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Abstract

Significance: Rapid diagnosis and analysis of human keloid scar tissues in an automated manner
are essential for understanding pathogenesis and formulating treatment solutions.

Aim: Our aim is to resolve the features of the extracellular matrix in human keloid scar tissues
automatically for accurate diagnosis with the aid of machine learning.

Approach: Multiphoton microscopy was utilized to acquire images of collagen and elastin
fibers. Morphological features, histogram, and gray-level co-occurrence matrix-based texture
features were obtained to produce a total of 28 features. The minimum redundancy maximum
relevancy feature selection approach was implemented to rank these features and establish
feature subsets, each of which was employed to build a machine learning model through the
tree-based pipeline optimization tool (TPOT).

Results: The feature importance ranking was obtained, and 28 feature subsets were acquired by
incremental feature selection. The subset with the top 23 features was identified as the most
accurate. Then stochastic gradient descent classifier optimized by the TPOTwas generated with
an accuracy of 96.15% in classifying normal, scar, and adjacent tissues. The area under curve of
the classification results (scar versus normal and adjacent, normal versus scar and adjacent, and
adjacent versus normal and scar) was 1.0, 1.0, and 0.99, respectively.

Conclusions: The proposed approach has great potential for future dermatological clinical diag-
nosis and analysis and holds promise for the development of computer-aided systems to assist
dermatologists in diagnosis and treatment.
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1 Introduction

Excessive scarring is mainly caused by the abnormal healing of physiological wounds, including
burn injuries, lacerations, abrasions, surgeries, and vaccinations. It can dramatically affect
patients’ quality of life by causing pruritus, pain, and contractures.1–4 In particular, keloid scar-
ring is unique to humans.5 No other animal species have been found to naturally develop scar
tissue compared to that of human keloids.6 In addition, keloids continue to grow and extend
beyond the original wound margins.7,8 Notably, sporadic case reports show that keloids may
be a paraneoplastic phenomenon.9–13 Keloid scar could develop within years after initial injury,
and some of them may persist for a lifetime without treatment. The etiology of keloid scar for-
mation is not completely understood, and the recurrence rate of this disease is relatively high.14,15

Thus the identification and evaluation of keloid tissues and their boundaries, especially at rel-
atively early stages, are the most critical steps in determining the degree of tissue damage and
appropriate treatment for scar management and removal. In this context, it is essential to gain
a thorough understanding of the microstructure in the extracellular matrix (ECM) of normal,
keloid, and adjacent regions and to accurately distinguish them.

Generally, if a keloid looks like a worrisome skin growth, a skin biopsy must be performed.
To improve tissue contrast and highlight characteristics for analysis, several histological dyes,
including HE,16 picrosirius red,17 and Masson’s trichrome,18 have been utilized to stain tissue
components. However, the cumbersome procedure, including tissue fixation, embedding, sec-
tioning, and staining, requires a considerable waiting time. Furthermore, the histological image
interpretation by dermatologists may introduce interobserver bias, which could affect the accu-
racy of diagnosis. Hence, it is necessary to design a rapid, nondestructive, label-free, and accu-
rate method to improve the efficiency and accuracy of keloid diagnosis and analysis.

Multiphoton microscopy based on second harmonic generation (SHG) and two-photon
excited fluorescence (TPEF) allows specialists to perform label-free detection of tissues
(e.g., collagen, elastin, muscles, and cells). It also allows for nondestructive assessments by pre-
serving the original state of the tissue without destructive treatment, such as ionization, which is
typically required by technologies including electron microscopy and liquid chromatography–
mass spectrometry.19,20 In addition, alterations in morphology and organization of collagen and
elastin fibers, the major components of the ECM, are closely associated with physiologic and
pathologic status of biological tissues.21–25 Compared with traditional pathological methods,
multiphoton imaging technology has great benefits in simplifying sample preparation. In the
pathological method, it requires fixing the tissue sections with paraffin and staining them.
These processes are relatively complicated and time consuming. In contrast, tissues can be
imaged directly or after being sectioned, without other special processing. SHG acquires images
of collagen fibers without exogenous labeling agents owing to their noncentrosymmetric struc-
ture, and elastin fibers are natural fluorophores and provide TPEF signals.26 Therefore, multi-
photon imaging technology leads to label-free imaging of these two main components within the
ECM. In addition, it has a high resolution at the submicron level and holds the potential of in vivo
imaging with the development of articulated arm-based detection approaches.27 Hence, multi-
photon imaging may be suitable for discrimination and analysis of keloid scar, adjacent, and
normal regions of skin tissues.

Although the multiphoton imaging is promising for scar imaging, the analysis of multiphoton
images by experts is laborious and susceptible to interobserver bias. Computer-aided analysis
has been applied to the study of scars. Maknuna et al.28 reported the employment of a neural
network to identify the scar regions of pathological sections and then analyzed two morphologi-
cal features (density and alignment) of collagen fibers within scar tissues. The mean average
precision was <70%. Only two features might not be sufficient for describing collagen character-
istics comprehensively. Moreover, the detection of the scar region (based on deep learning) was
separate from the analysis of collagen features, which made it difficult to evaluate the contri-
bution of characteristics to the detection. Wang et al.29 proposed a texture-based approach to
explore the mechanism of the scar. Generative adversarial network textural analysis was utilized
to predict the evolution of the scar, and only six textural features were extracted. These previous
studies mainly focused on analysis of collagen fibers, and scar boundary regions were neglected.
Furthermore, there was a lack of insightful and fully automated analysis for scar tissues.
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Therefore, a fully automated approach that provides a comprehensive understanding of the
keloid scar by gathering information from both collagen and elastin fibers and accurately
identifies the scar boundary region is highly needed.

In this study, we develop a computer-aided diagnosis and analysis platform, which involves a
multiphoton imaging module (for both collagen and elastin fibers), a feature selection module
[based on minimum redundancy maximum relevancy (MRMR)], and an analysis module [based
on stochastic gradient descent and the tree-based pipeline optimization tool (TPOT)] for rapid,
automated, and accurate diagnosis and analysis of excised human keloid scar, normal, and
adjacent tissues.

2 Materials and Methods

2.1 Study Design

For keloid scars, traditional pathology methods are labor intensive and time consuming, and
a more accurate and automated diagnostic system is urgently needed (Fig. 1). An automated
classification and analysis system was developed to identify and quantify keloid, adjacent, and
normal skin tissues (Fig. 2). The original SHG and TPEF images were first denoised. Then 28
features (14 for collagen and 14 for elastin fibers) were extracted; these included morphological
and textural [histogram-based and gray-level co-occurrence matrix (GLCM)-based] feature.
Morphological features (8 parameters) were directly related to human visual percept and were
widely used in clinical diagnosis. Histogram-based textural features (12 parameters) reflected the
texture characteristics of the whole image, without considering information from the relative
positions of pixels. GLCM-based textural features (8 parameters), based on the analysis of the
co-occurrence matrix, could well reflect the information among neighboring pixels. These were
typical characteristics in the field and provided complementary insights into the morphology and
organization of both fiber components. All of the features were implemented for importance
scoring based on the MRMR method. The TPOTwas then used to generate the optimal classifier
based on the feature subsets. Feature analysis and classification results could be achieved to
assist in the diagnosis and analysis of the keloid scar.

2.2 Sample Preparation

The ex vivo human specimens were collected from 23 hospitalized patients (aged 30 to 58 years
old, scar duration: 0.5 to 2 years). Informed consent was obtained from each patient who par-
ticipated in this study. The ethics approval and experimental procedures were approved by the

Fig. 1 Comparison of traditional pathology methods and the proposed automated methods.
Instead of traditional histopathological examination, the excised tissue are instantly imaged with-
out cumbersome procedures. Images are then analyzed in real time with computer assistance.
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Institutional Review Board of Fujian Medical University. After excision from patients, the tissue
samples were quickly frozen and stored in liquid nitrogen (−196°C). For multiphoton imaging,
the tissue sections were cut into 30-μm thickness and sandwiched between a microscope slide
and cover glass. In this study, we imaged and analyzed 26 tissue section samples (16 scar ones

Fig. 2 Workflow of the automated diagnosis and analysis system. First, SHG and TPEF images
were acquired from human keloid scar tissues. Second, morphological, histogram-based, and
GLCM-based features were extracted to quantify the differences among normal, adjacent, and
scar tissues. Third, a classifier was developed based on MRMR combined with the TPOT.
Feature subsets facilitate deeper analysis of endogenous changes in keloid scar tissues, whereas
the classifier model allows for automated diagnosis.
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and 10 normal ones). From eight different scar specimens, we obtained the adjacent regions. The
imaged regions were marked after the imaging procedure and then prepared for the pathological
staining. Tissue types (normal, scar, or adjacent) of the imaged regions were confirmed by expe-
rienced pathologists according to the staining readouts. To avoid dehydration or shrinkage dur-
ing imaging, a small amount of phosphate buffered saline solution was dropped into the sample.

2.3 Multiphoton Imaging System

A nonlinear optical imaging system was built using a commercial laser scanning microscope
(Zeiss, LSM 510) and mode-locked Ti:Sapphire fs laser (110 fs, 76 MHz), which was tunable
from 700 to 980 nm. The laser beam was scanned in the focal plane by a galvanometer driven
optical scanner. A dichroic beam splitter was applied to reflect the excitation laser and direct the
fluorescent and SHG signals to the detector. A large aperture, oil immersion objective (63×,
NA ¼ 1.4) was employed for high-resolution imaging. The SHG and TPEF signals were col-
lected by the detector, which covered a spectral window of 340 nm ranging from 377 to 716 nm.
Two different channels were selected to obtain the images of collagen and elastin fibers. SHG
signals were obtained using the channel with the wavelength ranging from 398 to 409 nm,
whereas TPEF signals were collected by the channel covering the wavelength range from
430 to 697 nm. Images were taken with a field of view of 210 μm × 210 μm and an acquisition
time of 680 ms per image. We imaged two or three neighboring regions from each tissue section
(i.e., 16 scar ones and 10 normal ones) for the subsequent analysis. In addition, we obtained
images from scar-normal adjacent regions from eight independent scar specimens. Characteristic
features from multiple regions of each sample were then averaged as outputs.

2.4 Features Extraction

2.4.1 Morphological analysis

The morphological analysis of collagen and elastin fibers included density, alignment, width,
and length (detailed in Table S1 in the Supplementary Material). Density is the percentage of
effective pixels over the total number of pixels. The quantification of the alignment of the scar
tissues was performed using the fast Fourier transform and semicircular von Mises distribution
calculated by FiberFit, which provided the alignment assessment by parameter k, with smaller k
values indicating more disordered fibers and larger values corresponding to a better alignment.30

The fiber width and length were quantified using the curvelet-transform fiber-extraction algo-
rithm (CT-FIRE), which has been successfully used to characterize fiber morphology in several
diseases.31 This method combined the advantages of the fast discrete curvelet transform for
denoising images and the fiber extraction algorithm for extracting fibers.32

2.4.2 Texture analysis

To obtain the texture characteristics of an image, statistical properties of the intensity histogram
were assessed (Table S1 in the Supplementary Material). The mean intensity, standard deviation,
smoothness, skewness, uniformity, and entropy were calculated from the histogram of the SHG
and TPEF pixel intensity distributions. Using histogram only without information from relative
position of pixels, herein, we also acquired GLCM-based texture features (Table S1 in the
Supplementary Material), including contrast, correlation, energy, and homogeneity (with
descriptions and calculation methods detailed in the Supplementary Material).

2.5 Feature Selection

The MRMR feature selection approach33 was employed as the filtering method in the classifier
construction to improve the performance of the classification model. This approach found the
most relevant features based on their correlation with the target and to reduce the redundancy of
the extracted features, revealing the features that had maximum relevancy and minimum redun-
dancy. Therefore, feature importance ranking, that is, the ability of a feature to distinguish
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different groups of samples, was obtained accordingly. In terms of information theory, mutual
information is defined as

EQ-TARGET;temp:intralink-;sec2.5;116;711Iðx; yÞ ¼
ZZ

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ dx dy;

where Iðx; yÞ is the mutual information between two random features x and y and pðxÞ, pðyÞ,
and pðx; yÞ are the probability density functions of x and y. The purpose of feature selection is to
find a feature set S with m features that had the largest dependency on the target c:

EQ-TARGET;temp:intralink-;sec2.5;116;631 max DðS; cÞ; D ¼ 1

jSj
X
xi∈S

Iðxi; cÞ:

To eliminate redundancy among features, the minimum redundancy criterion was used and is
defined as

EQ-TARGET;temp:intralink-;sec2.5;116;558 min RðSÞ; R ¼ 1

jSj2
X

xi;xj∈S
Iðxi; xjÞ:

The incremental search methods can be utilized to find the near-optimal features. Suppose
that we had Sm−1, the feature set with m − 1 features, and the task was to select the m’th feature
from the set fX − Sm−1g. This feature was chosen by maximizing the single-variable relevance
minus redundancy function, which is calculated as

EQ-TARGET;temp:intralink-;sec2.5;116;460 max
xj∈X−Sm−1

�
Iðxj; cÞ −

1

m − 1

X
xi∈Sm−1

Iðxj; xiÞ
�
:

2.6 Statistical Analysis

A two-tailed Mann–Whitney test was applied to determine significant differences among the
mean values from different groups (p < 0.05 was considered to be significantly different).
We utilized machine learning to build a classification model based on the extracted features.
Here stochastic gradient descent classifier was adopted to discriminate normal, scar, and adjacent
tissues. To optimize the classifier performance, the TPOT34—a genetic programming-based
machine learning tool—was used. The genetic programming settings used in this study are listed
in Table 1. Considering the relatively small number of samples, we implemented the leave-one-
out (LOO) method for cross validation. Each sample was used once as a test set, and the remain-
ing samples formed the training set. Compared with other methods, such as k-fold cross val-
idation, this method estimated the model performance critically and made full use of all data, and

Table 1 Genetic programming parameters for the TPOT.

Parameter Value

Population size 50

Generations 50

Fitness function Accuracy ¼ 1
nsamples

Pnsamples−1
i¼0 lðvaluepredicct ¼ valuetrueÞ

Selection 10% elitism, rest three-way competition

Crossover One-point crossover

Mutation rate 90%

Crossover rate 10%
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the results were deterministic (repeatable). When the datasets were large, the computation time
cost of this method would be huge. Therefore, the LOO method was especially suitable for small
datasets.

3 Results

Figure 3 shows representative examples of different tissue types. Normal skin tissue was char-
acterized by intact and continuous collagen and elastin fibers. In keloid scar tissue, the fibers
were discrete and more disordered. Interestingly, adjacent tissues showed a highly ordered
arrangement of collagen and elastin fibers.

The fast Fourier transform and semicircular von Mises distribution method was used to char-
acterize the alignment of the collagen and elastin fibers in these tissues. Figure 4 shows the
quantification results for representative collagen and elastin fibers. The FFT spectra
[Fig. 4(b)] of the SHG and TPEF images [Fig. 4(a)] were obtained to reflect the image intensity
characteristics. A radial sum approach was utilized to create fiber orientation distribution, as
shown in Fig. 4(c). The alignment of the collagen and elastin fibers was calculated by fitting
the fiber orientation distribution data to a semicircular bon Mises distribution [Fig. 4(d)]. In
addition, CT-FIER was implemented to calculate the width and length of the collagen and elastin
fibers. Similarly, texture analysis results of images were also obtained.

Following 28 features extracted from the collagen and elastin images, we employed the
MRMR method to assess the importance of these features. Table 2 shows the feature importance
ranking results. Elastin length and collagen alignment were found to be the top 2 ranked impor-
tant characteristic features, with the corresponding boxplots shown in Fig. 5. Some other rep-
resentative features for distinguishing different groups are shown in Figs. S1–S3 in the
Supplementary Material.

To determine the feature subsets to obtain the most optimal classifier, the incremental feature
selection approach was then implemented. According to the feature importance ranking results,
28 individual feature subsets, with the n’th subset containing n features from the first ranked one,

Fig. 3 Representative collagen (obtained from SHG) and elastin (obtained from TPEF) images of
human skin tissue specimens, including normal, scar, and adjacent regions. Scale bar: 50 μm.
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Table 2 Rank of features extracted from SHG and TPEF images using the MRMR method.

Feature Rank Feature Rank Feature Rank Feature Rank

C-density 23 C-skewness 11 E-density 16 E-skewness 19

C-length 6 C-uniformity 20 E-length 1 E-uniformity 14

C-width 13 C-entropy 12 E-width 10 E-entropy 5

C-alignment 2 C-contrast 28 E-alignment 4 E-contrast 25

C-mean Int 8 C-correlation 21 E-mean Int 3 E-correlation 22

C-std 9 C-energy 18 E-std 7 E-energy 27

C-smoothness 26 C-homogeneity 24 E-smoothness 15 E-homogeneity 17

Abbreviations: [C-feature name], feature of collagen; [E-feature name], feature of elastin; mean Int, mean
intensity; and std, standard deviation.

Fig. 4 Analysis of collagen and elastin alignment: (a) representative images, (b) FFT spectra,
(c) polar plot, and (d) orientation distributions of collagen and elastin for normal, adjacent, and
scar tissues. Scale bar: 50 μm.

Fig. 5 Performance of representative features in distinguishing different tissue types. (a) Boxplot
acquired from (a) elastin length and (b) collagen alignment. *p < 0.05.
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were built to classify different types of tissues. These feature subsets were imported into the
TPOT for processing to obtain the optimized machine learning pipeline and the corresponding
accuracy. Each of the 28 feature subsets was repeatedly processed five times to compare the
average accuracy outcomes. The average accuracy was 71.4% when the most relevant feature,
elastin length, was used as a feature subset. The best average accuracy was 100% when the top
ranked 23 features were imported into the TPOT, as shown in Fig. 6(a). The TPOT method could
obtain the optimized classifier and the corresponding hyperparameters by the genetic algorithm
to construct the most suitable machine learning model.

The final machine learning model was the stochastic gradient descent (SGD) classifier opti-
mized by the genetic algorithm. The corresponding hyperparameters of the classifier that were
used in the model are listed in Table 3. We performed cross validation of the model using the
LOO method, with an accuracy of 96.15% in classifying the normal, adjacent, and keloid scar
tissues. The receiver operating characteristic curve (ROC) and area under the curve (AUC) were
generated to evaluate the accuracy of the model [Fig. 6(b)]. The AUC values of corresponding
classification results (scar versus normal and adjacent, normal versus scar and adjacent, and
adjacent versus normal and scar) were 1.0, 1.0, and 0.99, respectively. These results indicated
that the proposed model can effectively distinguish normal, scar, and adjacent tissues.

4 Discussion

Keloid scars are unique to humans. Lesion areas do not regress or contract and might continue to
extend beyond the original wound.6 Considering the invasiveness of a keloid scar to the

Fig. 6 Statistical analysis results: (a) scattering plot of the average accuracy for each feature sub-
set. The best average accuracy is highlighted by the golden crown and is near 1.0 when the top
ranked 23 features are utilized. (b) ROC curve and AUC for the classification results, including
keloid versus normal and adjacent tissues (blue line), normal versus keloid and adjacent tissues
(orange line), and adjacent versus keloid and normal tissues (magenta line). The corresponding
AUC values are 1.0, 1.0, and 0.99, respectively.

Table 3 Hyperparameters of the corresponding optimized classifier.

Classifier Hyperparameter Value

SGD classifier Alpha 0.001

Eta 0.01

Fit intercept True

Learning rate Constant

Loss Modified huber

Penalty elasticnet

Power t 0.5
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surrounding skin, it was necessary to characterize and distinguish the scar, normal, and adjacent
regions. Currently, the clinical method for diagnosing keloid was pathological examination,
which was time consuming and strenuous. In addition, observation bias might happen due
to pathological diagnosis by specialists. Hence, automated, rapid, and accurate diagnosis is
highly demanded. We proposed a computer-aided diagnosis and analysis method based on multi-
photon imaging and machine learning. This method analyzed skin tissues without complex
processing and staining. In addition, scar, normal, and adjacent regions were distinguished
by a machine learning model in an automated manner, avoiding observer bias.

Many computer-aided analysis methods for scars had shortcomings in feature extraction and
analysis. Collagen and elastin fibers, as important components of the ECM, are closely asso-
ciated with keloid scar progression. In some studies, elastin fibers were often neglected.
However, recently the degradation and disorder of elastin fibers were found to be an important
signature during the formation and development of keloid scars.35 The importance of elastin was
highlighted in our proposed feature importance ranking, with the elastin length being the most
powerful parameter in identifying certain tissue types. Meanwhile, adjacent regions played an
important role in determining the treatment scope and studying the development of keloid.36

By combining morphological and texture features, and usage of MRMR as the feature selection
method, we successfully identified adjacent regions with a high accuracy through machine
learning.

Our proposed method assisted in keloid scar and boundary diagnosis according to the analy-
sis results and explored the potential pathological features. Initial filtering of features was
achieved by the MRMR method. In the triple classification problem, elastin length, collagen
alignment, and elastin content (as represented by elastin signal intensity) were found to be sen-
sitive characteristic features, consistent with previous findings.5,35,37,38 Elastic fibers in the scar
region exhibited lower k values and smaller length values compared with ones in the normal
region, reflecting the disruption and disorganization of elastin fibers with scar formation.

The evaluation and treatment of keloid scars are closely related to the health of patients. The
most common methods for evaluation relied on the use of a scoring scale (such as Vancouver scar
scale) and 2D photography.39 However, they were subjective assessments and might affect the
accuracy of boundary identification and thus the subsequent treatment. There were various treat-
ment options for keloid scars, including scar freezing, laser treatment, radiation therapy, and
surgical removal. Unfortunately, there was no single medical therapy that was shown to be effec-
tive in treating keloid scars, and surgical excision was considered ineffective as a monotherapy
given the recurrence rate of 45% to 100%,14,40,41 partly owing to inappropriate determination of
the treatment area. To reduce the risk of recurrence, the combination of the surgical removal and
conservative treatment method (such as radiotherapy or cryotherapy) was recommended. In this
context, the proposed method might help in enhancing the knowledge of this disease and deter-
mining the proper treatment regions.

There are some limitations associated with our study. A larger number and age range of
patients from multiple hospitals are needed to confirm our method before it is implemented
in clinical application. Default parameters of the TPOT were used in our study, whereas some
other hyperparameters, including generations and population size, will be considered in our
future study. Moreover, the parameters of the genetic algorithm will be analyzed in detail to
further improve the model accuracy and analytical capabilities. Our work presents a preliminary
investigation, and further studies are required to enable translation of the findings into clinical
applications, such as the development of articulated arm-based detection approaches for in vivo
scar imaging.27 In this study, we focused on the diagnosis and analysis of keloid scars, including
identifying different regions and extracting important features. It is also important to distinguish
keloid tissues from other diseases and skin conditions, which will be a focus in our future work.

5 Conclusion

In summary, we visualized the alteration of collagen and elastin organization in scar, normal, and
adjacent human skin tissues ex vivo by multiphoton microscopy. Morphological features and
texture features were extracted from SHG and TPEF images. The extreme gradient boosting
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method was employed to quantify the importance of features. As a result, the AUC values of
classification results (scar versus normal and adjacent, normal versus scar and adjacent, and
adjacent versus normal and scar) were obtained as 1.0, 1.0, and 0.99, respectively. Compared
with conventional skin biopsy methods, the proposed method allows for automated, rapid, and
label-free characterization and diagnosis of keloid scars. In particular, the accurate identification
of scar boundary is highly promising. This approach has great potential for future dermatological
clinical applications and holds promise for the development of computer-aided systems to assist
dermatologists in diagnosis and treatment.
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