06 to 0.10 Kinetic colorimetric method

Total cholesterol (mmol/l) 4.49 3.43 3.50 to 5.00 Enzyme method

Uric acid (mmol/l) 0.25 0.15 0.20 to 0.42 Colorimetric method
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of about tens of micrometers, some surface roughness of the pellets remains. The blood plasma
pellets were a little fragile; therefore, this method for measuring the thickness prevented possible
damages.

The density of the pellets is calculated according to the following equation:

EQ-TARGET;temp:intralink-;e001;116;451ρo ¼ m ·

�
π · D2

4
· d

�−1
; (1)

where m is the mass, D is the diameter, and d is the thickness of a pellet.
Nine pellets were made to study their optical characteristics using THz-TDS. At the first step,

a pellet with a diameter of 13 mm was made, but it required a large amount of lyophilized
plasma. In this regard, pellets with a diameter of 5 mm began to be produced. The measured
thickness of pellets varied from 0.52 up to 1.81 mm and the calculated density varied from 1.000
up to 1.358 mm3∕mg. The pellets of samples from the control group of patients hereinafter “non-
diabetic pellet” and the pellets of samples from the diabetic group of patients hereinafter “dia-
betic pellet.” Some macroscopic characteristics and calculated density of the pellets are sum-
marized in Table 2.

The photos of pellets are presented in Fig. 1; the color of pellets is slightly different. Some
physiological reasons may influence their color in visible electromagnetic range, for example,
hemolysis (the release of blood cells content into plasma). Increased triglyceride concentration
(lipids) may cause turbidity, which can be also visible.30

Table 2 Macroscopic characteristics of blood plasma pellets and a moulding pressure.

Type of pellet
Diameter
(mm)

Thickness
(mm)

Weight
(mg)

Density
(mm3∕mg)

Pressure
(ton)

Diabetic 5 0.52 13.4 1.31 1.0

5 0.76 15.8 1.06 0.5

13 1.05 28.0 1.36 1.0

5 1.12 25.9 1.17 0.5

5 1.71 34.7 1.03 0.5

5 1.81 37.0 1.00 0.5

Non-diabetic 5 0.85 17.5 1.05 0.5

5 1.25 25.5 1.04 0.5

5 1.79 35.1 1.00 0.5

Fig. 1 Photo of blood plasma (a) non-diabetic and (b) diabetic pellets.
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2.2 THz-TDS Experimental Setups

The samples were studied using THz-TDS in transmission mode, which was implemented on a
custom-made spectrometer in St. Petersburg THz Laboratory, hereinafter “TDS-1,” and a cus-
tom-made spectrometer in Moscow Laboratory, hereinafter “TDS-2.”

TDS-1 spectrometer is equipped with a femtosecond Ti:sapphire laser, which was used to
generate THz radiation and to detect it.26,31 The average wavelength was 800 nm, a pulse fre-
quency of 80 MHz with an average power of 0.65 W, and an optical pulse length of 15 fs. The
pump pulse passes through the delay line and excites an indium arsenide epilayer grown on a
semi-insulator gallium arsenide wafer. For detecting the THz radiation, a 1-mm-thick (1 1 0)
ZnTe crystal was used in the electro-optical sampling arrangement. The spectral range was
0.2 to 2.5 THz, which was mainly defined by the electro-optical sampling. At the optimal fre-
quency of 1 THz, the signal-to-noise ratio (SNR) was 104, which provided sufficiently reliable
determination of optical characteristics of materials in this spectral range. The blood plasma
pellets were placed on a holder moved by means of motorized positioners in the vertical and
horizontal directions relative to the plane of incidence of the paraxial THz beam in the spec-
trometer. THz radiation was focused at nine different points on blood plasma pellets; the diam-
eter of THz radiation spot was about 1.2 mm. To improve accuracy, the results were averaged.

TDS-2 spectrometer was equipped with a femtosecond Ti:sapphire laser with a central wave-
length of 790 nm, a pulse frequency of 80 MHz, and turnable pulse duration 80 to 120 fs.32 The
THz radiation was generated and detected using two photoconductive antennas, which were
more efficient at lower frequencies. The frequency range of the spectrometer was 0.2 to
1.4 THz (SNR > 10), at an optimal frequency of 1 THz, the SNR is 103. The average power
is 500 mWat the input of the THz emitter and 1 μW at the output. The THz signal was measured
after transmission through blood plasma pellets. To improve the accuracy, the result was aver-
aged over three independent experiments and for each type of measurement. The measurement
of each pellet was performed in a special holder.

All measurements at TDS-1 and TDS-2 were made at room temperature (around
21°C� 1°C).

2.3 Calculation the Absorption Coefficient and Refractive Index of Pellets

During the experiments using the TDS-1 and TDS-2 spectrometers, the wavefronts representing
the dependence of the THz signal amplitude of the time delay between the pump pulse and the
probe pulse were recorded. These oscillograms were obtained for THz pulses passing through
the samples and through free space. Figure 2 shows an example of the THz pulses of each spec-
trometer transmitted through a blood plasma pellet and a reference signal.

Fig. 2 Typical waveforms of the reference signal and sample signal of two THz spectrometers:
(a) TDS-1 and (b) TDS-2.
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To obtain the spectral components of the THz field, the fast Fourier transform (FFT) was
used.33 Based on part of the FFT results (spectral amplitude and phase), the absorption coef-
ficient and the refractive index were calculated.34

To calculate the optical properties of the samples, we used the frequency dependence of
amplitude AðωÞ and phase φðωÞ. As a result, the following dependencies were calculated:
ArefðωÞ, φrefðωÞ, AsamðωÞ, and φsamðωÞ,35 where ref is the reference and sam is the sample.

Since the phase spectral dependencies had different values at zero frequency, a correction was
made by means of linear approximation and phase shift.

The calculations were based on the equations for electromagnetic radiation passing through
the absorbing medium in the form of a pellet with thickness d.34 For the complex amplitudes of
the THz field of the pulse passing through the sample and the free space, the following ratio can
be obtained

EQ-TARGET;temp:intralink-;e002;116;592

Esam

Eref

¼ 4 · ñ
ðñþ 1Þ2 ·

1�
1 − ðñ−1Þ2

ðñþ1Þ2 e
i2k̃d

� · eik̃d; (2)

where k̃ ¼ ω
c ñ is the complex wave vector, ω ¼ 2πf is the angular frequency, ñ ¼ nþ iϰ is the

complex refractive index, ϰ is the index of absorbance, and d is the sample thickness.
Since the time interval, in which only the first pulse is located, was chosen, and there are no

THz pulses associated with the reflection of the THz wave from the sample surfaces, Eq. (2) can
be reduced to

EQ-TARGET;temp:intralink-;e003;116;472

Esam

Eref

¼ Asam

Aref

· eðφsam−φref Þ ¼ 4 · ñ
ðñþ 1Þ2 · e

ik̃d−ω
cd; (3)

where Asam ¼ jEsamj, Aref ¼ jEref j.
Equation (3) indicates that there are no analytical expressions for n and ϰ from Asam

Aref

and φsam − φref .
For the environments with absorption coefficient α < 100 cm−1 [see Fig. 3(a)], the ϰ

n will be
less than or of the order of 0.03 (f ∼ 1 THz), which allows counting in the first approximation
the value of the factor 4·ñ

ðñþ1Þ2 equal to
4·n

ðnþ1Þ2 in Eq. (3). Then for spectral amplitudes and phases,

respectively, we obtain

EQ-TARGET;temp:intralink-;e004;116;335

Asam

Aref

¼ 4 · n
ðnþ 1Þ2 · e

−ω
cϰd; (4)

Fig. 3 (a) Absorption coefficient and (b) refractive index of diabetic pellets with different thick-
nesses, measured on TDS-1 and TDS-2.

Lykina et al.: Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets

Journal of Biomedical Optics 043006-7 April 2021 • Vol. 26(4)



EQ-TARGET;temp:intralink-;e005;116;735φsam − φref ¼
ω

c
nd −

ω

c
d: (5)

The refractive index is obtained from Eq. (5):

EQ-TARGET;temp:intralink-;e006;116;692n ¼ ½φsam − φref � · 0.3
360 · d · f

þ 1: (6)

If the refractive index is known, considering that ωc ϰ ¼ α
2
, it becomes possible to calculate the

absorption coefficient of the sample from Eq. (4):

EQ-TARGET;temp:intralink-;e007;116;623α ¼ 2

d
ln

�
4 · n · Aref

ðnþ 1Þ2 · Asam

�
: (7)

2.4 Data Acquisition and Processing Using PCA Analysis

The analysis of the absorption spectra of the pellets included a reduction of the dimension of the
feature space using the principal component analysis (PCA)36–38 and predictive model construc-
tion using the support vector machine (SVM).39–41

The basic idea of PCA is to find the reduced number of new variables termed the principal
components that are sufficient for the recovery of the initial variables, possibly with insignificant
errors.37

The linear separability of non-diabetic and diabetic pellets was illustrated by an SVM with a
linear kernel.39 The SVM constructs a hyperplane in feature space in order to maximize its dis-
tance from the class members. This method was originally developed to solve the problem of
binary classification, but there are extensions to a multiclass case.

3 THz Optical Properties of Diabetic and Non-Diabetic Pellets

The averaged spectra of absorption coefficient and refractive index were obtained for diabetic
pellets on two spectrometers TDS-1 and TDS-2. Figure 3 demonstrates that the absorption coef-
ficient and refractive index of diabetic pellets with different thicknesses (1.05 and 1.81 mm) and
weight (see Table 2), obtained on two spectrometers, are different.

Since the density of the pellets is also different, then it is necessary to exclude the effect of
pressure during pellets pressing procedure and to normalize the THz optical properties (α and n)
to the density of a pellet ρo:

EQ-TARGET;temp:intralink-;e008;116;305αnorm ¼ α

ρo
; (8)

Fig. 4 Density-normalized spectra of (a) absorption coefficient and (b) refractive index of diabetic
blood plasma pellets with different thicknesses.
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EQ-TARGET;temp:intralink-;e009;116;723nnorm ¼ ðn − 1Þ
ρo

: (9)

This assumption that α is proportional to ρo is confirmed by the Bouguer–Lambert–Beer law
and α∕ρo has the meaning of molar extinction, i.e., the amount of absorption by one molecule.
Thus α∕ρo is the unique properties of the material in the THz frequency range. THz optical
properties of diabetic and non-diabetic pellets measured on TDS-1 and TDS-2, obtained after
their normalization, represented in Fig. 4. When normalized to the pellet density, the absorption
coefficient and refractive index, obtained with each spectrometer, coincided on good accuracy.

Fig. 5 (a), (c) Absorption coefficient and (b), (d) refractive index of diabetic and non-diabetic pel-
lets obtained on TDS-1 and TDS-2; averaged normalized (e) absorption coefficient and (f) refrac-
tive index of diabetic and non-diabetic pellets.
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Figures 5(a)–5(d) present absorption and refractive index for diabetic and non-diabetic pel-
lets obtained on TDS-1 and TDS-2 in the range of 0.2 to 1.4 THz. In the frequency range of 0.2 to
0.5 THz, the absorption coefficient of diabetic and non-diabetic pellets obtained on TDS-1 coin-
cides with each other; the value amounts to 3.48 to 12.42 cm−1 [Fig. 5(a)]. In the frequency
range of 0.5 to 1.4 THz, the absorption coefficient of diabetic pellets (13.9 to 82.0 cm−1)
obtained on TDS-1 exceeds this indicator of the non-diabetic pellets (13.9 to 78.9 cm−1) on
average by 0.38% to 15.37% [Fig. 5(b)]. At the same time, we see that the absorption coefficient
obtained on TDS-1 almost corresponds to the absorption coefficient obtained on TDS-2 on the
entire THz frequency range [Fig. 5(c)].

For both THz spectrometers, it corresponds that the refractive index of diabetic pellets
exceeds this indicator of the non-diabetic pellets over the entire THz range [see Figs. 5(b) and
5(d)]. In the frequency range of 0.2 to 0.3 THz, the refractive index of non-diabetic pellets (1.842
to 1.856) exceeds this index of diabetic pellets (1.825 to 1.844), obtained on TDS-1 [Fig. 5(b)]
on average by 0.65% to 0.93%. In the frequency range of 0.3 to 1.4 THz, the refractive index of
diabetic pellets (1.810 to 1.851) exceeds this index of non-diabetic pellets (1.765 to 1.837),
corresponding to TDS-1 [Fig. 5(b)] on average by 0.76% to 2.55%. For TDS-2, data correspond
that the refractive index of diabetic pellets (1.800 to 1.897) exceeds this index of non-diabetic
pellets (1.751 to 1.834) in the frequency range of 0.2 to 1.4 THz on average by 2.79% to
3.43% [Fig. 5(d)].

Subsequently, we averaged all data from two THz spectrometers and normalized each sample
to its density. Figures 5(e) and 5(f) presents the averaged density-normalized absorption coef-
ficient and refractive index of diabetic and non-diabetic pellets obtained on TDS-1 and TDS-2.
Over the entire THz frequency range, the normalized refractive index of diabetic pellets exceeds
this index of non-diabetic pellets on average by 9% to 12% [Fig. 5(f)]. It is clearly seen in
Fig. 5(e) that the normalized absorption coefficients of diabetic and non-diabetic pellets coincide
with each other over the entire THz frequency range.

The experimentally observed effect corresponds to the trend described by the second group
of researchers of liquid sugars (see Sec. 1). They supposed that the absorption intensities increase
in both aqueous glucose solutions and aqueous fructose solutions with the concentrations of
sugars increasing.19,23,24 As a result, we can analyze the graphs (Fig. 5) on the base of the bio-
chemical parameters of liquid blood plasma obtained in this work (see Table 1). Table 1 shows
that the concentration of glucose, triglycerides, and glycated hemoglobin in the samples of a
patient with diabetes increases 1.5, 2.0, and 2.3 times, respectively. Therefore, the differences
in the indicated biochemical parameters of plasma samples can be observed by their THz proper-
ties. It was discovered that the curve shape of the diabetic and non-diabetic pellets coincides with
the curve of lyophilized albumin pellets described in Ref. 42. This effect can be explained by the
fact that after plasma lyophilization, most of its composition consists of various proteins, where
55% to 65% is albumin. The normalized optical properties have no pronounced spectral features
which can be explained by the absence of spectral absorption lines of amorphous glucose
(lyophilized glucose) in the THz spectra.27

PCAwas performed on the experimentally obtained TDS-1 and TDS-2 absorption spectra of
the blood plasma non-diabetic and diabetic pellets using SVM. In total, 25 absorption spectra
obtained on TDS-1 and 30 absorption spectra obtained on TDS-2 were taken for analysis in the
spectral range 0.2 to 1.4 THz. Absorption spectra are the ratio between the amplitude of the
sample Asam and the amplitude of the reference signal Aref . PCA for TDS-2 data revealed that
the first two principal components (PC1 and PC2) contain most of the explained variance (almost
90%), i.e., PC1 (65.8%) and PC2 (24%) respectively. The loadings matrix analysis shows that
the most informative feature for PC1 is 0.25 THz, and 0.3 THz for the PC2. The first two prin-
cipal components for TDS-1 data, i.e., PC1 and PC2 contain most of the variance (>94%) with a
distribution of 85.70% and 6.27%, respectively.

The linear separability of non-diabetic and diabetic groups of samples was illustrated by
SVM with a linear kernel (C ¼ 1.0, decision function is one-versus-rest). The results are pre-
sented in Fig. 6.

As it can be seen from Fig. 6, the non-diabetic and diabetic groups of the THz spectra for
both THz spectrometers have a rather compact distribution in the principal component space that
confirms a small intergroup variation of raw spectral data. Both models for TDS-1 and TDS-2,
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absorption spectra have good separability, which indicates a possibility to construct predictive
models if the number of the analyzed samples will be increased. This illustrates the potential
ability in clinical medicine to construct a predictive rule by supervised learning algorithms after
collecting enough experimental data.

4 Conclusion

Tracking the dynamic changes in the level of glucose, lipids, biomarkers, and various hormones
in different chronical diseases requires storing the biomaterial in specially designed storage
facilities. These days, long-term storage (for 2 to 5 years), in particular, for plasma samples,
requires placing several 1.5 ml Eppendorfs in freezers maintaining a temperature below
−80°C. When evaluating each laboratory parameter, from 15 to 100 μl of plasma are consumed
and lost irreversibly. As a result, the stored volumes are often insufficient to estimate some newly
identified biomarkers several years after the storing, and valuable scientific information becomes
unavailable. The creation of fundamentally new approaches to storing biomaterial and estimation
their various parameters, without irreversible loss of biomaterial, is a pressing challenge in clini-
cal medicine.

In this work, a technology for studying and storing blood plasma using the lyophilization of
blood plasma has been presented. The lyophilization method allows getting dry tissue without
losing their structural integrity and biological activity. Dried blood plasma is a sponge consisting
of biological crystals. The dry mixture of blood plasma crystals has been pressed into a flat pellet
in a steel press mold with a diameter of 5 mm. The pellets are the tablets pressed from small-
fractional protein crystals. Each crystal of pellets contains a certain percentage of lipids (triglyc-
erides), proteins (albumin), and fibrinogen—all of them are normal or glycated (in diabetic case).

A review of the literature has shown that, over the past five years, THz spectroscopy has been
actively studied for the analysis of model sugar solutions. It can be used for dynamic control of
glycation processes; it is sensitive to the type of sugar involved in glycation and is sensitive to the
pH value during glycation. This study was performed with blood plasma of conditionally healthy
participants and patients with type 2 diabetes mellitus. The analysis of diabetic and non-diabetic
blood plasma has been implemented using traditional biochemical methods used in a medical
center (in liquid form) and using THz-TDS (in tablet form) in the range of 0.2 up to 1.4 THz.

Since the density of the pellets has been different, it becomes necessary to exclude the effect
of pressure during pellets pressing and to normalize the spectra to the pellet density. The
assumption that absorption coefficient is proportional to the pellet density is confirmed by the
Bouguer–Lambert–Beer law, and the ratio of these parameters has the meaning of molar extinc-
tion. When normalized to the pellet density, the absorption coefficient and refractive index
obtained with two different THz spectrometers coincides with good accuracy. Over the entire

Fig. 6 Projection of absorption spectra on the subspace of the first and second principal compo-
nents obtained on (a) TDS-1 and (b) TDS-2.
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THz frequency range, the normalized refractive index of diabetes pellets exceeds this indicator of
non-diabetic pellet on average by 9% to 12%.

Analysis of the THz absorption spectra of pellets includes a reduction of the dimension of the
feature space using the PCA. The groups of the THz spectra have a rather compact distribution in
the principal component space. The satisfactory linear separability of the non-diabetic and dia-
betes groups is illustrated by the SVM with a linear kernel. The next step in multivariate data
analysis should be aimed at supervised learning. It allows assessing patient’s condition. The
corresponding efforts will be associated with a collection of sufficient data from patients with
known conditions.
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