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ABSTRACT. Significance: Quantification of elastic fiber in the tissue specimen is an important
aspect of diagnosing different diseases. Though hematoxylin and eosin (H&E)
staining is a routinely used and less expensive tissue staining technique, elastic
and collagen fibers cannot be differentiated using it. So, in conventional pathology,
special staining technique, such as Verhoeff’s van Gieson (EVG), is applied physi-
cally for this purpose. However, the procedure of EVG staining is very expensive and
time-consuming.

Aim: The goal of our study is to propose a deep-learning-based computerized
method for the generation of RGB EVG stained tissue from hyperspectral H&E
stained one to save the time and cost of conventional EVG staining procedure.

Approach: H&E stained hyperspectral image and EVG stained RGB whole slide
image of human pancreatic tissue have been leveraged for this experiment.
CycleGAN-based deep learning model has been proposed for digital stain conver-
sion while images from source and target domains are of different modalities (hyper-
spectral and RGB) with different channel dimensions. A set of three basis functions
have been introduced for calculating one of the losses of the proposed method,
which retains the relevant features of EVG stained image within the reduced channel
dimension of the H&E stained one.

Results: The experimental results showed that a set of three basis functions includ-
ing linear discriminant function and transmittance spectrum of eosin and hematoxy-
lin better retained the essential properties of the elastic fiber to be discriminated
from collagen fiber within the reduced dimension of the hyperspectral H&E stained
image. Also, only a smaller number of paired training data with our proposed training
method contributed significantly to the generation of more realistic EVG stained
image with more precise identification of elastic fiber.

Conclusions: RGB EVG stained image is generated from hyperspectral H&E
stained image for which our model has performed two types of image conversion
simultaneously: hyperspectral to RGB and H&E to EVG. The experimental results
show that the intentionally designed set of three basis functions contains more rel-
evant information and prove the effectiveness of our proposed method in generating
realistic RGB EVG stained image from hyperspectral H&E stained one.
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1 Introduction
In histopathology, tissue sections that consist of thin layers with morphological features are
observed under the microscope for disease diagnosis and prognosis. As unstained tissues are
naturally of very low contrast and provide less information about the tissue components, tissue
sections are stained with proper coloring reagent or dye so that complex tissue morphology can
be observed efficiently and underlying function can be understood precisely. Hematoxylin and
eosin (H&E) stain is the most common staining technique, which is applied routinely on almost
all types of tissue specimens.1 H&E stain shows cytoplasm and fibers in pink color and nuclei in
blue color.

Elastic fiber presenting in connective tissues of different body parts is responsible for
the lifetime physiologic elasticity of the organ.2 Different studies show that abnormality in the
concentration of the elastic fiber in the tissue is related to different types of diseases.3–5 Specially,
in case of pancreatic ductal carcinoma (PDAC), vascular and ductal tissues are known to have
specific intensity and frequency of the elastic fiber, which is a significant feature of diagnosing
the disease.6

Though H&E staining is the most commonly used staining technique, it cannot distinguish
elastic and collagen fiber because of their similar color (pink) and pattern. In conventional path-
ology, special staining technique, such as Verhoeff’s van Gieson (EVG), is applied on spatially
consecutive tissue where H&E has been applied previously. EVG stain shows elastic fiber in
deep blue and collagen fiber in orchid color (Fig. 1), thus makes them easily distinguishable.7

However, procedure of EVG staining is very complex, time consuming, and costly. So, this study
aims to generate EVG stained image in a less complex, time saving, and cost-efficient way.
Moreover, as in conventional pathology, H&E and EVG staining are performed on two different
consecutively aligned tissues; pathologists cannot observe the effect of different staining on same
tissue specimen. However, this study provides the convenience of observing the effect of
different stains on same tissue specimen.

The hyperspectral imaging (HSI) technology has been developed rapidly over the past
decade. After having many successful applications of HSI in the arenas of agriculture,8,9 remote
sensing,10 military purposes11 etc., it is being recently used in medical applications, such as
macro-pathology12 and histopathology.13 In histopathology, along with the spatial information,
hyperspectral images provide very precise and comprehensive spectral information of tissue
components, which is not possible to obtain with RGB images. So, in this study, H&E stained
hyperspectral images have been processed to obtain RGB EVG stained images virtually

(a) (b)

Fig. 1 (a) H&E stained image with no distinguishable property of elastic and collagen fiber (b) EVG
stained image of same tissue area with distinguishable information of elastic and collagen fiber.
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(or computationally). Deep learning based generative adversarial network (GAN) model has
been deployed, which investigates the key morphology of H&E tissue from both of its spectral
and spatial information, extracts the embedded properties of EVG tissue, and finally represents it
with the characteristics of EVG stained image.

In recent years, different GAN based methods have been incorporated for image-to-image
translation purposes of various histopathological applications, e.g., stain normalization14 where
color variations within the same type of stained images introduced by different experimental
factors are addressed by standardizing the color globally, virtual, or stainless staining15,16 where
unstained images are converted to a specific type of stained images in a computerized way, and
digital stain conversion17 where one type of stained images is transformed to another digitally.
Some of these attempts involve images of which source and target domains are given by same
modality; for example, RGB to RGB.14 Though some of the approaches adopt images of different
modalities, the implementation of their proposed method is fully supervised and are highly de-
pendent on the availability of the large number of prior aligned paired (images of same area that
are exactly aligned and scale adjusted despite being obtained from two sources) training data. In
computational pathology, previous studies have been found to perform digital stain conversion
by obtaining a transformation function through matrix manipulation that maps certain tissue
components of one domain to another.18,19 These approaches are not capable enough to analyze
complex function of very high dimensional data. They are also unable to convert all the tissue
components to its equivalent counterpart.

Septiana et al.20 have performed an experiment involving H&E and EVG stained images and
have proposed a function termed as linear discriminant function (LDF) for distinguishing elastic
and collagen fiber by applying linear discriminant analysis on H&E stained HSI.20 They have
considered only the spectral information of H&E stained HSI disregarding the spatial informa-
tion. Their proposed method is fully supervised requiring all paired training data from both
domains, and the results provide only the information of elastic and collagen fibers ignoring
all other tissue components.

To the best of our knowledge, this is the first work where hyperspectral H&E stained
images have been leveraged to obtain their equivalent RGB EVG stained images in the pixel
level. Here, the proposed method is converting two factors at the same time: hyperspectral to
RGB and H&E to EVG. Our proposed method is designed to utilize the complete spectral
information provided by the H&E HSI without reducing the spectral dimension. For doing
so, we have faced challenges to calculate training losses and have tried to address the issue
by considering a small number of basis function that best preserves the underlying important
features of EVG stained image. Being inspired by the concept of transfer learning,21,22 our
proposed method consists of two training phases. The first training phase contributes to the
generation of realistic RGB EVG stained image from hyperspectral H&E stained image in
a completely unsupervised way nullifying the necessity of paired training data. The second
training phase is for refining the generated EVG stained image in supervised way with a small
number of paired training data, which ensures that the finally obtained generated EVG stained is
more realistic with less noise and more detailed information of elastic fiber. The combination of
unsupervised and supervised training phases has alleviated the dependency of our proposed
model on the availability of large number of exact paired training images, which is labor inten-
sive and difficult to obtain. The detailed explanation of this technique will be discussed in the
methodology section.

Briefly, our work involves below three main contributions.

1. This paper introduces a GAN based computerized technique for generating EVG stained
image in a less complex and cost-efficient way that would have been required for conven-
tional EVG staining.

2. The proposed model performs two types of conversions simultaneously: one is staining
transformation, H&E to EVG, and another is hyperspectral to RGB.

3. The spectral information of H&E stained images have been utilized to the fullest while
introducing a set of basis functions for calculating one of the losses of the proposed
method, which retains the relevant features of EVG stained image within the reduced
channel dimension of the H&E stained one.
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2 Material and Method

2.1 Data Acquisition
Inspired by the previous research in Ref. 6 where it has been shown that abnormality of elastic
fiber is related to PDAC and the previous study in Ref. 20, where the author has tried to
discriminate elastic and collagen fiber from H&E stained HSI, the experiment of this paper has
been performed deploying images of H&E and EVG stained tissues of human pancreas from
TissueArray.Com, LLC,23 which used to be Biomax Inc. previously. All the tissues have been
collected under Health Insurance Portability and Accountability Act of 1996 (HIPAA)-approved
protocols, maintaining highest ethical standards with the donor being informed completely and
with their consent.

Hyperspectral H&E stained images are obtained by a HSI system containing a hyperspectral
camera of model NH3 by EBA JAPAN CO., Ltd., attaching an optical microscope BX-53 by
Olympus Corp. and a white light emitting diode (LED) light source with it. The system captures
the transmittance information of the tissue, which provides images of 151 bands for 350 to
1100 nm wavelength with 5 nm interval. The spatial size of the hyperspectral image is
752 × 480. By removing the redundant information of the tissue, we have used the hyperspectral
image of 61 bands, which corresponds to the wavelength from 420 to 720 nm. The illumination
spectrum of white LED also ranges from 350 to 1100 nm with 5 nm interval, whereas spectral
information ranging from 420 to 720 nm have been considered for this experiment.

EVG stained images used for this study are RGB images. RGB EVG stained images are
whole slide image (WSI), which is obtained with a WSI scanner by Hamamatsu photonics K.K.
EVG stained images used in this experiment have similar structural information as H&E stained
image because EVG staining has been applied after bleaching the same tissue where H&E stain-
ing was applied before.

2.2 Data Preprocessing
For removing the effect of different noise source and preparing for further analysis, the
hyperspectral image is calibrated by24

EQ-TARGET;temp:intralink-;e001;114;392ItðλÞ ¼
IðλÞraw∕Eraw − IðλÞd∕Ed

IðλÞw∕Ew − IðλÞd∕Ed
; (1)

where, IðλÞraw, IðλÞd, and IðλÞw are raw image pixel, dark image pixel with LED off, and white
image pixel of the glass slide with LED on, respectively. Eraw, Ed, and Ew are exposure value of
the raw image, dark image, and white image, respectively.

Similar areas from the H&E stained HSI and EVG stained WSI have been cropped to pre-
pare the training and test images, which is shown in Fig. 2. The dataset has been prepared pri-
oritizing the parts of the tissue slides where both elastic and collagen fibers are present. Totally,
nine H&E stained HSIs from four different tissue samples have been prepared for testing the
model performance. The training dataset includes total 47 images from 6 different tissue samples.
As our model has been trained in two different ways: unsupervised and supervised, there are
two different corresponding training datasets. The unsupervised training dataset includes total
9800 unpaired (neither scale adjusted nor aligned exactly) images from each domain of H&E

(a) (b) (c)

Fig. 2 Description of experimental data (a) hyperspectral H&E stained image (b) RGB EVG
stained WSI (c) same area as (a) cropped from EVG stained WSI.
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and EVG, which have been prepared after cropping the overlapped areas and performing aug-
mentation using rotation and flipping. The spatial dimension of each training image is 128×128.
The supervised training dataset includes 772 paired images, which are aligned and scale adjusted.
For easier and clearer understanding, the experimental data setup has been illustrated in Fig. 3.

2.3 Preparing Ground Truth EVG Stained Image
To prepare training data for supervised learning and to determine the model performance, it is
necessary to have the paired set of H&E stained and EVG stained image, which corresponds to
each other. Since EVG stained and H&E stained images are captured with different cameras and
in different time, it is hardly found that their structure is exactly aligned and scale adjusted.
So, speeded-up robust features25 (SURF) feature based image registration has been performed
between the H&E stained and the original EVG stained image cropped from WSI.

To retain the simplicity and lower computational complexity of the registration method,
hyperspectral H&E stained images have been converted to its corresponding standard RGB
(sRGB) H&E stained images using color matching functions.26 Figure 4 represents an example
of hyperspectral H&E stained image and its corresponding converted sRGB (which has a specific
RGB color space with a limited color gamut developed to ensure standard color reproduction
across different devices) H&E stained image. Due to the robustness, faster performance and scale
and rotation invariant nature, hand crafted SURF25 feature has been detected and extracted
both from H&E stained and EVG stained images (Fig. 5). SURF utilizes integral image and

Fig. 3 Graphical representation of experimental dataset.

(a) (b)
Fig. 4 (a) Hyperspectral H&E stained image (b) converted sRGB H&E stained image.
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approximates Laplacian of Gaussian with box filter, which makes this algorithm faster and robust
against scale. Feature matching has been performed by considering the distance between these
two feature sets, and matched outliers are discarded applying M-estimator SAmple Consensus
algorithm.27 Finally, applying the affine type of geometric transformation on the original EVG
stained image, the registered EVG stained image is obtained. This registered EVG stained image
is now scale adjusted and perfectly aligned with the original H&E stained image and has been
leveraged as the ground truth image for this experiment. Figure 6 represents the overlapping view
of original H&E and EVG stained image before (a) and after (b) performing the registration. The
green color represents EVG stained image and magenta color represents H&E stained image
when they are superimposed.

2.4 Methodology
The proposed methodology consists of two parts: EVG generation network and generation
refinement network, which have been designed with two different training phases (Fig. 7).
The first part involves generation of realistic EVG stained image from hyperspectral H&E
stained image leveraging CycleGAN architecture. The CycleGAN model is trained in an unsu-
pervised way with unpaired dataset of hyperspectral H&E and RGB EVG stained images. The
second part is called generation refinement network where the pre-trained generator that con-
verts hyperspectral H&E stained images to their equivalent EVG stained images is re-trained in
a supervised way with a small amount of paired data. The refinement network has been designed
for refining the EVG stained image generated by the EVG generation network so that more
realistic EVG stained image with reduced noise and more detailed identification of elastic fiber
can be obtained. The detailed description of the proposed framework is mentioned in the next
subsections.

Fig. 5 Matched SURF features between H&E stained (left) and EVG stained (right) images.

Fig. 6 Overlapping view of H&E stained image (a) before registration (b) after registration.
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2.5 EVG Generation Network
In the EVG generation network, for two sets of training images H&E and EVG, which are unla-
beled and unpaired, the modified CycleGAN model learns to map H&E stained image to EVG
stained image and vice-versa. Like the CycleGAN model,28 our network consists of two gen-
erators GH-E, which converts H&E HSI to RGB EVG, and GE-H, which converts RGB EVG to
H&E his, and two discriminators DHE and DEVG, which discriminates real and fake H&E and
EVG images, respectively. Unlike CycleGAN, the two generators and two discriminators are
designed with different configurations to adopt our input images from different modalities.
The methodology of the EVG generation network is shown in Fig. 8.

Here, the modified CycleGAN model contains two heterogeneous generator architectures
with different input dimensions and filter sizes. As our training images are of two different chan-
nel dimensions, the generator GH-E has been designed to take input image with channel dimen-
sion 61 and to produce the output image with channel dimension 3, whereas the generator GE-H

has been designed to take input image with channel dimension 3 and to generate the output image
with channel dimension 61. However, both are designed following the U-Net architecture29 with
same spatial input and output dimension. Figure 9 illustrates the architecture of the two gener-
ators GH-E and GE-H from where it can be observed that the input and output image shapes of the
two generators are different from each other. On the other hand, both discriminators used in this
experiment are based on Patch-GAN30 architecture with different input channel dimensions to

Fig. 7 Workflow of proposed method for generating EVG stained from hyperspectral H&E stained
image.

Fig. 8 Proposed EVG generation network for generating RGB EVG stained image from H&E
stained HSI.
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adopt two domains of images with different modalities. Figure 10 describes the configuration of
these two discriminators DHE and DEVG. Figure 10 shows that the input channel dimension of
discriminator DHE is 61 and the input channel dimension of discriminator DEVG is 3 while both
have same spatial dimension of 128 × 128.

2.6 Losses of EVG Generation Network
Like the original CycleGAN model,28 we have also considered three types of losses to train our
EVG generation network: adversarial loss, cycle consistency loss, and identity loss. The total loss
LTotal is obtained by combining these three losses as

(a) (b)

Fig. 9 Architecture of two generators with varying input and output size: (a) generator HE-to-EVG
(GH-E) and (b) generator EVG-to-HE (GE-H).

(a)

(b)

Fig. 10 Architecture of the two discriminators with varying input size: (a) discriminator HE (DHE)
and (b) discriminator EVG (DEVG).
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EQ-TARGET;temp:intralink-;e002;117;736LTotal ¼ Ladversarial þ λLcycle−consistency þ γLidentity; (2)

where, Ladversarial is adversarial loss, Lcycle−consistency is cycle consistency loss multiplied by a
scalar value λ, and Lidentity is identity loss multiplied by another scalar value. Adversarial loss
and cycle consistency loss are calculated in the same way as Ref. 28. The method we have used to
calculate identity loss has been described in next subsection.

2.7 Identity Loss
We expect that while translating images, the generators do not change images unnecessarily, and
they translate image only when they should. This is done by reversing the inputs of the two
generators and it is expected to have the output same as its original domain. This is called identity
mapping and the loss calculated is called identity loss, which can be represented by

EQ-TARGET;temp:intralink-;e003;117;596Lidentity ¼ EHE∼pdataðHEÞðkGE−HðHERedÞ − HEOrgkÞ
þ EEVG∼pdataðEVGÞðkGH−EðEVGIncÞ − EVGOrgkÞ: (3)

For calculating the identity loss, we need to use 61 channel H&E stained HSI as the input of
generator GE-H, which is originally designed to take input image of channel 3, and need to use
EVG stained image of channel 3 as the input of generator GH-E, which is originally designed to
take input image of channel 61. To solve this problem, a 61-channel EVG image (EVGInc) must
be generated from the original EVG stained image (EVGOrg) and a 3-channel H&E image
(HERed) must be generated from the original H&E HSI (HEOrg). We have concatenated 58 chan-
nel zeros of same spatial dimension to the EVG stained image to make it of 61 channels, which is
represented as EVGInc in Eq. 3. The reduced dimensional H&E has been represented as HERed in
Eq. 3. The task of reducing the dimension of H&E stained HSI to 3 is challenging as we have to
retain all the detailed spectral information in these 3 channels which was used to be carried out by
61 channels previously. We have adopted several approaches to prepare HERed, which are
described below.

2.7.1 Choosing three channels of H&E HSI

We have chosen several sets, 3 channels out of 61 channels of the H&E stained HSI. Empirically,
it has been found that for the set of channels 10, 11, and 12 corresponding to the wavelength
465, 470, and 475 nm provides better conversion result in terms of differentiating elastic and
collagen.

2.7.2 Using LDF and principal components

As using principal component analysis (PCA) is a well-recognized approach of dimension
reduction and has been proved to be efficient in case of reducing the dimension of hyperspectral
pathological images,15,31 we have also considered applying PCA for reducing the channel dimen-
sion of hyperspectral H&E stained image from 61 to 3. By investigating the linear combination of
wavelengths, PCA optimizes the pixel values retaining maximum variations in the least-square
sense. Empirically, it has been found that first two components together correspond to the vari-
ance over 95% and considering the third component does not add any significant variation. So,
we concatenated the first two principal components (PCs) and LDF multiplied by H&E HSI to
represent the H&E HSI with reduced dimension. This LDF was designed in Ref. 20 to classify
the spectrum of elastic and collagen fibers from H&E HSIs [Fig. 11(a)], and we expect that the
LDF helps to enhance the accuracy of the color conversion in the elastic and collagen fiber
regions, which is important in diagnostic of PDAC. The Eigen vectors of the first two PCs have
been represented in Fig. 11(b) where horizontal axis represents the wavelengths of the H&E HSI
and the vertical axis represents the value of the Eigen vectors.
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2.7.3 Using LDF, Hematoxylin and Eosin spectrum

We also have employed intentionally designed basis functions to reduce the dimension of HSI.
The first one is LDF, which is previously mentioned in Sec. 2.7.2. The other two basis functions
are the transmittance spectrum of eosin and hematoxylin.32 Since H&E stained tissues are mainly
composed of eosin and hematoxylin, we expect that the two spectrums help to catch the color
information of H&E stained tissues comprehensively. As our image contains the transmittance
information of the tissue, from the relation of transmittance (T) and absorbance (A) shown as

EQ-TARGET;temp:intralink-;e004;114;476A ¼ −log10 T; (4)

we have obtained the transmittance spectrum of hematoxylin and eosin from their absorbance
spectrum,32 which is shown in Fig. 12. We have prepared a set of three vectors including the LDF
and the hematoxylin and eosin transmittance spectrum and have performed matrix multiplication
with the hyperspectral H&E stained image. Thus, a tensor of dimension 128 × 128 × 3 has been
found for each his, which has been used for calculating identity loss.

2.8 Training Details
Our proposed method consists of two different training phases. In the first training phase, the
CycleGAN model of the EVG generation network is trained with unpaired training dataset.
Here, the adversarial loss has been measured in terms of mean square error (MSE) and cycle
consistency and identity loss have been measured using mean absolute error. We have used Adam
for the optimization purpose with learning rate 0.0002. Empirically, choosing the value of λ and
γ as 5.0 and 0.5, respectively, has been found to provide better result. We have set the batch size
varying from 1 to 6 with no noticeable change in the experimental result. The final model has
been chosen after 26 epochs and it takes around 35 min for each epoch to complete.

Fig. 11 (a) Spectrum of LDF and (b) eigenvectors obtained from H&E stained HSI.

Fig. 12 Eosin and hematoxylin transmittance spectrum.
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The second training phase involves the generation refinement network where the generator
GH-E with best performance is chosen from the previous stage. The generator is then re-trained in
a supervised way with a small number of paired images. The MSE loss between the generated
and ground truth image is considered to re-train the model. Adam optimizer with a reduced
learning rate of 0.00003 has been considered for re-training.

The experiment is implemented using Keras with TensorFlow backend and run on the GPU
Quadro RTX 6000.

3 Results
We have performed both the qualitative and quantitative evaluation of the generated EVG stained
images. Section 3.1 summarizes the results of the EVG generation network where we have tried
to find out the best possible way to leverage CycleGAN when images from two domains are of
different modalities, such as hyperspectral and RGB in our case. Section 3.2 represents the result
of generation refinement network where we have tried to show the effectiveness of the two
training phases of our proposed method.

3.1 Results of EVG Generation Network
At first, we have evaluated the qualitative result of generated EVG stained image with the EVG
generation network. Figure 13 represents the comparative result of the EVG generation network
with and without considering identity loss. From the resultant images, it can be observed that
EVG stained images considering identity loss is less noisy than that of without identity loss
approach. Also, the performance of identifying elastic fiber (blue color) is better in case of
considering identity loss, which is clearly visible inside the rectangle marked with red color.

Next, we have compared the result of considering different approaches of identity mapping
as mentioned in the Secs. 2.7.1–2.7.3. Figure 14 represents the result of generated EVG stained
images while considering channels 10, 11, and 12, combination of LDF and PCs, and combi-
nation of LDF, eosin and hematoxylin spectrum for identity loss calculation. Visual comparison
of the generated EVG stained image with the ground truth EVG stained image represents that
except the elastic fiber parts, all other tissue components of the H&E stained image have been
adapted appropriately to their corresponding EVG stained domain. There are some areas where
elastic fiber has been generated falsely, which have been marked with red rectangle in the result-
ant images [Figs. 14(b)–14(d)]. The region containing the elastic fiber in the ground truth EVG
stained image has been marked with green rectangle in Fig. 14(e). Comparing with other identity
mapping approaches, generated EVG stained image with considering LDF, eosin and hematoxy-
lin spectrum for identity mapping contains less amount of falsely generated elastic fiber. The
generated EVG stained images are also less noisy here comparing to other identity mapping
approaches.

We have also compared the cases of generating EVG stained image from Hyperspectral
H&E and from its corresponding sRGB H&E, and the result has been represented in
Fig. 15. Here, we can observe that the performance of mapping elastic and collagen fiber along
with other tissue components is much better for EVG stained image generated from hyperspectral
H&E stained image than that of sRGB H&E stained image. Moreover, the model trained with
sRGB H&E stained images has been converged after 59 epochs, whereas the model trained with

(a) (b) (c) (d)

Fig. 13 Demonstrating the effectiveness of considering identity loss. (a) Input H&E stained HSI.
Generated EVG stained image (b) without considering identity loss (c) considering identity loss
(using LDF, eosin and hematoxylin) (d) ground truth EVG stained image.
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H&E hyperspectral image has converged only after 26 epochs. So, comparing to H&E stained
HSI, model with RGB H&E stained image is requiring lots of more training iterations to
converge.

For the quantitative evaluation of the generated EVG stained image with the ground truth
EVG stained image, the metrics structural similarity index (SSIM), peak signal to noise ratio
(PSNR) and root MSE (RMSE) have been deployed. For both output and ground truth images
being RGB, RMSE, PSNR, and SSIM can be calculated as follows.

RMSR and PSNR both have very close relationship to MSE, which calculates the pixel wise
error between images. MSE between the ground truth EVG stained image (EVGGT) and output
EVG stained image (EVGout) can be calculated as

EQ-TARGET;temp:intralink-;e005;114;185MSE ¼ 1

H ×W × C

XH
x¼1

XW
y¼1

XC
z¼1

½ðEVGGTðx;y;zÞ − EVGoutðx;y;zÞÞ2�; (5)

where H,W, and C represents height, width, and number of channels, respectively. EVGGTðx;y;zÞ
is the pixel value of the ground truth EVG stained image at the x, y coordinate of channel z and
EVGoutðx;y;zÞ represents the pixel value of output EVG stained image at x, y coordinate of z chan-
nel. RMSE can be obtained from the MSE value as

(a) (b) (c) (d)

Fig. 15 Demonstrating the effectiveness of using hyperspectral H&E over RGB H&E as input
image for generating RGB EVG stained image: (a) input H&E stained image, (b) output EVG
stained image from RGB H&E, (c) output EVG from hyperspectral H&E, and (d) ground truth
EVG stained image.

(a) (b)

(c) (d) (e)

Fig. 14 Demonstrating that the use of LDF, hematoxylin and eosin spectrum provide better per-
formance. (a) Input H&E stained HSI. Output EVG stained image with (b) channels 10, 11, and 12
(c) considering LDF and PCs (d) considering LDF, hematoxylin and eosin spectrum for identity
mapping. (e) Ground truth EVG stained image.
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EQ-TARGET;temp:intralink-;e006;117;736RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
: (6)

PSNR is useful to determine the level of noise present in the image and can be calculated as

EQ-TARGET;temp:intralink-;e007;117;700PSNR ¼ 10 log10

�
max2

MSE

�
: (7)

Here, the value of max is 255.
SSIM is another useful metric, which evaluates the structural similarity between images.

SSIM is calculated considering three different components, such as luminance, contrast, and
structure. The final SSIM is the multiplicative combination of these three terms. SSIM of ground
truth EVG ðEVGGTÞ and output EVG (EVGout) for a single channel can be defined as33

EQ-TARGET;temp:intralink-;e008;117;601SSIMðEVGGT;EVGoutÞ ¼ ½lðEVGGT;EVGoutÞ�α:½CðEVGGT;EVGoutÞ�β:½SðEVGGT;EVGoutÞ�γ
(8)

where, α > 0, β > 0, and γ > 0 are used to adjust the importance of these three components.
We have considered the value of α ¼ β ¼ γ ¼ 1

EQ-TARGET;temp:intralink-;e009;117;540lðEVGGT;EVGoutÞ ¼
2μEVGGT

μEVGout
þ C1

μ2EVGGT
þ μ2EVGout

þ C1

; (9)

EQ-TARGET;temp:intralink-;e010;117;489CðEVGGT;EVGoutÞ ¼
2σEVGGT

σEVGout
þ C2

σ2EVGGT
þ σ2EVGout

þ C2

; (10)

EQ-TARGET;temp:intralink-;e011;117;456SðEVGGT;EVGoutÞ ¼
σEVGGTEVGout

þ C3

σEVGGT
σEVGout

þ C3

; (11)

where lðEVGGT;EVGoutÞ compares luminance of EVGGT and EVGout. CðEVGGT;EVGoutputÞ
compares the contrast of EVGGT and EVGout and SðEVGGT;EVGoutputÞ compares structure
of EVGGT and EVGout. μEVGGT

, μEVGout
, σEVGGT

, σEVGout
, and σEVGGTEVGout

represents the mean,
standard deviations, and cross-covariance of EVGGT and EVGout. C1, C2, and C3 are regulari-
zation constant for luminance, contrast, and structure terms where

EQ-TARGET;temp:intralink-;sec3.1;117;373C1 ¼ ð0.01 � LÞ2; C2 ¼ ð0.03 � LÞ2; and C3 ¼ C2∕2:

The value of L is 255 for our data. Considering the above equations, the SSIM of Eq. 8 is
simplified to

EQ-TARGET;temp:intralink-;e012;117;324SSIMðEVGGT;EVGoutÞ ¼
ð2μEVGGT

μEVGout
þ C1Þð2σEVGGTEVGout

þ C2Þ
ðμ2EVGGT

þ μ2EVGout
þ C1Þðσ2EVGGT

þ σ2EVGout
þ C2Þ

: (12)

As both our output and ground truth EVG stained images are RGB, SSIM has been calcu-
lated for each R, G, and B channel separately, and the final SSIM value has been obtained by
averaging the SSIM values of these three channels, which is represented as

EQ-TARGET;temp:intralink-;e013;117;248SSIMRGB ¼ 1

Ch

XCh
i¼1

SSIMðEVGGTi
;EVGouti

Þ; (13)

where Ch is the number of channels, EVGGTi
is ground truth EVG image of i’th channel and

EVGouti
is output EVG image of i’th channel. The maximum possible value of SSIM is 1.

Higher SSIM and PSNR value represents better quality while lower value of RMSE
represents better quality. Table 1 summarizes our experimental results in terms of these quality
metrics of the generated EVG stained images by averaging the result of all the test images. The
third column of the table represents the RMSE of whole images, whereas fourth column of the
table represents the RMSE for only the fibrous regions of the images. To extract the fibrous
regions, the EVG stained images have been converted to their corresponding Hue saturation
value (HSV) color space from where the color information of elastic and collagen fibers has
been obtained. The binary mask of this fibrous region has been prepared with this color infor-
mation and have been leveraged to extract the fibrous regions from the ground truth and gen-
erated EVG stained images. As our fiber regions remain in the color range of deep blue to pink,
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for extracting the fibrous regions we used two separate color range of HSV space: one is for blue
to pink with lower limit [110, 50, 50] and upper limit [170, 255, 255], and another is for different
variation of black with lower limit [120, 0, 55] and upper limit [150, 30, 90]. The first row of
Table 1 represents the method where identity loss is not considered and the second row represents
the result of using sRGB H&E stained image for generating EVG stained image. The third to fifth
rows represent the result of different approaches of identity mapping, such as considering chan-
nel 10, 11, and 12 of hyperspectral H&E stained image, combination of LDF and PCs, and
combination of LDF, eosin and hematoxylin spectrum, respectively. From Table 1, we can see
that generating EVG stained image from hyperspectral H&E stained image with considering the
combination of LDF, eosin and hematoxylin spectrum for identity mapping has outperformed
all other approaches.

3.2 Results of Generation Refinement Network
From the experimental result of the above subsection, it has been observed that our proposed
CycleGAN based EVG generation network generates better quality RGB EVG stained image
from Hyperspectral H&E stained image while considering LDF, eosin and hematoxylin spectrum
for calculating the identity loss. However, the generated EVG stained images still contain some
falsely generated elastic fiber. To generate more realistic EVG stained image with mitigated effect
of falsely generated elastic fiber, the CycleGAN model with LDF, eosin and hematoxylin spec-
trum for identity mapping has been considered and re-trained in a supervised way in the gen-
eration refinement part of our proposed method. Figure 16 represents the comparative view of the
generated EVG stained images before and after retraining the generator GH-E. It is clearly visible
that the generation refinement network has successfully removed the falsely generated elastic
fiber and has contributed to the generation of more realistic EVG stained image.

In our experiment, we have also investigated the effect of the pre-trained weight that comes
from the CycleGAN based EVG generation network, the first phase in Fig. 7. Figure 17 shows
the generated EVG stained image with and without considering the pre-training weight of the
generator GH-E obtained from the EVG generation network. From the generated EVG stained
images, we can see that without considering the pre-trained weight, the generator model cannot

(a) (b) (c) (d)

Fig. 16 Illustrating the effectiveness of retraining (supervised) generator in reducing falsely gen-
erated elastic fiber: (a) input H&E stained HSI, (b) generated EVG before re-training, (c) generated
EVG after re-training, and (d) ground truth EVG stained image.

Table 1 Quantitative evaluation of the generated EVG stained image of EVG generation network.
Values are bold to highlight better result.

Methods SSIM PSNR
RMSE (whole

image)
RMSE (fibrous
regions only)

Without identity loss 0.6827 22.4431 20.3562 18.3058

sRGB H&E 0.6999 22.0285 21.2376 18.5495

Channels 10, 11, and 12 for identity mapping 0.6670 21.4501 22.2768 17.7645

LDF and PCs for identity mapping 0.6812 22.5402 20.1754 17.5510

LDF, eosin and hematoxylin for identity mapping 0.7065 22.7108 19.6684 17.5838
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have the information of the elastic fiber and the generated EVG stained images includes no or
very less information of elastic fiber.

Table 2 represents the quantitative evaluation of the generated EVG stained image from
generation refinement network. The first row represents the result before re-training with the
supervised way. The second row represents the result after training the generator GH-E with the
supervised way without considering the pre-trained CycleGAN weight. The last row represents
the result of generation refinement network after re-training the generator GH-E with considering
the pre-trained CycleGAN weight. From the table, we can see that when the generator model is
initialized with the pre-trained CycleGAN weight, retraining it with a small number of paired
data has improved the quality of the generated EVG stained image significantly. Though there is
small difference between the cases with and without considering pre-trained CycleGAN weight,
the information of elastic fiber cannot be obtained from the generated EVG stained image where
pre-trained CycleGAN weight is not leveraged.

4 Discussion
This study proposes a deep learning based computerized method for generating RGB EVG
stained image from hyperspectral H&E stained image. Our approach investigates the feasibility
of generating RGB EVG stained image in a GAN based unsupervised way to alleviate the
labor-intensive work of preparing paired training data. The resultant images show that though
all other parts of the tissue components have mapped very closely to the original EVG from
H&E, the proper identification of elastic fiber only with unsupervised way is still challenging.
So, to improve the quality of the generated EVG stained image and to mitigate the effort of
preparing large number of paired data, this study utilizes a small number of paired data to
re-train the generator model of the CycleGAN to generate more refined EVG stained image.
Both from the qualitative and quantitative result, we can see that re-training the generator model
has improved the generated EVG stained image quality significantly with less noise and more
precise identification of elastic fiber. The unsupervised CycleGAN model is contributing to
discriminate elastic and collagen fiber, whereas the supervised re-training method is contributing
to the generation of more refined, less noisy realistic EVG stained image. There is less difference
in the quality metrices between the approaches without and with considering the pre-trained
weight of the CycleGAN based EVG generation network. The reason behind it is that most
of the test images contains very small amount of elastic fiber and when we consider the whole

Table 2 Quantitative evaluation of the generated EVG stained image of generation refinement
network. Values are bold to highlight better result.

Methods SSIM PSNR
RMSE (whole

image)
RMSE (fibrous
regions only)

LDF, eosin and hematoxylin for identity mapping 0.7065 22.7108 19.6684 17.5838

Without pretrained weight of CycleGAN 0.7461 24.2819 16.8106 14.8191

Generation refinement with pretrained weight 0.7547 24.7831 15.5535 12.1340

(a) (b) (c) (d)

Fig. 17 Demonstrating that the use of pre-trained CycleGAN weight improves performance.
(a) Input H&E stained HSI. Generated EVG stained image (b) without and (c) with pretrained
CycleGAN weight. (d) Ground truth EVG stained image.
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image for comparing the quality, it is being difficult to observe the effect. So, when we compare
RMSE of only fibrous regions, there is noticeable difference between these two approaches and
it is clear that considering the pre-trained generator weight is contributing to the generation of
better quality EVG stained image with more precise identification of elastic fiber.

As this study is designed to utilize the complete spectral information provided by the H&E
HSI as the input of the deep learning model, it takes very longer time to complete training and an
explicit identity mapping technique was required to design. One potential solution to this prob-
lem may be reduction of the dimension of HSI first and to utilize the reduced dimensional data as
the input information for stain conversion model. Next step of this study includes reducing the
dimension of the H&E HSI so that maximum information can be retained within this reduced
dimensional data while performing stain conversion efficiently with faster speed and much
higher accuracy. This experiment has been conducted within our limited scope of data availabil-
ity. For the practical implementation of the proposed method, more training data from different
sources including patient variability and environmental effect needs to be considered for
improved robustness.

5 Conclusion
In this paper, we have presented a computerized way of digital stain conversion utilizing the
unpaired image-to-image translation technique of GAN. The generated RGB EVG stained
images have been obtained from hyperspectral H&E stained images for which our model has
performed two types of image conversion at the same time: hyperspectral to RGB and H&E to
EVG. In addition, for solving the problem of calculating identity loss while using images of
different modalities for image-to-image translation purpose, we have found the best set of func-
tions that successfully reduces the channel dimension of the hyperspectral H&E stained images
while the embedded property of EVG stained images is best retained. The additional supervised
training method has alleviated the dependency on large amount paired training data and has
provided significant improvement in the quality of the generated EVG stained image comparing
to the approach where only the unsupervised training phases is adopted. The resultant images
also show that the performance of distinguishing elastic and collagen fiber in the generated EVG
stained image is much higher for hyperspectral H&E stained image than RGB H&E stained
image. Both the qualitative and quantitative results support the effectiveness of the proposed
method for generating realistic EVG stained image from hyperspectral H&E stained one.
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