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ABSTRACT. Significance: Mueller matrix (MM) microscopy has proven to be a powerful tool for
probing microstructural characteristics of biological samples down to subwavelength
scale. However, in clinical practice, doctors usually rely on bright-field microscopy
images of stained tissue slides to identify characteristic features of specific diseases
and make accurate diagnosis. Cross-modality translation based on polarization im-
aging helps to improve the efficiency and stability in analyzing sample properties
from different modalities for pathologists.

Aim: In this work, we propose a computational image translation technique based
on deep learning to enable bright-field microscopy contrast using snapshot Stokes
images of stained pathological tissue slides. Taking Stokes images as input instead
of MM images allows the translated bright-field images to be unaffected by variations
of light source and samples.

Approach: We adopted CycleGAN as the translation model to avoid requirements
on co-registered image pairs in the training. This method can generate images that
are equivalent to the bright-field images with different staining styles on the same
region.

Results: Pathological slices of liver and breast tissues with hematoxylin and eosin
staining and lung tissues with two types of immunohistochemistry staining, i.e., thy-
roid transcription factor-1 and Ki-67, were used to demonstrate the effectiveness of
our method. The output results were evaluated by four image quality assessment
methods.

Conclusions: By comparing the cross-modality translation performance with MM
images, we found that the Stokes images, with the advantages of faster acquisition
and independence from light intensity and image registration, can be well translated
to bright-field images.
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1 Introduction
Polarimetric imaging, which can probe abundant microstructural information of tissues, is
attracting increasing attention and interest in the biomedical field.1–4 The polarization state
of light can be described by a four-component Stokes vector S ¼ ðS0; S1; S2; S3Þ⊺. The
Mueller matrix (MM) describes the ability of a medium to convert the incident polarization state
Sin into Sout when the light propagating and scattering in it, which can be formalized as
Sout ¼ MSin.

5 MM provides a comprehensive description about the polarization properties of
samples, and many polarimetric parameters (e.g., depolarization, retardance, and diattenuation)
extracted from this 4 × 4 matrix are closely related to some microstructures. Polarimetric tech-
niques have assisted the diagnosis of abnormal or cancerous lesions both in vivo and ex vivo,
e.g., brain,6 esophagus,7 cervix,8 liver,9 breast,10 and gastric11 tissues.

In biomedical and clinical scenarios, different modalities are usually required to highlight
and analyze different components in the same sample based on their respective strengths.
Pathologists need to access them in different ways, which may require preparing multiple im-
aging systems or changing hardware. Cross-modality translation techniques can blend micros-
copy and computation to transform images between microscopic imaging systems.12 Deep
learning, which is able to learn abstract feature representations in a hierarchical way and discover
hidden data structures,13 has proven to be a powerful tool for various inference tasks in the field
of microscopic image analysis.14–17 Considering the complex patterns and dependences con-
tained in different high-dimensional microscopic modality data, deep learning approaches are
mainly adopted in cross-modality translation works. There are many deep-learning-based meth-
ods being demonstrated for transformations between different imaging modalities, e.g., from
total internal reflection fluorescence (TIRF) microscopy images into TIRF-based structured illu-
mination microscopy (TIRF-SIM) equivalent images,18,19 from diffraction-limited confocal
microscopy images into stimulated emission depletion microscopy equivalent images18 and from
wide-field fluorescence microscopy images into optically sectioned SIM images.20

Bright-field microscopy is often considered the gold standard in histological analysis. It is
often combined with other microscopic modalities to probe the sample from different levels.
Some previous studies have reached the transformation to bright-field contrast from other
microscopic modalities, e.g., holographic microscopy.21,22 Mueller matrix microscopy (MMM) and
bright-field microscopy contain different contrast information. They have different imaging prin-
ciples, and each has its advantages. In previous studies, we proposed a cross-modality transfor-
mation from MM microscopy images to bright-field microscopy images23 based on a conditional
generative adversarial network (cGAN)24 without changing the optical path design. However, to
obtain a MM image, four exposures of the dual division of the focal plane (DoFP) polarimeter-
based system25 are required, which will be affected by light intensity fluctuations and co-registra-
tion of polarimetric images for imaging quality.26 Meanwhile, the acquisition process is lengthy
compared to obtaining a snapshot Stokes polarimetric image. In this work, we adopt Stokes images
as input in the cross-modality transformation to bright-field microscopy. This method can output a
corresponding virtual bright-field equivalent from a Stokes image, which combines both the snap-
shot imaging of MM microscopy and the high contrast of bright-field microscopy. In this case, we
refer to this approach as “bright-field snapshot MM microscopy.”

In addition to only simply transforming between different microscopic modalities, deep
learning-based cross-modality microscopic translation can also algorithmically create a physical
transformation on a sample, e.g., for virtual staining of label-free tissue samples.12 There are
different kinds of staining styles, each of which can express different contrast information.
The process of traditional chemical staining is time-consuming, laborious, and may contain toxic
chemical reagents.27–29 Computational staining, a data post-processing method, can generate
various staining results without using real chemical reagents.30–32 It has been proven that auto-
fluorescence,33–35 phase,36 bright-field,37 and total-absorption photoacoustic remote sensing
images38 of a label-free tissue sample can be virtually performed to hematoxylin and eosin
(H&E) and/or other staining domains by a deep neural network. Realistic-looking H&E images
can be also generated from immunofluorescence images stained for DAPI and ribosomal S6.39

Usually, training a deep model requires the input and the ground truth image to be well co-
registered at the pixel-level (e.g., cGAN), which requires meticulously capturing images of the
sample and is very painstaking in the pre-processing of the data. Each immunohistochemistry
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(IHC) staining is usually costly and the destructive histochemical staining procedures are irre-
versible. This makes it hard or sometimes impossible to obtain multiple staining on the same
tissue section. In this work, we capture images of H&E staining samples using a polarimetric
imaging approach and build a deep-learning model to translate them to bright-field microscopy
images of unpaired tissue slides in the training phase. To visually compare the transformation
performance, we used adjacent tissue sections, which share approximately the same contour and
structural characteristics, as the ground truth.

In summary, we measured already-existing tissue slides for model training and no other
preliminaries are required. We adopted deep learning from the point-of-data-driven method, stat-
istical mapping between image domains of snapshot MM microscopy, and bright-field micros-
copy aiming at the cross-modality microscopic translation. Our contributions can be summarized
as follows.

• We propose a “bright-field snapshot MM microscopy” method that transforms Stokes
images obtained by MM microscopy to bright-field microscopy images. It is demonstrated
on paired images of H&E stained breast and liver tissues. This method is not sensitive to the
incident polarization states of light and resolutions of polarimetric images, which makes
the system more robust and practical.

• We demonstrate that the transformation performance using Stokes images as input is close
to the results of MM images. The Stokes polarimetry is unaffected by system and sample
instabilities and allows faster image acquisition compared to MM polarimetry, so it is supe-
rior for improving the system stability and transformation efficiency in MM microscopy.

• We employ the cycle generative adversarial network (CycleGAN)40 to transform between
the two domains without preparing paired images, which can greatly improve the efficiency
of the data pre-processing procedures and avoid possible errors due to image registration.
This method is necessary when performing IHC virtual staining on H&E stained lung tis-
sues as there is no ground truth corresponding to the staining style images in the same tissue
region.

We organize the sections in this paper as follows. Section 2 introduces the experimental
setup, sample preparation and data processing. Section 3 shows architecture and principle
of the deep learning model CycleGAN. Section 4 gives cross-modality translation results
on H&E and IHC stained tissues, respectively, and Sec. 5 provides discussion and conclusion.

2 Materials and Methods

2.1 Stokes Polarimetry and Mueller Matrix Polarimetry
For image collections, we used the dual DoFP polarimeter-based full MM microscopy (DoFPs-
MMM).25 As shown in Figs. 1(a) and 1(b), the light from the LED (3 W, 632 nm, and
Δλ ¼ 20 nm) is modulated by the polarization state generator (PSG) and then passes through
the sample, whose scattered light enters the objective lens and is finally received by the polari-
zation state analyzer (PSA). The PSG contains a fixed-angle linear polarizer P1 and a rotating
zero-level quarter-wave plate R1. Before putting in use, the PSA needs to be calibrated first, after
which the instrument matrix APSA can be calculated. Then we can obtain the complete Stokes
vector of light scattered from the sample according to Sout ¼ A−1

PSAI, where I denotes a column
vector containing eight intensity images captured by the two DoFP polarimeters of the polari-
zation directions corresponding to 0 deg, 45 deg, 90 deg, and 135 deg. We can gain the Stokes
vector Sout containing four components from a single shot, which can be expressed as
S ¼ ðS0; S1; S2; S3Þ⊺, where S0 denotes the intensity images and S1 − S3 are the components
related to polarization. To achieve MM imaging, PSG is needed to generate four incident polari-
zation states ½Sin� by rotating R1 to four preset angles and record the corresponding four Stokes
vectors Sout obtained from four exposures of the DoFP polarimeters. The full MM can be calcu-
lated by M ¼ ½Sout�½Sin�−1. DoFPs-MMM has a faster acquisition speed and measurement
accuracy25 compared to the dual rotating retarders-based MMM (DRR-MMM).41 It is faster
using snapshot Stokes imaging than MM imaging in the DOFPs-MMM.
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2.2 Sample Preparation and Image Acquisition
To validate the method on different tissues, we collected liver samples from 50 patients, breast
samples from 22 patients and lung samples from 9 patients. Each patient represents a subject. The
polarimetric properties of these samples have been analyzed in previous studies.9,10,42–45 Liver
samples were prepared by Fujian Medical University Cancer Hospital and Mengchao
Hepatobiliary Hospital of Fujian Medical University. Breast and lung tissue samples were
obtained from the University of Chinese Academy of Sciences Shenzhen Hospital. All tissues
were cut into sections of uniform 4 μm thickness. To observe different types of computational
staining, all liver and breast tissue slices were stained with H&E, while different adjacent tissue
slices of the lung samples were stained separately with H&E and different types of IHC for
comparison. The bright-field RGB images were acquired by a whole slide image system
(WSI). Breast and liver tissue H&E staining slices were captured using MMM and WSI system,
respectively. Lung tissue H&E staining slices were captured using MMM and IHC staining slices
were captured using WSI system. In this case, MM images and Stokes images could be sepa-
rately obtained using MMM. We imaged part of the samples with a 4× objective lens and the
others with a 20× objective lens. All works were approved by the Ethics Committee of these
three hospitals. The number of samples are listed in the “image acquisition” column of Table 1.
Ki-67 and thyroid transcription factor-1 (TTF-1) are two types of IHC staining.

2.3 Data Pre-Processing
MM contains all polarimetric properties about the samples. Considering the comprehensiveness
of the information, we utilized all elements in MM. There is a significant correlation among the
16 elements in the MM, leading to unnecessary data duplication (redundancy).46 The correlations
between different MM elements are determined by the sample’s polarization properties, but this
correlation still relies on the data distribution from a statistical perspective. We used principal
component analysis (PCA) to extract most of the information related to polarization properties
from the initial MM. PCA has been widely used in multivariate image analysis for dimensionality

Fig. 1 The workflow of cross-modality translation. (a) Photograph of DoFPs-MMM.
(b) Configuration of DoFPs-MMM. (c) 16 MM element images. (d) Decomposed top three channels
by PCA. (e) Decomposed top one channel by PCA. (f) Stokes images obtained with a single shot.
(g) Six incident polarization states selected on Poincaré sphere. (h) Bright-field images on H&E
stained tissues. (i), (j) Different types of bright-field images on IHC stained tissues. (k) WSI system.

Wei et al.: Deep-learning-based cross-modality translation from Stokes image. . .

Journal of Biomedical Optics 102911-4 October 2023 • Vol. 28(10)



reduction, data compression, pattern recognition, visualization,47 etc. In this part, it decomposed
16MM element images into a linear combination of few uncorrelated basis functions. We utilized
the top one channel (PCA1) or three channels (PCA3), which explain most of the variance within
the dataset. An overview of the MM imaging and data preprocessing procedure is given in
Figs. 1(c)–1(e).

The Stokes images were obtained by a single shot using DOFPs-MMM. S1, S2, and S3
images, all being normalized by the intensity image S0, could be transformed as three channels
of an RGB image. The incident state of polarization (SOP) can determine the outgoing Stokes
vector. As shown in Fig. 1(g), to demonstrate our method is incident SOP-independent, all forms
of complete polarization states (linear, circular, and elliptical polarization) are included, with
each form of SOP being paired orthogonally. We selected two circular polarization (right-hand
circle and left-hand circle) and two elliptical polarization (E1 and E2) on the traces of polarization
states of the Poincaré sphere generated by continuously rotating R1 180 deg in PSG,25 where
E1 ¼ ð1.0000.7500.4330.500Þ⊺ and E2 ¼ ð1.0000.750 − 0.433 − 0.500Þ⊺. For a more general
consideration, we deviate from the aforementioned traces and selected two linear polarizations
(45 deg and 135 deg) on the equator of the Poincaré sphere.

The decomposed MM images and Stokes images were used as input, respectively, and the
bright-field images were used as ground truth. When performing cross-modality translation on
images of H&E stained slices, paired images were required to verify the transformation perfor-
mance of the model. A speeded-up robust feature algorithm-based feature point detection image
registration technique48 was used to build the dataset, ensuring that the polarimetric images and
bright-field images were matched exactly at the pixel level. All of the images were scaled and
cropped into 256 × 256 pixels patches.

2.4 Dataset and Implementation
Before training a cross-modality translation deep learning model, a dataset containing a large
amount of polarimetric images and bright-field images needs to be built first. Paired images were
used for breast tissues and liver tissues, while unpaired images were used for lung tissues. The
patches in the training set and the patches in the test set did not overlap with each other and were
from different patients. The division of the dataset is given in the “training” and “testing” col-
umns of Table 1. Both the training and test sets contain images with 4× and 20× objective lens
magnification.

The experiments were carried out on a desktop computer, of which the operating system is
Ubuntu 18.04 with kernel 5.4.0. We used PyTorch 1.12.1 and Python 3.8.5 to train models and
implemented them on two NVIDIA Geforce RTX 2080Ti cards. Each model was trained with a
batch size of 4 for 100 epochs, where the first 50 epochs were with the initial learning rate and the
last 50 epochs linearly decayed learning rate to zero.

3 Translation Model
Aiming at the task of cross-modality translation from polarimetric images (including MM images
and Stokes images) to bright-field images, we used the CycleGAN model,40 which includes two

Table 1 The details of data collection and dataset division. PM, polarimetric microscopy; BFM,
bright-field microscopy.

PM → BFM

Image acquisition Training Testing

subjects regions subjects patches subjects patches

Liver tissue HE → HE (paired) 50 183 38 1309 12 520

Breast tissue HE → HE (paired) 22 340 15 1303 7 408

Lung tissue HE → Ki−67 (unpaired) 9 40 7 580 2 220

HE → TTF−1 (unpaired) 9 40 7 640 2 160
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generators that can convert between X and Y with each other, whereG is the mapping X → Y and
F is the mapping Y → X. The schematic diagram of the translation is shown in Fig. 2.

CycleGAN contains both generators and discriminators. The generator G can take a polari-
metric image x←X by y 0 ¼ GðxÞ and generate a bright-field image that is as similar as possible to
the real image. The discriminator DY learns to distinguish whether the bright-field image is real
(labeled as 1) or generated (labeled as 0). This is the original adversarial loss, which can be
expressed as

EQ-TARGET;temp:intralink-;e001;114;392LGANðG;DY; X; YÞ ¼ Ey∼Y ½log DYðyÞ� þ Ex∼X½logð1 −DYðGðxÞÞÞ�: (1)

G tries to minimize the goal to counter DY’s attempt to maximize it. To strengthen the con-
straints of the mapping relationship, it is coupled with F that inversely maps to a polarimetric
image to ensure that FðGðxÞÞ ≈ x. L1 penalty is introduced as the reconstruction error, as shown
in Eq. (2), which is called cycle consistency loss:

EQ-TARGET;temp:intralink-;e002;114;319LcycðG;F; XÞ ¼ Ex∼X½kFðGðxÞ − xÞk1�: (2)

Similarly, the translation of a bright-field image to a polarimetric image contains both the
adversarial loss of F and DX and the cycle consistency loss between Y and GðFðyÞÞ. The overall
objective is

EQ-TARGET;temp:intralink-;e003;114;258

G�; F� ¼ arg min
G;F

max
Dx;Dy

LGANðG;Dy; X; YÞ þ LGANðF;Dx; Y; XÞ

þ λðLcycðG;F; XÞ þ LcycðF;G; YÞÞ: (3)

The architecture of the cross-modality translation model adopts ResNet-based on a generator
with nine residual blocks, which also performs downsampling and upsampling operations, as
shown in Fig. 3(a). The 256 × 256 × 1 (PCA1) or 256 × 256 × 3 (PCA3 or Stokes image) polari-
metric image is input to the generator and both downsampling and upsampling consist of three
steps. Each step of downsampling contains a convolutional layer, while each step of upsampling
contains a deconvolutional layer, and both are followed by an instance normalization process and
a rectified linear unit (ReLU). A hyperbolic tangent function (tanh) is included after the last
upsampling feature map of size 256 × 256 × 64 to output the 256 × 256 × 3 bright-field image.
The residual block adds a shortcut connection of the feedforward neural network (skipping one
or more layers of connections) to achieve identity mapping and connects its outputs to the outputs
of the stacked layers.49 A block is shown in Fig. 3(b). Figure 3(c) shows the structure of the
discriminator, which uses a 70 × 70 PatchGAN.50 In this process, PatchGAN tries to identify

Fig. 2 Graphical overview of CycleGAN model during the training process. The cycle transforma-
tion from polarimetric image to bright-field image x → GðxÞ → F ðGðxÞÞ ≈ x is shown on the top
part. The cycle transformation from bright-field image to polarimetric image y → F ðyÞ →
GðF ðyÞÞ ≈ y is shown on the bottom part.
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whether each 70 × 70 patch is real or fake. The discriminator needs to input a
256 × 256 × 3 pixel patch and output a 30 × 30 prediction map.

Polarimetric images (including MM and Stokes images) represent the polarization properties
of a sample, which are closely associated with its microscopic structures. The contrast of bright-
field microscopy images is caused by the light attenuation in different regions of microstructures.
Therefore, there is a strong correlation between the input data (polarimetric images) and the
generated data (bright-field images). Compared to bright-field microscopy, polarization-based
measurement methods have the capability to detect high-dimensional information and specific
structural characteristics. The proposed cross-modality translation model is able to extract key
features relevant to microscopic structures from the input high-dimensional polarimetric data and
then gradually reconstruct the bright-field image based on them.

4 Results

4.1 Results on H&E Stained Tissues
We first applied the proposed model on the liver and breast sample images acquired by illumi-
nating with single 45 deg linear incident polarization state. It could validate the feasibility of
CycleGAN on the task of cross-modality translation from Stokes images to bright-field images
by paired images of the two samples. An input source image x from domain X was converted to a
target image GðxÞ and then was cyclically converted back to FðGðxÞÞ that was close to x. A
Similar conversion was completed from y to GðFðyÞÞ. We trained images mixing 4× and
20× objective lens magnification and tested the model on both scales together. Figure 4 shows
the transformative powers of both G and F. It showed that the reconstructed images FðGðxÞÞ and
GðFðyÞÞmatched closely with the real images x and y from X and Y domains. For paired images,
the translated images GðxÞ and FðyÞ were very similar to y and x, respectively. This illustrates
that for a model being well trained on multi-scale Stokes images, it can get excellent transfor-
mation performance on corresponding scale images in the prediction. The insensitivity to res-
olution reduces model training for different scale images and improves robustness of the
deep model.

Then we separately selected the Stokes images obtained from six SOPs shown in Fig. 1(g) as
the input of the deep learning-based model. The quantitative comparison results of bright-field
images on liver and breast tissues are given in the “Stokes images” row of Table 2. We adopted
structural similarity (SSIM) index,51 root mean square error (RMSE),52 Jensen–Shannon

Fig. 3 (a)–(c) Cross-modality translation model architecture.
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Table 2 Quantitative comparison of cross-modality translation from MM and Stokes images to
bright-field images of liver and breast tissues. Bold value represents the maximum value of each
column.

Liver tissue Breast tissue

SSIM RMSE JSD EMD SSIM RMSE JSD EMD

MM
images

PCA1 0.722 0.097 0.174 9.216 0.744 0.119 0.187 7.990

PCA3 0.690 0.104 0.192 9.620 0.706 0.142 0.202 10.637

Stokes
images

45 deg 0.694 0.099 0.181 8.935 0.727 0.130 0.200 9.761

135 deg 0.710 0.104 0.203 11.515 0.742 0.126 0.191 9.296

R-circle 0.732 0.099 0.178 9.353 0.742 0.139 0.202 11.955

L-circle 0.713 0.101 0.186 9.077 0.752 0.134 0.226 11.711

E1 0.706 0.102 0.209 11.093 0.760 0.126 0.202 9.796

E2 0.718 0.093 0.178 8.467 0.755 0.124 0.192 9.460

Fig. 4 Cycle results of cross-modality translation on liver and breast tissues. The first and second
rows of each tissue show the results on the sample imaged by 4× and 20× objective lenses,
respectively. (a) 3 channels Stokes images x , illuminated with 45 deg linear polarization light.
(b) Generated bright-field images GðxÞ. (c) Reconstructed Stokes images F ðGðxÞÞ. (d) Bright-field
images y . (e) Generated Stokes images F ðyÞ. (f) Reconstructed bright-field images GðF ðyÞÞ.
(b), (f) The quantitative differences with panel (d). (c), (e) The quantitative differences with panel
(a).
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divergence (JSD)53 and Earth mover’s distance (EMD)54,55 on the testing data. SSIM and RMSE
measure the difference between two images at the image and pixel level, respectively. JSD and
EMD are used to measure the distance between two distributions. Results with different SOPs are
close to each other, which imply the model is not sensitive to the incident polarization state as far
as it contains all the linear and circular polarization components, i.e., S1, S2, and S3. It can reduce
the complexity of PSG and improve the robustness of the system.

Figure 5 gives the results generated from single Stokes component with circular SOPs of
incident light. The generated images accurately predict the spatial location and contour of the
tissue, as well as the major features, such as nucleus morphology and fiber distribution, are com-
parable to ground truth. The color distribution is effectively restored, which conforms the human
visual system. In the testing phase, the generator could convert a 256 × 256 Stokes image to the
corresponding bright-field image by forward propagation within 0.1 s, which shows nearly real-
time performance. The time to obtain a bright-field image of the corresponding field of view
(FOV) in the MMM using the “bright-field snapshot MM microscopy” method depends on the
frame rate of the CCD (0.1 s) and the translation time. The translation time can be reduced with a
more powerful computer.

We also translated the MM images to bright-field images for comparison with the generated
results of Stokes images. We fed images processed by PCA with the first channel and the first
three channels into our model. The output bright-field images were evaluated quantitatively, as
given in Table 2 “MM images” row, and the visual comparison results are illustrated in Fig. 6. It
can be seen that the model predicts the presence of different histological structures and cell types.
In the images generated at low resolution, the details of structure are not particularly clear, but the
tissue’s overall distribution can be discerned. In the high-resolution images, cell nucleus location,
stroma, and cytoplasmic detail can be seen in nearly all images. All output images are close to

Fig. 5 Generated results of bright-field images from Stokes images captured by 4× and 20× objec-
tives lenses are shown in the first and second rows on liver and breast tissues, respectively.
(a)–(c) Normalized images of S1, S2, and S3 in Sout, respectively, illuminated with right-hand circle
polarization light. (d) Generated bright-field images. (e) Ground truth captured by bright-field
microscopy. (d) The quantitative differences with panel (e).
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each other and very well matching with the bright-field images. We can conclude that the model
achieved comparable performance when inputting Stokes images than MM images. A Stokes
image (0.1 s) is acquired more faster than an MM image (9 s) and it will eliminate errors intro-
duced by sample motivation and system instability in exposures and the image co-registration
process.26 Bright-field snapshot MMmicroscopy can improve the performance of cross-modality
translation from MM microscopy to bright-field microscopy.

We need to train the models separately for liver and breast tissues, which requires a large
amount of data and consumes computational resources. Transfer learning enables applying
knowledge or patterns learned on a domain to a different but related domain.56 It can improve
the learning performance of the target task based on migrating knowledge structures in the rel-
evant domain. The morphological characteristics of different types of tissues are similar under
MM and bright-field microscopy. We used the knowledge learned from liver tissue as the ini-
tialization of training the breast tissue model, which can reduce the convergence time and
improve the generality.

The history of training losses can reveal the performance of the deep model during the train-
ing phase. Our goal is to generate bright-field images that match the target as closely as possible.
The pixel-wise similarity loss (L1) can quantitatively indicate the similarity. Figures 7(a) and 7(b)
show the comparison of consistent losses for both of the two generatorsG and F, respectively. As
we can see, all training procedures can lead to stable results and the model initialized with
weights and biases learned from liver tissue converges faster than random initialization.
Figure 7(c) visualizes the bright-field images generated at different iterations of transferring and
not transferring on the breast tissue, to further demonstrate the impact of transfer learning.

4.2 Results on IHC Stained Tissues
Furthermore, we extended the network to two IHC staining types Ki-67 and TTF-1, which cannot
access paired images. Ki-67 is a marker of cell proliferation and stains the nuclei. It is used for
prognosis of relative responsiveness, resistance to chemotherapy or endocrine therapy, and as a
biomarker of treatment efficacy (high percentage reflects a worse prognosis). TTF-1 is a nuclei

Fig. 6 Comparison results of bright-field images on MM images and Stokes images of liver and
breast tissues. The first and second rows of the two tissues are the transformation results at 4× and
20× objective lens magnification, respectively. (a), (b) Generated images of PCA1 (MM images of
top one PCA channel) and PCA3 (MM images of top three PCA channels). (c)–(h) Generated
images illuminated with 45 deg and 135 deg linear polarization light, right-hand and left-hand circle
polarization light, and right-hand and left-hand elliptical polarization light E1 and E2 respectively in
order. (a)–(h) The quantitative differences with panel (i), respectively.
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marker with preferential expression in thyroid, lung, and brain structures of diencephalic origin.
It is frequently used in the search for the primary origin of metastatic endocrine tumors.57

The results of similarity evaluation are listed in Table 3. Since there are no paired images, we
used the error between input Stokes images x and reconstructed Stokes images FðGðxÞÞ for
evaluation. Figure 8 shows stitched whole images for these two types of computational staining.

Table 3 Quantitative comparison of computational staining based on cross-modality translation
between x and F ðGðxÞÞ of lung tissues. Bold value represents the maximum value of each column.

Ki-67 TTF-1

SSIM RMSE JSD EMD SSIM RMSE JSD EMD

MM images PCA1 0.926 0.082 0.241 8.188 0.926 0.098 0.257 8.195

PCA3 0.923 0.080 0.233 7.729 0.903 0.100 0.274 7.844

Stokes images 45° 0.929 0.078 0.237 7.520 0.915 0.087 0.246 6.698

135° 0.923 0.075 0.229 6.870 0.904 0.101 0.277 8.384

R-circle 0.917 0.083 0.248 7.914 0.917 0.092 0.267 7.360

L-circle 0.911 0.081 0.237 7.322 0.925 0.092 0.261 7.519

E1 0.920 0.082 0.240 7.738 0.914 0.097 0.263 7.998

E2 0.908 0.083 0.239 7.693 0.914 0.091 0.253 7.194

Fig. 7 Consistent losses and generation results with increasing number of iterations. (a) Cycle
consistency loss (L1) values of forward translation Ex∼X ½kF ðGðxÞÞ − xk�1 on breast tissues with
random and transfer learning initialization, respectively. (b) Cycle consistency loss (L1) values
of backward translation Ey∼Y ½kGðF ðyÞÞ − yk�1 on breast tissues with random and transfer learning
initialization, respectively. (c) Generated images of breast tissues with transfer learning and ran-
dom initialization.
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In this part, the ground truth is the adjacent slice. There is always some degree of inter-slide
variation between the matched slides, but they share similar semantic and structural features.
Examination by an experienced pathologist indicated that the generated images are capable
of predicting the presence and location of markers, presenting the overall pathological informa-
tion of the sample.

5 Discussion and Conclusion
In this work, we presented a cross-modality translation method that can obtain bright-field image
of different staining styles in snapshot Stokes imaging. It is not only time-, labor-, and cost-sav-
ing but also avoids errors caused by light intensity instability and image misregistration in the
MMM. The application is based on CycleGAN without pixel-wise paired examples in the train-
ing. This can reduce the workload in the data preparation and is especially essential when the
equivalent ground truth is difficult to acquire or even unavailable. We first used MM and bright-
field microscopy to capture images in the same region of stained sections to demonstrate the
performance of the deep learning model, and then used the two microscopic devices to take
H&E stained sections and IHC stained adjacent sections respectively to achieve cross-modality
translation with computational staining on Ki-67 and TTF-1 IHC staining styles. Using this
approach, a DoFP polarimeter-based MMM can simultaneously acquire polarimetric images and
bright-field images of multiple staining styles in the same FOV in a single shot. In the experi-
ments, we trained and tested on a collection of stokes images at both 4× and 20× magnification
with multiple SOPs on liver and breast tissues. The generated results demonstrated that it was
resolution and SOP insensitivity to polarimetric images, which improves the robustness of the
system for cross-modality translation. Transfer learning can accelerate the convergence process
on new tasks based on the knowledge learned from a well-built one.

There are many other unexplored possibilities for cross-modality translation based on polari-
metric images. It has been demonstrated that the wavelength of light has an effect on the polari-
metric properties of the sample.58 Next, we will try to apply this model to learn relations and
mappings between different wavelengths in MM polarimetry. In addition to brightfield micros-
copy, pathological analysis sometimes relies on other different imaging systems that have their
own advantages. Polarimetric data contain high-dimensional information and are sensitive to
microstructures in tissue, which makes it possible to discover relationships with other imaging

Fig. 8 Stitched experimental cycle results of computational Ki-67 and TTF-1. (a) Input three chan-
nels Stokes images x , illuminated with 45 deg linear polarization light. (b) Generated bright-field
IHC stained imagesGðxÞ. (c) Reconstructed Stokes images F ðGðxÞÞ. (d) Adjacent slice bright-field
IHC stained images y . (e) Generated Stokes images F ðyÞ. (f) Reconstructed bright-field IHC
stained images GðF ðyÞÞ.
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systems, e.g., phase imaging59 and fluorescence.60 In addition, more powerful deep learning
models, such as transformers,61 have recently been proposed. In future work, we will try to train
the model to generate images of other imaging systems from polarimetric images. Furthermore,
as pathologists usually require various staining reagents to provide additional contrast of different
tissue components, this translation model can also be applied for other staining styles.
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