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ABSTRACT. Significance: Color differences between healthy and diseased tissue in the gastro-
intestinal (GI) tract are detected visually by clinicians during white light endoscopy;
however, the earliest signs of cancer are often just a slightly different shade of pink
compared to healthy tissue making it hard to detect. Improving contrast in endoscopy
is important for early detection of disease in the GI tract during routine screening and
surveillance.

Aim: We aim to target alternative colors for imaging to improve contrast using
custom multispectral filter arrays (MSFAs) that could be deployed in an endoscopic
“chip-on-tip” configuration.

Approach: Using an open-source toolbox, Opti-MSFA, we examined the optimal
design of MSFAs for early cancer detection in the GI tract. The toolbox was first
extended to use additional classification models (k -nearest neighbor, support vector
machine, and spectral angle mapper). Using input spectral data from published
clinical trials examining the esophagus and colon, we optimized the design of
MSFAs with three to nine different bands.

Results: We examined the variation of the spectral and spatial classification accu-
racies as a function of the number of bands. The MSFA configurations tested
showed good classification accuracies when compared to the full hyperspectral data
available from the clinical spectra used in these studies.

Conclusion: The ability to retain good classification accuracies with a reduced
number of spectral bands could enable the future deployment of multispectral
imaging in an endoscopic chip-on-tip configuration using simplified MSFA hardware.
Further studies using an expanded clinical dataset are needed to confirm these
findings.
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1 Introduction
Multispectral imaging (MSI) is an emerging technique that holds promise in a range of
biomedical applications, from monitoring of wound healing to enhancing contrast for early
cancer in endoscopy.1–3 MSI is based on the premise that tissues have their own spectrally
unique reflectance fingerprint4,5 arising from optical absorption and scattering processes, which
are fundamentally altered by structural and biochemical changes that occur during disease
progression. In cancer, for example, aberrant angiogenesis leads to neovascularization that pri-
marily alters optical absorption due to changes in hemoglobin (Hb) abundance and oxygenation
levels. Furthermore, changes in cancer cell morphology, organelle distribution, and size, alter
tissue scattering properties.2,3,6–10 Measurements of the spectral fingerprint of different tissue
types have, therefore, been widely used to reveal the presence of cancer in excised tissue sam-
ples and in situ in patients.11–14

Clinical white light endoscopy and narrow band imaging offer limited forms of MSI, target-
ing three color (red, green, and blue) vision and two color (415� 10 and 540� 10 nm) hemo-
globin absorption, respectively. MSI incorporating a larger number of spectral bands is not yet
widely used in clinical applications.15 Key challenges in clinical translation include the design of
suitable instrumentation as well as the development of appropriate expertise in operators and
interpreters.2 In terms of hardware, MSI systems typically require a tradeoff between spectral,
spatial, and temporal resolution.5,16,17 Broadly, spectral imaging can be implemented via four
imaging system configurations: point-scanning 1D spectrometer, line-scanning 2D spectrometer,
wavelength-scanning image sensor, or a snapshot imaging spectrometer.1,11 The latter acquires
the full 3D (x, y, wavelength) MSI data cube in a single acquisition, whereas the former options
require scanning of either the spatial dimension(s) or the spectral dimension. These requirements
can often lead to bulky and complex hardware as well as offline data reconstruction. In endos-
copy, real-time operation is required to ease operation and interpretation as well as to account for
patient movement during diagnostic procedures.11,18,19 Although snapshot MSI systems can
achieve high temporal resolution, limited only by the camera frame rate, the low optical through-
put and compromise between spatial and spectral resolution can degrade image quality compared
to spatial-scanning systems.

To optimize the image quality in snapshot systems, one can target the spectral properties of
the system to strategically sample incoming light at particular wavelengths known to be infor-
mation rich in the target application of interest. The resulting spectral reflectance fingerprint of
the given disease state can then be unmixed or classified accurately with fewer spectral samples.16

Existing endoscopic systems use wavelength-scanning typically with a white light source and
filter wheel for spectral sampling, however, this can become problematic in terms of temporal
resolution and image co-registration as one increases the number of spectral samples. An alter-
native snapshot solution uses a multispectral filter array (MSFA) atop an imaging sensor.17,20,21

Using absorptive or interference techniques, the MSFA filters the spectrum of the incoming light
detected on a pixel-by-pixel basis, with a mosaic of filters deposited pixel-by-pixel across the
sensor.3,22,23 Following demosaicking and interpolation, the full image cube, including spatial
and spectral information, is retrieved in a single snapshot.24 Targeting the spectral properties
of the MSFA to a given application thus maximizes the spatial resolution17,25,26 and is feasible
from a manufacturing perspective,27,28 suggesting potential to address the aforementioned clini-
cal unmet needs of MSI.

Here, we explore the potential for optimizing spectral sampling for early cancer detection in
the gastrointestinal (GI) tract. We examine two published hyperspectral datasets available from
prior endoscopy clinical trials: the first focused on detecting changes in tissue spectra in dysplasia
and early cancer in the esophagus and the second focused on measuring spectra from polyps
and residual tissue postresection in the colon. We expand the capability of the open-source
Opti-MSFA toolbox to select the bandwidths and center wavelengths for 3 to 9 filters.17

Moreover, we then use the capability of the Opti-MSFA toolbox to tailor the spatial properties
of an MSFA to sample these spectral bands according to a synthetic input hypercube with refer-
ence endmembers. We set parameters for the spectral properties of the filters using a merit func-
tion that represents the resulting error that would occur in sampling the spectra with the designed
system.17 Our results, derived using a range of merit functions, indicate the importance of end-to-
end optimization for customizing filters using appropriate merit functions when designing
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MSFAs. We demonstrate that customized spectral filters can be efficiently designed and opti-
mized to detect GI cancers using the Opti-MSFA toolbox based on the chosen datasets. These
promising results suggest targeted design of MSFAs could provide similar MSI performance as
full hyperspectral imaging, obviating the need for complex hyperspectral hardware in endoscopic
applications.

2 Methods
TheMSFA design exploited hyperspectral data collected during endoscopies of the esophagus and
colon in vivo (Sec. 2.1),8,9 which was then analyzed using the Opti-MSFA toolbox (Sec. 2.3)17

to optimize the filters. Different classification techniques and unmixing functions were incorpo-
rated into the Opti-MSFA toolbox to develop the optimal MSFA for detecting cancers in these
organs (Secs. 2.4–2.6). Additionally, a merit function based on the unmixing of oxy- and
deoxyhemoglobin was used for comparison (Sec. 2.7).

2.1 Hyperspectral Datasets of Esophageal and Colon Tissues
Hyperspectral data (Fig. 1) were collected in two prior clinical studies of hyperspectral endos-
copy,8,9 the methods for which are briefly summarized below. Both datasets were collected using
a “babyscope” (PolyScope and Polydiagnost) that can be threaded through the accessory channel
of a clinical gastroscope or colonoscope.

Fig. 1 Overview of the clinical datasets. Illustration of the data collectionmethod for the (a) esopha-
geal and (b) colon study. (c) Patient cohort size and (d) total spectra for each of the studies
are compared to illustrate how the line scanning method results in significantly more data.
(e) Esophageal and (f) colon spectra are well-balanced between disease types.
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For the esophageal study,8 the trial was reviewed by the Cambridgeshire Research Ethics
Committee and was approved in March 2018 (18/NW/0134) and registered at ClinicalTrials.gov
(NCT03388047). A broadband supercontinuum light source was used for illumination (SuperK
COMPACT, NKT Photonics). The 10,000 fiberlet-imaging bundle (PD-PS-0095, PolyDiagnost)
was imaged using an objective lens, and then the measured signal was split into two arms using a
beam splitter. The split images were measured via a standard color camera (Grasshopper 3.0,
FLIR) and spectrometer (AvaSpec-ULS2048, Avantes; spectral range 200 to 1100 nm, grating
300 lines∕mm, slit size 50 mm,) to capture a structural image and averaged spectral information,
respectively. Tissue spectra were collected in the esophagus from three different tissue types,
determined by histopathology: healthy squamous, nondysplasia Barrett’s esophagus (NDBE),
and neoplasia. These 715 spectra were collected from 15 different patients: 159 were from
squamous regions; 320 from NDBE; and 236 from neoplastic regions.

For the colon study,9 the trial was reviewed by the OHSU Institutional Review Board
(IRB18947) and registered at ClinicalTrials.gov (NCT04172493). The white light provided
by the standard-of-care colonoscope was used for illumination (Olympus CF-H290). In the colon
study, a 2D spectrograph (IsoPlane 160, Princeton Instruments; spectral range 400 to 800 nm,
grating 150 lines∕mm) was used with an electron-multiplied CCD camera (ProEM 1024,
Princeton Instruments) to collect the spectral data using a line-scanning hyperspectral imaging
method.29 Tissue spectra were collected in the colon from three different tissue types determined
by the colonoscopist: normal mucosa, polyp, and postresection tissue (after polyp removal).
In addition, spectral profiles of specular reflections were also captured. 14,065 spectra from
7 different patients were collected; 5269 spectra from normal regions; 1045 from polyps,
7745 postpolyp resection, and 6 were a result of specular reflection.

Both spectral datasets used in the toolbox were downsampled using interpolation to have
a spectral resolution of 1 nm, to simplify the computational process, and the wavelengths were
restricted to between 470 and 720 nm, which eliminated spectral regions with high noise arising
from insufficient illumination power.

2.2 Hypercube Generation
To run the optimization, synthetic hypercubes were created (Fig. S1 in the Supplementary
Material) that were then input into the Opti-MSFA toolbox to optimize the filters. The hyper-
cubes creation process differed slightly according to the different datasets (colon and esophageal)
and algorithms used for merit functions (if a training data split was required); nonetheless, the
same three classification methods were applied to the two different hypercubes.

2.2.1 Splitting of data

For the hypercubes used with k-nearest neighbor (kNN) and support vector machines (SVM)
classification models, the dataset was split in a 4:1 ratio for the training and testing [Figs. S1(a)
and S1(b) in the Supplementary Material]. For spectral angle mapping and spectral unmixing,
training is not required and the methods rely on identification of a reference spectrum, hence
a training/testing split of the data was not required.

2.2.2 Esophageal hypercube layout

For the esophageal data, raw spectra were randomly subsampled (using a random number gen-
erator in Python) and allocated into regions in a 2 × 2 arrangement within an overall 80 × 80

shape [Figs. S1(c) and S1(d) in the Supplementary Material]. Raw spectra were selected
randomly from either the testing set (kNN and SVM merit functions) or the full dataset (all other
merit functions). The spatial arrangement of concentric circles for spectra from different disease
types in the synthetic hypercube was designed to mirror the clinical situation where the detection
of dysplasia within a background of nondysplastic Barrett’s esophageal tissue is a key challenge;
concentric circles containing dysplasia within NDBE within squamous tissue were created. The
esophageal hypercube was designed so that the ratio of the different tissue types in the hypercube
approximated those of the underlying dataset, thus the resulting accuracies are weighted accord-
ingly to address class imbalance.
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2.2.3 Colon hypercube layout

For the colon data, 14,065 tissue spectra were randomly subsampled and placed in two distinct
circular regions to represent the polyp and postresection tissue surrounded by normal back-
grounds, with overlapping specular reflections, again mirroring the clinical situation where polyps
exist within a background of normal tissue. The colon hypercube created had a 96 × 96 shape with
a spatial correlation of 2 × 2 regions, similar to the esophageal hypercube. The shape was slightly
larger than the esophageal hypercube to allow for four spectral types instead of three, and the more
complex spatial layout. For the unmixing hypercube, the same shape was used but size increased
to 196 × 196 with a spatial correlation of 8 × 8 regions, since unmixing is more sensitive to
discontinuities that occur at the boundaries due to the random generation of the hypercube.

2.2.4 Input of the hypercubes into the toolbox

The edges of the hypercubes after the classification were cropped, such that the esophageal had a
70 × 70 shape and the colon had an 86 × 86 shape for classification or 186 × 186 shape for
unmixing. This was to exclude misclassification due to the spatial demosaicking process at
the edges of the MSFA sampling.

2.3 Opti-MSFA Toolbox
The open-source Python-based toolbox Opti-MSFA17 was used to calculate optimal spectral and
spatial filter properties. Input synthetic hypercubes were composed of endmember spectra (the
spectral reflectance fingerprint of a given tissue type in this case) arranged in a suitable spatial
pattern [Fig. 2(a)] as outlined in Sec. 2.2. Filter array simulation was then performed [Fig. 2(b)].
Classification and unmixing-based merit functions were assessed using a gradient descent
method to determine the optimal center wavelength and bandwidth, defined as the full-width
at half-maximum (FWHM). The spectral optimization loop was run five times using different
starting wavelengths to find five different candidate sets of spectral bands. The five different
starting wavelength sets were selected by randomly sampling 10,000 candidate sets. 10,000

Fig. 2 Opti-MSFA toolbox recreates the classification and unmixing process after imaging tissue
using the MSFA. (a) A hypercube is created by inputting (i) spectral datasets and their abundance
maps to create (ii) a synthetic hypercube. Based on this hypercube, (b) a simulated filter array and
(c) a raw mosaicked image are then simulated. (d) The mosaicked image is then reconstructed
using bilinear interpolation. (e) Different classification and unmixing techniques were used for end-
member reconstruction, and these were used as merit functions to optimize the (b, i) spectral and
spatial properties of possible filters that are then (b, ii) simulated and tested.
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provided a sufficiently wide candidate set while not trying each option exhaustively and slowing
down computation. The five filter sets with the highest classification accuracy in the initial tests
were then refined using gradient descent. Allowed band centers were from 450 to 700 nm in 1 nm
increments. Allowed FWHMs were from 10 to 30 nm in 2 nm increments to mirror the perfor-
mance of fabricated MSFA. All possible spectral optimization results in the five filter sets were
similar, and the final spectral properties were taken as those with the highest classification accu-
racy. The filters with the highest classification accuracy were usually repeated within the five
sets, especially when the number of filters was small (less than five bands), resulting in similar
accuracies for the five sets. Nonmatching filter sets typically implied that the gradient descent had
converged on a local maximum rather than the desired global maximum.

Once the spectral bands were determined, they were then used to calculate the optimal spa-
tial layout of the filters by an exhaustive search of all the possible spatial layouts. The possible
spatial layouts are calculated by finding the Cartesian product of the different spectral bands,
which effectively iterates all of the possible combinations of the filter bands:

EQ-TARGET;temp:intralink-;e001;114;568Bðb1; : : : bnÞði�jÞ; (1)

where B are the n spectral bands b1 to bn, and i and j are the dimensions of the mosaic in
question. The pattern that had the best classification accuracy following demosaicking
[Figs. 2(c) and 2(d)] using a linear interpolation function was selected as the final optimized
layout and the classification accuracy noted for comparison. Finally, the desired merit function
was calculated [Fig. 2(e)]. The entire process was repeated for n ¼ 3 to 9 bands to determine
optimized center wavelengths, FWHMs and MSFA layouts for different MSI configurations.

2.4 k Nearest Neighbors as a Classification Model
The kNN algorithm is a supervised classification approach that classifies an image pixel by com-
paring its n-dimensional spectrum to the k closest n-dimensional endmember spectra in a labeled
training set, where n is the number of spectral bands chosen for optimization in Opti-MSFA.
A given pixel is classified based on the consensus class of these k nearest neighboring points.30

kNN is relatively simple, flexible, and compatible with small to medium-sized datasets, making it
ideal for use on both the esophageal and colon datasets. In addition, it previously showed initial
promising results when tested on the esophageal dataset.16 A fivefold cross-validation was
performed and the spectral region from 470 to 720 nm was assessed to determine the optimal k.
The data were then shuffled to account for different combinations due to high patient variability
in the underlying datasets. The process was repeated 20 times to account for the random shuffling
of the datasets. Subsequently, the 20 repetitions were averaged, and it was found that k ¼ 5 gave
the highest accuracy.

For optimization of the center wavelengths and FWHMs, the gradient descent algorithm was
deployed. Endmember spectra were simulated by propagating the “ground truth” spectra through
the simulated filters using the individual spectral data that formed part of the testing dataset.
The function of merit was the accuracy of kNN classification for unmixing these simulated
endmember spectra, where the kNN was trained on the training dataset.

Once the optimum spectral filter set was determined, the spatial layout of filters was opti-
mized. The different possible arrangements of the filters in a mosaic pattern were tested exhaus-
tively in a fivefold cross-validation process to find the layout with the highest classification
accuracy. For each MSFA layout, imaging of the hypercubes was simulated using the testing
dataset, which was then classified using the kNN algorithm. This was repeated four more times,
so the spatial optimization was found five times on five hypercubes, and the classification accu-
racy was extracted for each variation. The overall classification accuracy was taken as the average
classification accuracy across all five variations. The layout with the highest overall classification
accuracy was chosen as the final optimized layout.

2.5 Support Vector Machines as a Classification Model
An alternate merit function using SVM classification was also implemented. SVM classifies
data by defining hyperplanes to distinguish the data in n-dimensional space, where n is the
number of bands in the filters.5,31 SVM is a classification method that is suited to spectral datasets
due to their high dimensionality with multiple spectral bands. It can also be tuned to improve
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performance and parallelized to improve efficiency. Similar to kNN, SVM can be used on small
to moderately sized datasets and was explored previously for used on the esophageal dataset.16

The SVM classification parameters for the datasets were optimized in the previous work by
Waterhouse et al.,8 where it was found that a radial basis function with C ¼ 1000 was best for
performing SVM classification. Using the Scikit-learn toolbox available in Python 3, the
Gaussian radial basis function kernel was used to define the hyperplane to approximate the differ-
ent class distinctions. A mid-range value of C ¼ 1000, which effectively penalizes the function
for misclassification, was again found to optimize classification when assessing the ground truth
spectra using the individual spectra collected. The resulting classification accuracy was used as
the merit function for SVM analysis of esophageal and colon tissue.

SVM classification was implemented as a merit function. As for kNN, the classification
accuracy of the filters was then tested on five simulated hypercubes in a fivefold cross-validation
process. The dataset was split into a testing and training dataset in a 1:4 ratio, where the SVM
algorithm was trained on training data and then tested on the hypercube made from the testing
data (as outlined in Sec. 2.2). This was repeated a total of five times, so the average classification
accuracy of the five hypercubes was found, and the layout with the highest classification accu-
racy was chosen as the optimal mosaic pattern.

2.6 Spectral Angle Mapping as a Classification Model
In prior analysis of the colon dataset, it was noted that the collected data exhibited low variation
in the spectral signatures of each class, which lends itself to using SAM classification.9 With
SAM, the spectra are represented as vectors and the angle between two vectors is calculated.
Spectral classification is achieved by finding the reference spectrum that forms the smallest angle
with the spectrum of interest by calculating the inner product using vector arithmetic5,32

EQ-TARGET;temp:intralink-;e002;117;448θð~t; ~rÞ ¼ cos−1

0
BBBB@

P
n
i¼1 tiriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

n
i¼1 t

2
i

�r
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P
n
i¼1 r

2
i

�r
1
CCCCA; (2)

where ~t and ~r are vectors that represent the spectrum of interest and the reference spectrum,
respectively. For SAM, the classification accuracy is calculated as a ratio of the correctly clas-
sified spectra to the overall number of spectra classified. The spectral classification is assigned
based on the tissue type with the lowest angle. SAM classification accuracy of 1 indicates that all
testing data were correctly identified using SAM and 0 indicates that no testing data were iden-
tified correctly. SAM classification accuracy was tested as a merit function to optimize the spec-
tral and spatial properties of the filters for 3 to 9 bands. Allowed band centers were from 470 to
700 nm in 1 nm increments. As for above, the classification accuracy of the filters was then
trained and tested on five simulated hypercubes in a fivefold cross-validation process. The result-
ing classification accuracy was used as the merit function for SAM analysis of esophageal and
colon tissue.

2.7 Least Squares Spectral Unmixing of Hemoglobins
In addition to classification methods, spectral data can also be subjected to linear spectral unmix-
ing given prior knowledge of the main endmembers that contribute to the signal. In the context of
biomedical tissue, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) are major optical absorb-
ers that dominate optical absorption in the GI tract. Scattering is also present and can be modeled.
The reflectance spectra at a given point can be described by

EQ-TARGET;temp:intralink-;e003;117;157RrðλÞ ¼ cHbRHbðλÞ þ cHbO2
RHbO2

ðλÞ þ cH2O
RH2O

ðλÞ þ cscatteringRscatteringðλÞ þ cnoise; (3)

where Rr, RHb, RHbO2
, RH2O

, and Rscattering are the reflectance spectra of the pixel of interest r,
for Hb, HbO2, H2O, and scattering, respectively.29 The concentrations of deoxy- (cHb) and
oxyhemoglobin (cHbO2

) molecules, water (cH2O
), and scattering (cscattering), noise present in

the imaging system or tissue (cnoise) all contribute to the overall measured spectrum Rr. The
reflectance spectra can be modelled as Rt where c 0

Hb, c
0
HbO2

, and c 0
scattering are the estimated
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concentrations of deoxyhemoglobin, oxyhemoglobin, and scattering, respectively; in addition to
an offset that accounts for noise and other errors c 0

offset:

EQ-TARGET;temp:intralink-;e004;114;712RtðλÞ ¼ c 0
HbRHbðλÞ þ c 0

HbO2
RHbO2

ðλÞ þ c 0
H2O

R 0
H2O

ðλÞ þ c 0
scatteringRscatteringðλÞ þ c 0

offset: (4)

Fitting Eq. (4) via a least-squares algorithm33 optimizes the concentration of deoxy-(c 0
Hb)

and oxy-(c 0
HbO2

) hemoglobin, water (c 0
H2O

), scattering (c 0
scattering), and the offset (c 0

offset) such that

Eq. (5) is minimized

EQ-TARGET;temp:intralink-;e005;114;648

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
λ

ðRtðλÞ − RrðλÞÞ2
r

: (5)

The normalized-root-mean square error (NRMSE) function can be used to determine the
unmixing accuracy while normalizing using the mean HbO2 and Hb values cHbO2

and cHb,
respectively:

EQ-TARGET;temp:intralink-;e006;114;572NRMSE ¼ 1

p · cHb · cHbO2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p

ðc�Hb − c��HbÞ2 þ ðc�HbO2
− c��HbO2

Þ2
s

; (6)

where p is the number of pixels; in the spectral optimization, it is the full dataset, while in the
spatial optimization it is the demosaicked hypercube. c�HbO2

and c�Hb are the concentrations of
HbO2 and Hb calculated using the full spectra, whereas c��HbO2

and c��Hb are the concentrations of
HbO2 and Hb calculated using the reduced spectra of interest at the selected center wavelengths
and bandwidths.

The oxygen saturation (sO2) of the different tissue types was calculated as a ratio of the
concentration of HbO2 to the sum of HbO2 and Hb:

EQ-TARGET;temp:intralink-;e007;114;441sO2 ¼
cHbO2

cHb þ cHbO2

; (7)

EQ-TARGET;temp:intralink-;e008;114;394vblood ¼ cHb þ cHbO2
: (8)

The relative fraction of blood vblood was also calculated and plotted against the sO2 for
the different tissue types.

2.8 Classification Accuracy When Using the Full Spectra
To assess the compromise in classification accuracy when using a limited number of bands for
MSI, we compared to classification of the tissue using hyperspectral imaging. A hyperspectral
filter with center wavelengths from 470 and 720 nm in 1 nm steps was applied to the spectra with
bandwidths (FWHM) of 1 to 30 nm in 1 nm steps (Fig. S2 in the Supplementary Material). When
machine learning was used for classification for the kNN and SVM techniques, it was done in a
fivefold method, in line with the classification techniques used on the hypercubes. The resulting
classification accuracy for each tissue type and classification method was calculated following
spectral band optimization in the Opti-MSFA toolbox; spatial optimization was not relevant in
this case.

3 Results

3.1 Optimized Filters Designed for Classification of Esophagus and Colon
The optimal 3 to 9 band MSFA arrangements for esophageal and colon datasets were determined
according to classification accuracies, where high values reflect high performance when using
kNN, SVM, and SAM, while low values of NMRSE for unmixing HbO2 and Hb are preferred.
A direct comparison across both datasets for all merit functions showing optimized filter arrays
and output images is available in Tables S1–S3 in the Supplementary Material. For reference,
we calculated the classification accuracies also for a 250-band sample, considering the perfor-
mance that could be achieved with a full hyperspectral imaging system (Table 1 and Fig. S2 in
the Supplementary Material), showing overall a greater separability of the spectra in the colon
dataset than the esophageal dataset.
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When considering the esophageal dataset (Tables 2 and 3), the spectral bands highlighted
in the 3-band case using the kNN (475� 24, 573� 22, and 617� 16 nm) are then generally
represented in all filter sets with higher numbers of bands (Fig. 3). When adding a fourth band, a
far-red region (703� 16 nm) is added and again remains present through 6 and 9 band examples.
The optimized outputs show consistent sampling of the hemoglobin absorption region in the
525 to 575 nm range, usually with additional bands flanking outside of this region, one towards
the blue and one towards the red. A strong representation of filters in the green is also seen in the
SVM results; however, in this case, the red and far-red spectral bands are only represented in the
7 to 9 band cases. For both kNN and SVM [Figs. 3(a) and 3(c)], the classification accuracy after
spectral optimization is largely unaffected by adding more spectral bands [Figs. 3(b) and 3(d)],
suggesting the blue-green target filters in the 3 band case are already sufficiently information
rich, consistent with prior use of hemoglobin targeted narrow-band imaging approaches clini-
cally. Spatial optimization leads to degradation in performance as would be expected (Fig. S3 in
the Supplementary Material), since more spectral samples lead to poorer spatial sampling. SAM
appears to make the most use of the red and far-red spectral bands [Figs. 3(e) and 3(f)] but shows
poor classification accuracy in the esophageal dataset, most likely because subtle overall changes
in signal intensity are important for classifying the esophageal tissue spectra and these are not
accounted for in the SAM dataset.

Table 1 Full hyperspectral classification accuracy of esopha-
geal and colon tissue depending on classification type.

Classification model

Maximum classification accuracy

Esophagus Colon

kNN 0.848 0.999

SVM 0.811 0.997

SAM 0.245 0.995

Table 2 Overall classification accuracy of esophageal tissue using kNN, SVM, and SAM after
spectral optimization.

Classification model

Number of filters

3 4 5 6 7 8 9

kNN 0.839 0.848 0.850 0.860 0.851 0.855 0.850

SVM 0.836 0.837 0.850 0.844 0.841 0.841 0.830

SAM 0.476 0.473 0.477 0.417 0.359 0.351 0.343

Table 3 Overall classification accuracy of esophageal tissue using kNN, SVM, and SAM after
both spectral and spatial optimization.

Classification model

Number of filters

3 4 5 6 7 8 9

kNN 0.803 0.804 0.795 0.800 0.778 0.801 0.824

SVM 0.797 0.817 0.789 0.756 0.792 0.757 0.756

SAM 0.335 0.329 0.333 0.360 0.235 0.324 0.240
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A similar trend is seen for the colon dataset in terms of both the information-rich spectral
features and the classification performance for kNN [Figs. 4(a) and 4(b)] and SVM [Figs. 4(c)
and 4(d)]. For the colon dataset, the central region of sampling is slightly red-shifted to 550 to
600 nm range, with further sampling in the red common, particularly for SAM [Figs. 4(e) and
4(f)]. All methods show perfect or near-perfect classification accuracy (Tables 4 and 5) following
the spectral optimization, owing to the more separable spectral features in the dataset, which
leads to less reliance on global intensity changes. To examine this further, a 95% confidence
interval was calculated by finding the average classification accuracy or unmixing error for each
patient and then performing a t-test on these averages; these are shown in plots of classification
accuracy and unmixing error. Interpatient variation is also lower than in the esophageal data as
there is a smaller number of biological replicates (patients). After spatial optimization, the per-
formance degrades somewhat but remains above 95% for 3- and 4-band solutions; adding more
filters does not lead to improvement in performance and in fact reduces classification accuracy,
suggesting this is adding noise. The results indicate that it is not necessary to go beyond 3 or 4
spectral band MSI for the classification of these datasets and to do so may detriment the outcome;
however, this finding is likely due to the limited number of patients in the dataset and we would
expect a performance degradation with an expanded clinical spectral dataset with a more rep-
resentative sampling of interpatient variation.

3.2 Optimization Based on Linear Spectral Unmixing for Hemoglobin Content
and Oxygenation

We next examined the potential to apply linear spectral unmixing to the recorded spectra for the
assessment of physiological parameters of hemoglobin content and oxygenation and using the
NRMSE to determine the goodness of fit with different numbers of filters. Consistent with prior
findings,8 the esophageal dataset was not clearly separable based on these parameters [Fig. 5(a)];

Fig. 3 Optimal band arrangements and classification accuracy for the esophageal tissue types.
Using (a), (b) kNN classification; (c), (d) SVM classification, and (e), (f) SAM classification.
(a), (c), (e) The optimized spatial layouts of the filters are shown, with each colored box indicating
the spectral properties, including the center wavelength and FWHM bandwidth (given in paren-
thesis). The spectral properties are shown in nanometers. The colors of the individual filters
approximate what the human eye would see at these wavelengths. (b), (d), (f) Classification accu-
racies after spectral and spatial optimization and the associated 95% confidence intervals.
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Table 5 Overall classification accuracy of colon tissue using kNN, SVM, and SAM, after spectral
and spatial optimization.

Classification model

Number of filters

3 4 5 6 7 8 9

kNN 0.976 0.963 0.963 0.954 0.950 0.946 0.946

SVM 0.961 0.955 0.944 0.941 0.931 0.931 0.926

SAM 0.968 0.964 0.961 0.955 0.952 0.952 0.946

Fig. 4 Optimal band arrangements and classification accuracy for the colon tissue types. Using
(a), (b) kNN classification, (c), (d) SVM classification, and (e), (f) SAM classification. (a), (c), (e) The
spatial arrangement of the filters is shown as per Fig. 4. (b), (d), (f) Classification accuracies after
spectral and spatial optimization and the associated 95% confidence intervals.

Table 4 Overall classification accuracy of colon tissue using kNN, SVM, and SAM after spectral
optimization.

Classification model

Number of filters

3 4 5 6 7 8 9

kNN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SVM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SAM 0.9993 0.9995 0.9997 0.9996 0.9999 0.9997 0.9999
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however, the colon dataset, newly examined using this approach, was highly separable
[Fig. 5(b)]. Not only was it possible to resolve postresection bleeding from polyps, it was also
possible to distinguish polyps from normal tissue using these metrics. We therefore proceeded to
undertake spectral band optimization only for the colon dataset.

The goodness of fit for the measured reflectance spectra to reference spectra for constituent
oxy- and deoxyhemoglobin components, along with water and background scattering, was first
examined across each colon tissue type. Overall, the fit performance was high for normal tissue,
ranging from r2 ¼ 0.82 to 0.99 (Table S4 in the Supplementary Material), but as expected
showed a greater variance in the diseased states, ranging from r2 ¼ 0.54 to 0.99 in polyp tissue
(Table S5 in the Supplementary Material) and r2 ¼ 0.48 to 0.99 in postresection tissue (Table S6
in the Supplementary Material). The majority of the fits are in the upper r2 range and the few
lower performing fits are due to noise in the spectra (Figs. S4–S6 in the Supplementary Material).
Undertaking the optimization process on these spectra [Fig. 5(c)] again shows the need for strong
sampling in the green, but now flanked by a bluer and redder band (510� 10, 558� 18, and
618� 30 nm). Interestingly, the red band in this case is rather broad compared to the other merit
functions, perhaps linked to the fit to the background scattering term. The unmixing error
declines with increasing number of bands for spectral unmixing, indicating that it is easier to
fit the reference spectra with increased sampling [Fig. 5(d) and Table 6].

Fig. 5 Unmixing of oxygen saturation (SO2) and blood volume (vblood). (a) Poor differentiation for
tissue types in the esophagus is seen based on the oxygenation, consistent with prior publication.
Conversely, better discrimination is seen (b) for the various tissue types in the colon, hence the
colon dataset only was subjected to MSFA optimization based on linear unmixing. (c) The filters
optimized using unmixing on colon tissue types. (d) Unmixing error after spectral and after spatial
optimization and the associated 95% confidence intervals.

Table 6 Spectral unmixing NRMSE of colon tissue after spectral and spatial optimization.

Classification type

Number of filters

3 4 5 6 7 8 9

After spectral optimization 0.250 0.192 0.170 0.153 0.125 0.127 0.107

After spatial optimization 3.832 2.942 3.556 3.395 1.975 2.644 2.354
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3.3 Filter Classification Illustrated on Synthetic Hypercubes
Overall, the output results from Opti-MSFA indicate that both kNN and SVM classification
had similar accuracies in esophageal tissue, reflecting the higher interpatient variation in the
esophageal dataset.8 The classification accuracy of the colon tissue was much higher as the
colon spectra are more separable, as found in prior examination using SAM.9 We next
explored how the optimal choice of spectral bands would translate into imaging performance.
In the esophageal dataset (Fig. 6), the reconstruction of the concentric circles of different
tissue types is well reflected in the kNN and SVM, with some “spillover” at the boundaries
between regions. A higher level of misclassification of the normal tissue is seen using SVM.

Fig. 6 Esophageal classification imaging outputs. (a) The spectral endmembers and (b) the
ground truth of the synthetic hypercubes used in the optimization process. The resulting synthetic
hypercube image classifications using the different MSFA designs are shown for (c) kNN, (d) SVM,
and (e) SAM.
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The SAM approach gives a poor performance, with a circular structure only barely apparent
in the 9-band case and even then showing an inversion of the disease types spatially. The
performance of the MSFA-based approach clearly decreases as spatial resolution is lost in
the 6-band and 9-band mosaic patterns.

In the colon dataset (Fig. 7), classification performance is again degraded at the edges of
features, with poorer edge definition seen with an increasing number of filters. Interestingly, the
edges of the specular reflections are consistently misclassified first to polyp and then to normal
tissue with distance from the center. This would be important clinically since specular reflections
are image artifacts and could be misleading if classified as polyp tissue. In the case of unmixing
(Fig. 8), spectral resolution is more important and outweighs the deterioration due to spatial
resolution (Table S7 in the Supplementary Material).

Fig. 7 Colon classification imaging outputs. (a) The spectral endmembers and (b) the ground truth
of the synthetic hypercubes used in the optimization process. The resulting synthetic hypercube
image classifications using the different MSFA designs are shown for (c) kNN, (d) SVM, and
(e) SAM.
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4 Discussion
Here we applied an open-source software toolbox Opti-MSFA to analyze published datasets
with the goal of identifying the potential for MSI to enhance contrast during endoscopy for
early cancer detection. Our analysis of the optimal wavelengths and bandwidths for discrimi-
nation of early cancerous lesions in the GI tract shows promise, even with only 3 or 4 targeted
wavebands, although it should be noted that the interpatient variation within the datasets under
test was relatively limited. The classification accuracies achieved for a highly restricted bandset
were very similar to those obtained for the full hyperspectral dataset, indicating that MSI
using information-rich spectral bands presents a good strategy to trading spectral and spatial
information.

Testing the MSI approach across different merit functions and datasets revealed some inter-
esting insights. In both datasets, there was typically a central spectral sampling range in which
one or more spectral band appeared, flanked by a bluer and a redder spectral band. Bands present
in the 3-band case then appeared similarly as an optimization output as the number of bands
increased. The precise location of these bands varied slightly between the esophageal and colon
datasets, with the central sampling range being 525 to 575 nm in the former and 550 to 600 nm in
the latter.

The bandwidth of the targeted spectral bands was generally quite broad in all cases, on the
order of 20 nm, likely due to the presence of relatively smoothly varying spectral features. It is
likely that the wider bandwidth balances the trade-off of improved spectral resolution that occurs
with a small bandwidth and the additional noise that occurs due to the reduced amount of light
that reaches the image sensor, since everything outside of this band is rejected. This was not the

Fig. 8 Colon spectral unmixing imaging outputs. (a) The spectral endmembers and (b) ground
truth of the synthetic hypercubes used in the classification optimization process are illustrated.
(c) The corresponding spectral endmembers and (d) ground truth in the unmixing of SO2 are illus-
trated. (e)–(g) The unmixing SO2 abundance maps for the MSFA optimization are also shown.
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case when the unmixing accuracy of HbO2 and Hb was calculated, with spectral bandwidths as
small as 10 nm and as large as 30 nm, the minimum and maximum bandwidths allowed, indicat-
ing that spectral sensitivity is important when unmixing HbO2 and Hb. The use of wider bands is
advantageous from the perspective of optical system design for future applications, requiring less
stringent design specifications for optical components, but may not be tolerated for applications
where unmixing for physiological metrics is preferred over disease classification.

Finally, the trade-off between addition of spectral information and reduction in spatial
resolution must be considered. The classification accuracy after spatial optimization for both
datasets generally decreased as the number of bands in the filters increased, except for spectral
unmixing where the NRMSE improved with more bands. It is worth noting that spectral opti-
mization assumes a complete hypercube can be measured, whereas the spatial optimization
results in a sparse hypercube due to the MSFA. With the classification models, as the number
of bands increases, there is a higher chance of adding a less information rich, noisier, band and
the lost spatial information then outweighs the additional spectral information. Some variation is
seen according to the optimization metric used. Although SAM is the simplest and least com-
putationally intensive method, it relies on distinct spectral-rather than intensity-based changes,
which means that it shows a poor performance in the esophageal dataset, where the changes
between tissue types are more heavily reliant on intensity changes. Comparing kNN and
SVM, kNN can better discern the edges of the neoplastic or polyp regions against the back-
ground. The decrease in classification accuracy with number of bands is seen most significantly
in the SVM classifiers, where increasing the number of bands from 3 to 9 reduces accuracy by
0.08, while the kNN classifier only decreases by 0.007. These findings reinforce the importance
of choosing an appropriate classifier for the dataset under investigation, considering spatial and
spectral information, and noise characteristics. Further work is necessary to fully understand the
best choice of merit function for a given set of data and how it will influence the performance of
the resulting MSFA. SAM performed well on the colon dataset, comparable to kNN and SVM
classification methods, but very poorly on the esophageal dataset. This is likely because SAM
has a limited discriminative power and struggles with the tissue types are similar or spectra that
are complex mixtures. By comparison, kNN and SVM are better able to handle complex and
nonlinear decision boundaries that SAM is unable to and are generally more robust to noise.

Although the analysis performed here is promising for the use of targeted spectral bands in
the GI tract, it is based on model hypercubes using a relatively restricted set of published spectra.
The relatively high performance for a small number of spectral bands indicates that there are
distinct spectral regions (particularly linked to hemoglobin absorption) that explain most of the
variance between the disease states; adding further spectral sampling beyond these regions also
adds noise, which can detriment classification. Further analysis should evaluate how inter- and
intrapatient variation, along with noise variations in imaging systems, might affect the optimal
filter arrays in a larger dataset. The testing and training datasets here were split before training,
but since there is interpatient variation, this could lead to overclassification. To assess this, the
95% confidence interval was calculated on the average classification accuracies of different
patients. The highest classification accuracies occurred in the colon dataset, in agreement with
the classification in previous work that used SAM methods and showed very good separation of
the spectra of the different tissue types. Further work could assess how these classification accu-
racies vary between patients and consider confounding factors that may influence the measure-
ments, such as age or genetics. To assess the impact of the spatial variation in true hyperspectral
data, future work should acquire full hyperspectral imaging datacubes from endoscopy in situ to
optimize MSFAs, rather than using spectroscopy data to simulate the imaging scenario. Other
sources of error that would be encountered in a clinical setting, such as patient motion, should
also be examined. Nevertheless, the results shown here demonstrate that the complex trade-offs
involved with spectral imaging can be balanced by tuning the MSFAs using different merit func-
tions to focus on classification or unmixing.

Furthermore, the study highlights the necessity of addressing interpatient variability and the
potential for overclassification when a dataset arising from a limited number of biological rep-
licates (i.e., patients) is used. The promising classification accuracies observed underscore the
effectiveness of the spectral band selection, but it is important to ensure that these results are not
solely due to the constraints of the dataset. Ongoing work to acquire data from a larger number of
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patients to fairly reflect biological variations and additionally acquire in situ hyperspectral im-
aging data cubes will allow deeper analysis into the complex trade-offs that spectral imaging
presents. Ultimately, the ability to fine-tune the MSFAs with methods that are robust and clin-
ically applicable amidst the diverse variables presented by actual patient data and the clinical
environment has the potential to improve patient outcomes by enabling early cancer detection.

5 Conclusion
Customized MSFAs with a relatively small number of spectral bands could be applied to enhance
contrast for early cancer detection in the GI tract. Using targeted spectral bands, classification of
different tissues can be optimized to improve early cancer diagnosis. Future work includes testing
filters in a clinical setting and collecting more spectral datasets from a larger number and diver-
sity of patients to improve the design of endoscopes for use in the GI tract.
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