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ABSTRACT. Significance: During breast-conserving surgeries, it is essential to evaluate the
resection margins (edges of breast specimen) to determine whether the tumor
has been removed completely. In current surgical practice, there are no methods
available to aid in accurate real-time margin evaluation.

Aim: In this study, we investigated the diagnostic accuracy of diffuse reflectance
spectroscopy (DRS) combined with tissue classification models in discriminating
tumorous tissue from healthy tissue up to 2 mm in depth on the actual resection
margin of in vivo breast tissue.

Approach: We collected an extensive dataset of DRS measurements on ex vivo
breast tissue and in vivo breast tissue, which we used to develop different classi-
fication models for tissue classification. Next, these models were used in vivo to
evaluate the performance of DRS for tissue discrimination during breast conserving
surgery. We investigated which training strategy yielded optimum results for the
classification model with the highest performance.

Results: We achieved a Matthews correlation coefficient of 0.76, a sensitivity of
96.7% (95% CI 95.6% to 98.2%), a specificity of 90.6% (95% CI 86.3% to 97.9%)
and an area under the curve of 0.98 by training the optimummodel on a combination
of ex vivo and in vivo DRS data.

Conclusions: DRS allows real-time margin assessment with a high sensitivity and
specificity during breast-conserving surgeries.
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1 Introduction
Breast cancer is the most frequently diagnosed type of cancer among women globally, with an
estimated incidence of 2.26 million cases in the year 2020.1 It is the leading cause of cancer death
among females, with an estimated number of 685,000 deaths in the year 2020.1 The standard of
care for early-stage breast cancer is breast-conserving therapy (BCT), which involves breast-
conserving surgery (BCS) followed by adjuvant radiotherapy.2,3 In BCS, the surgeon attempts to
excise the entire tumor along with a small margin of healthy tissue while providing a satisfactory
cosmetic outcome. Multiple randomized clinical trials have demonstrated equivalent survival
outcomes for mastectomy and BCT if clear resection margins (edges of a breast cancer specimen)
are achieved during BCS.4–7 To assess whether the margins of a specimen are clear, and therefore
no cancerous cells remain in the adjacent tissue, a histopathological examination is performed
after surgery. If positive (tumor-involved) margins are found, the patient is usually recommended
to undergo a re-excision and/or additional doses of radiotherapy,8 as tumor positive margins are
associated with a twofold increase in ipsilateral breast tumor recurrence and an overall lower
long-term survival.9–13 The required additional therapy in patients with positive margins may
result in anxiety, increased clinical complications,14,15 unsatisfactory cosmetic outcome, and16–19

increased health care costs.15,20–22 Globally, there is a lack of consensus on what constitutes a
“positive margin,” and the reported rates of positive margins after BCS in the literature vary from
9% to as high as 36% for invasive breast cancer and from 4% to as high as 23% for ductal
carcinoma in situ (DCIS).23 According to Dutch guidelines, a positive margin is defined as
invasive carcinoma (IC) cells reaching the inked margin over a trajectory >4 mm or DCIS cells
reaching the inked margin over any trajectory.24 Focally positive margins are defined as IC cells
reaching the inked margin over a trajectory ≤4 mm.24 Otherwise, the margins are considered
negative. For the United States, according to the guidelines of the Society of Surgical Oncology
(SSO) and the American Society for Radiation Oncology (ASTRO), a margin is considered
tumor-positive when ink touches the IC or when there is DCIS present within 2 mm from the
resection margin.9

During BCS, the surgeon has to rely on visual and haptic inspection of the tissue to obtain
information about the surgical margins. The definitive margin status is only reported following
the histopathological examination, which usually occurs a few days after surgery. Therefore,
there is a clinical need for methods that are able to support the surgeon’s evaluation of resection
margins in real time and accurately during BCS. Current techniques for intraoperative margin
assessment involve specimen radiography, frozen section analysis, and touch preparation
cytology. However, these techniques are not incorporated into the standard surgical workflow
due to low diagnostic accuracy, low speed, and cumbersome workload for pathologists and/or
radiologists.25,26 In light of this, a wide variety of approaches with the overarching goal of intra-
operative margin assessment is being investigated.27–29 These techniques include intraoperative
ultrasonography,30–32 radiofrequency spectroscopy,33–36 bioimpedance spectroscopy,37 Raman
spectroscopy,38–40 digital breast tomosynthesis,41 fluorescence imaging,42 microcomputed
tomography,43 optical coherence tomography,44–46 quantitative micro-elastography,47 ultraviolet
photoacoustic microscopy,48,49 intraoperative flow cytometry,50 and microscopy with ultraviolet
surface excitation.51 Although some of the mentioned techniques seem promising, none of them
have been translated into routine surgical practice yet. The reasons for this lack of implementa-
tion include low diagnostic accuracy,41,43,52 time-consuming process, difficult interpretation, high
operator dependence, inability to perform over the entire margin,50 early stage of development,
and/or undetermined cost-effectiveness.27,28,53,54

Fiber-optic diffuse reflectance spectroscopy (DRS) is an optical technique that is also being
investigated for the purpose of margin assessment in cancer surgeries. In DRS, a beam of light is
directed through an emitting fiber into the tissue, where it undergoes several light-tissue inter-
actions, such as scattering and absorption, before the light is partially reflected back. The inten-
sity of the diffusely reflected light at various wavelengths is recorded, producing a diffuse
reflectance spectrum. By analyzing this spectrum, information can be obtained about the
composition and optical properties of the illuminated tissue. This information could be used
to distinguish different tissue types and thus potentially detect cancerous tissue during cancer
surgeries.
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In recent years, our research group has conducted multiple studies to investigate the combi-
nation of DRS with classification models to distinguish tumorous tissue from healthy tissue on
sliced, ex vivo breast cancer specimens with excellent results, including a sensitivity and speci-
ficity of 100% in distinguishing tumorous breast tissue from healthy breast tissue.55,56 In these
studies, DRS measurements were performed on pure healthy tissue locations and pure tumorous
tissue locations on sliced breast cancer specimens. In our latest publication, we reported the
results of our study on the diagnostic accuracy of DRS combined with classification models,
as a margin assessment tool during BCS. We applied DRS on the actual resection margin of
ex vivo breast cancer specimens rather than sliced specimens and found a sensitivity of 93%
and a specificity of 75% for distinguishing tumorous tissue from healthy tissue up to 2 mm from
the margin, when using five optical fibers.57

The next step is to move forward to real-time clinical application during breast-conserving
surgeries and investigate if these classification models that are trained and tested on DRS data
acquired from ex vivo breast tissue have a similar performance when applied to DRS data from
in vivo breast tissue. This is relevant because acquiring data in vivo is more complex as it is time-
consuming and usually limited to a small number of measurements per patient. Therefore, it is
worthwhile to investigate if one could mainly use ex vivo data for training a classification model
without compromising the performance when used in vivo.

The first aim was to investigate the performance of DRS combined with classification algo-
rithms, trained on DRS data acquired from ex vivo and/or in vivo breast tissue, and tested on data
acquired from in vivo breast tissue. For this, we acquired an extensive dataset of DRS data from
ex vivo and in vivo breast tissue. We built four different types of classification models, and evalu-
ated their classification performance when trained on the different types of data (ex vivo/in vivo).
The second aim was to select the optimum model based on the highest classification performance
and investigate the model training strategy that yields the best performance for the selected
classification model.

2 Materials and Methods

2.1 Diffuse Reflectance Spectroscopy Setup
The instrumentation of the optical measurement system consisted of a console with five light
sources for tissue illumination, two different spectrometers, and an in-house developed, handheld
fiber-optic DRS probe. The light sources were identical, halogen broadband lamps (Avantes,
AvaLight-HAL, 360 to 2500 nm) with integrated shutters. Of both spectrometers, one covered
a visible wavelength range from 200 to 1160 nm (Avantes, AVASPEC-HS2048XL-EVO),
and the other covered a near-infrared wavelength range from 900 to 1750 nm (Avantes,
AVASPECNIR256-1.7-RS). The DRS probe consisted of five peripheral illumination fibers
placed in a circle around one receiving fiber in the center. Each light source was coupled to
one illumination fiber. The source–detector fiber distance for all fibers was 2.0 mm. All diffuse
reflectance spectra were calibrated on a white reference object of spectralon in a similar manner
as described in Refs. 56 and 58. Therefore, any disparity between the light sources would be
inconsequential. A schematic representation of the optical measurement system is given in Sec. 1
in the Supplementary Material.

2.2 Study Design and Participants
This prospective non-randomized cohort study was conducted from 2019 to 2023 at the
Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL). Ethical approval
for the study protocol was granted by the Institutional Review Board. Patients undergoing breast-
conserving surgery due to histologically proven IC and/or DCIS, with or without neoadjuvant
therapy, were included. Patients with a complete radiologic response after neoadjuvant therapy
were excluded. The study period consisted of two phases. During the first phase, patients were
included for only ex vivo tissue measurements on BCS specimens. According to the medical
research involving human subjects act, no written consent was required for these measurements.
During the second phase of the study, patients were included for in vivo as well as ex vivo tissue
measurements during BCS. All included participants for these measurements had provided
written informed consent and were treated according to local standard protocols.
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2.3 Data Acquisition
A schematic representation of the data acquisition process is shown in Fig. 1. The following
patient characteristics were collected from medical records: age at the time of surgery, admin-
istration of neoadjuvant therapy, pathological diagnosis of the resected specimen, and margin
status.

2.3.1 Measurements phase I

Directly after surgery, the BCS specimen was collected from the surgical team, and DRS mea-
surements were performed after an estimated time interval of a few minutes. We selected
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Fig. 1 Overview of the data acquisition method for phase I (top left) and phase II (top right).
In panel (a), the image displays a point-based DRS measurement on an ex vivo BCS specimen.
This is followed by (d) (middle row) marking the measurement location with black pathology ink,
(e) standard processing by the pathology department, including coloring, and (f) slicing the
specimen. In phase II, the workflow starts with (b) point-based DRS measurements on a volume
in vivo breast tissue that is meant to be resected, followed by (c) DRS measurement on an ex vivo
BCS specimen. This is followed by the same steps (d)–(f) as explained for phase I. A schematic
overview of the method for determining the tumor-margin distance and tissue area percentages in
the corresponding H&E sections (bottom). In panel (g), the original H&E section with the annotated
borders of the lesion in red and the black ink along the margin at the measurement location (blue
arrows) and (h) the magnified image of the measured tissue location (blue arrows). The yellow
arrows indicate the maximum, central, and minimum tumor-margin distance, determined by meas-
uring the perpendicular distance from the surgical surface to the tumor. Finally, the percentage of
tumorous tissue and healthy breast tissue was determined over a depth of 2 mm at the marked
region (i), indicated by the blue box (h).
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approximately three to five locations on the margins of the specimen for DRS measurements.
A total of three consecutive DRS measurements were performed on each selected location while
ensuring the surface of the probe tip was in contact with the tissue. After the measurements, the
measured tissue location was marked with black pathology ink. Considering the overall limited
number of measurements that were possible due to the histopathology protocol in our hospital,
we performed ultrasound imaging on some of the specimens to localize the areas with a short
distance from the tumor edge to the resection margin.

2.3.2 Measurements phase II

During this phase, in vivo measurements as well as ex vivo measurements were performed. Prior
to the surgery, the optical measurement system was set up. During the standard surgical pro-
cedure, optical measurements were obtained by the surgeon at one location on each of the six
resection sides of the tissue volume meant to be resected (comparable to six sides of a cube). Each
location was selected based on a suspected short distance between the margin and the tumor edge
after visual and haptic inspection by the surgeon. Similar to the ex vivo measurements, three
consecutive DRS spectra were acquired on each location. This was followed by the placement
of a surgical clip to mark it. The acquisition time of each measurement was a few seconds. After
surgery, we removed each surgical clip on the in vivomeasurement locations and directly marked
it again with black pathology ink. Furthermore, we performed DRS measurements on one or two
additionally selected locations as per the measurement protocol of phase I.

2.3.3 Specimen handling and ground truth labels

After DRS measurements, the specimen was delivered to the pathology department for standard
pathology processing. This processing entailed inking the resection margins for orientation pur-
poses, freezing the specimen, slicing the specimen in a serial manner, and processing the slices
into cellular thin hematoxylin and eosin-stained (H&E) sections. The digitized pathological H&E
sections of all measurement locations were examined by an experienced pathologist. During this
process, the pathologist annotated all areas of IC and DCIS in the H&E images. Subsequently,
a region up to 2 mm underneath the black ink mark was determined. The area percentage of
tumor tissue within this region was determined based on the annotations, using image processing
tools in MATLAB. The remaining healthy tissue in the region consisted of fat and connective
tissue. The area percentages of both healthy tissue types were determined using a threshold value
for the intensity in the green channel of the H&E image, as described in Kho et al.59 These tissue
percentages together form the ground truth labels of the dataset. If any tumor tissue was present
within the determined region up to a depth of 2 mm, the location was labeled as malignant. The
rationale behind choosing this depth is the definition of a positive margin according to the SSO
ASTRO guidelines mentioned earlier.9 If no tumor tissue was present in the region, the location
was labeled as healthy. Additionally, if any tumor percentage was present within the region, the
maximum, minimum, and central perpendicular distance from the black ink to the tumor edge
was determined. The tumor-margin distance was calculated as the average of the aforementioned
distances.

2.4 Data Processing
For all data analyses, we used MATLAB version R2022a (MathWorks Inc., Natick,
Massachusetts, United States). The entire data analysis process is displayed in Fig. 2.

2.4.1 Spectra normalization

The three consecutively collected diffuse reflectance spectra of each measurement location were
averaged, and the spectra from both wavelength ranges were stitched together. Moreover, the
extremities of the spectral range were removed due to a large level of noise relative to the signal
being measured. These extremities consisted of the spectral range between 350 and 400 nm and
the spectral range between 1600 and 1700 nm. As a result, the remaining data were of higher
quality and more reliable for further processing. A multiplicative scatter correction (MSC)
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normalization approach was applied60 to correct the spectra in a manner that they are as close as
possible to the mean spectrum of the dataset. By applying this technique to the dataset, intensity
differences due to variability in light scattering effects and path length were corrected.
Furthermore, random inter-patient variations and random variations in background light and
signal quality were also reasonably reduced.

2.4.2 Feature extraction and selection

Each normalized spectrum consisted of the reflection intensities at the wavelength range 400 to
1600 nm, meaning 1200 different wavelengths. Each reflection intensity represents a feature that
could be used for training classification models. To reduce overfitting and improve classification
performance, we performed feature extraction and selection as described in de Boer et al.56 The
extracted features were a set of visible spectral features in the near-infrared wavelength range,
including the slopes of spectra between the maximum intensities in the first 25% and the last 25%
of particular wavelength ranges, the maximum difference between the slope and the spectrum,
the corresponding wavelength at the point of maximum difference, and the inflection points left
and right of the point of maximum difference, as described by de Boer et al.56 This set included
80 different features over the spectral range that we measured. Because we measured using
5 different fibers, in total 400 features could be extracted (80 features per fiber). This was
followed by feature selection, which entailed applying a minimum redundancy maximum
relevance (MRMR) feature selection algorithm.61 MRMR is used to rank the importance of
all quantified features for the binary classification of each spectrum into belonging to either
tumorous tissue or healthy tissue. Features with an importance score ≥0.015 were selected.

2.5 Classification
Four different types of supervised machine learning classification models were built: (1) linear
support vector machine (SVM); (2) quadratic SVM, (3) weighted K-nearest neighbors (KNNs)
algorithm, and (4) ensemble random under sampling boosted tree (RUSBoost). We selected these
particular model types because our research group has built similar models for DRS data clas-
sification during earlier studies, which showed high classification performance.56,57,62–64 Three
classification models per model type were built, each trained on one of the following types of
data: (1) spectral features from ex vivo tissue locations, (2) spectral features from in vivo tissue
locations, and (3) spectral features from ex vivo and in vivo tissue locations. Then, each clas-
sification model was tested on spectral features from in vivo tissue locations. For each
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Feature
Selection

Data preprocessing

Feature reduction 5-fold cross-validation
Performance

Evaluation

Normalized spectra

Ground 
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Training                
models

Fig. 2 Overview of the workflow for data analysis. The process started with data preprocessing,
which entailed spectrum normalization. The plotted spectra on the left are examples of characteristic
spectra from locations with IC, DCIS, and fat, respectively, connective tissue. The plots on the right
are the same spectra after normalization was applied. The next step was feature reduction, which
involved feature extraction and feature selection. Subsequently, the selected features coupled with
the ground truth labels derived from the histopathological analysis were used to train different clas-
sification models using fivefold cross-validation. The performance of each model was evaluated.
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experiment, the data were divided into training and test sets using a repeated 5-fold cross-
validation method, with 20 iterations. The data from each patient were assigned to either the
training set or the test set during each iteration to avoid bias.

2.6 Performance Evaluation
First, we evaluated the performance of each classification model using the following metrics,
averaged over 20 iterations: Matthews correlation coefficient (MCC) with corresponding stan-
dard deviation (SD). The MCC ranges between −1 and 1 and indicates the agreement between
the actual and predicted labels. This metric considers the true negative (Nþ) rate, the true positive
(Pþ) rate, the false negative (N−) rate, and the false positive (P−) rate and is calculated as
follows:

EQ-TARGET;temp:intralink-;e001;117;604MCC ¼ ðPþ × Nþ − P− × N−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðPþ þ P−ÞðPþ þ N−ÞðNþ þ P−ÞðNþ þ N−Þp : (1)

It is a robust measure that only produces a high score if the prediction has good rates in all
four categories. This metric takes imbalance between classes into account. We compared the
MCC of the different classification models, when trained on the three different types of data.
Subsequently, we selected the model type with the overall highest MCC for further analysis. We
plotted receiver operating characteristic (ROC) curves of the selected models trained on the three
different types of data. Subsequently, we selected the optimal operating point for each ROC
curve, which was defined as the point with the minimum average misclassification cost. The
sensitivity and specificity with the corresponding 95% confidence intervals (CI) at each of these
points were determined. The threshold for calculating sensitivity and specificity was selected
based on the highest MCC value. Finally, we plotted the tumor-margin distance against the
tumor percentage of all correctly and incorrectly classified tumor locations. We investigated
the correlation between these parameters and the misclassification of tumor locations using the
aforementioned plot.

3 Results

3.1 Characteristics of Patient Cohort
A total of 228 patients were recruited into this study. An overview of the patient and tumor
characteristics as well as measurement locations of all included patients in phase I
(N ¼ 128) and phase II (N ¼ 100) are given in Table 1. The median age of the patients in phase
I was 60.5 years (SD = 11.9) compared with 62.0 years (SD = 13.1) in phase II (Table 1). The
median lesion diameter was 13.5 mm (SD = 12.6) in phase I compared with 14.0 (SD = 13.5) in
phase II (Table 1). Both the median age and the median lesion diameter were comparable in both
groups. Regarding neoadjuvant treatment (chemotherapy or endocrine therapy), both patient
groups had a comparable rate of patients without neoadjuvant treatment (63.3% of patients
in phase I compared with 62% of patients in phase II) (Table 1). In phase I, a slightly higher
percentage of patients had received neoadjuvant chemotherapy (27.3%) compared with phase II
(22%) (Table 1). In phase II, a slightly higher percentage of patients had received neoadjuvant
endocrine therapy (16%) compared with phase I (9.4%) (Table 1). It should be mentioned that
many different (combinations of) malignant pathological diagnoses have been included in both
phases and the distribution was quite comparable, as can be seen in Table 1. The majority of all
patients in phase I (42,2%) and phase II (39%) had an IC NST (IC of no special type). This was
followed by IC NST combined with DCIS (28.1% in phase I and 36% in phase II) (Table 1).
When looking at margin status, according to Dutch guidelines, 14,0% of patients in phase I had
positive margins compared with 12% of patients in phase II (Table 1). In total, patients in phase I
had a slightly higher rate of patients with focally positive margins (18%) compared with patients
in phase II (10%) (Table 1).

3.2 Measurement Locations
Of all 553 measurement locations acquired in phase I, there were 106 (19.2%) ex vivo tumor
locations (tumor tissue within 2 mm from the margin) and 447 (80.8%) ex vivo healthy locations
(healthy tissue within 2 mm from the margin) (Table 1). Among the 640 measurement locations
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acquired in phase II, there were 46 (7.2%) ex vivo tumor locations, 31 (4.8%) in vivo tumor
locations, 80 (12.5%) ex vivo healthy locations, and 483 (75.5%) in vivo healthy locations
(Table 1).

Figure 3 displays the distribution of the area percentages of all tissue types in the correlated
H&E region of each ex vivo measurement location (top) and each in vivo measurement location
(bottom). The tissue type distributions are quite similar for both groups, except for four notable
differences. The first difference is that the percentage of measurement locations with tumor tissue
(either IC or DCIS) is higher in the ex vivo group (22%) compared with the in vivo group (6%)
(Fig. 3). The second difference is that the average percentage of tumor tissue in the tumor loca-
tions is higher among the in vivo locations compared with the ex vivo locations (Fig. 3). The third
difference is that a higher percentage of tumor locations in the ex vivo group contain DCIS (22%)
compared with the tumor locations in the in vivo group (10%) (Fig. 3). The fourth difference is

Table 1 Characteristics of patient cohort and measurement locations.

Phase I:
Ex vivo (N ¼ 128)

Phase II:
In vivo and ex vivo (N ¼ 100)

Age (years) (median, SD) 60,5 (11,9) 62,0 (13,1)

Lesion diameter (mm) (median, SD) 13,5 (12,6) 14,0 (13,5)

Neoadjuvant treatment

Chemotherapy 35 (27,3%) 22 (22%)

Endocrine therapy 12 (9,4%) 16 (16%)

None 81 (63,3%) 62 (62%)

Histological tumor type

IC NST 54 (42,2%) 39 (39%)

IC NST + DCIS 36 (28,1%) 36 (36%)

IC NST + LCIS 4 (3,1%) 1 (1%)

ILC 13 (10,2%) 11 (11%)

ILC + LCIS 6 (4,7%) 2 (2%)

ILC + DCIS 1 (0.8%) 0

DCIS 13 (10,1%) 8 (8%)

LCIS 1 (0.8%) 2 (2%)

DCIS + LCIS 0 1 (1%)

Margin status

Negative 87 (68,0%) 78 (78%)

Focally positive 23 (18,0%) 10 (10%)

Positive 18 (14,0%) 12 (12%)

Measurement locations

Tumor locations in vivo — 31

Tumor locations ex vivo 106 46

Healthy locations in vivo — 483

Healthy locations ex vivo 447 80

IC NST, invasive carcinoma of no special type; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma;
and LCIS, lobular carcinoma in situ.
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that the locations in the in vivo group on average have a slightly higher area percentage of
fat tissue compared with the ex vivo group (Fig. 3).

3.3 Selected Features
The MRMR analysis yielded 21 optimum features per spectrum. Table 2 gives an overview of all
selected optimum features, ranked by feature importance score. It is important to mention that all
of the described features are in the near-infrared wavelength range. In this particular range, fat,
water, and collagen are the primary absorbers in tissue that affect the interaction with light.

3.4 Classification Performance of Four Types of Classification Models Trained
on Different Types of Data

Table 3 gives an overview of the MCCs for the discrimination of tumor locations from healthy
locations for four types of classification models, trained on three different types of data and tested
on the in vivo dataset. From this table, it is apparent that training on DRS data acquired from
ex vivo tissue yields similar performance results compared with training on DRS data acquired
from in vivo tissue, regardless of model type. Furthermore, it is noticeable that the RUSBoost
has the overall best classification performance on any type of training data compared with the
other model types (Table 3). Overall, the highest classification performance is achieved by the
RUSBoost trained on a combination of in vivo and ex vivo data, with an MCC of 0.76 (Table 3).
The quadratic SVM and weighted KNN have the lowest performance with an MCC ranging
between 0.57 and 0.59 and 0.58 and 0.61, respectively, depending on the type of training data
(Table 3). For the remainder of the study, we selected the RUSBoost as the optimum model type
for further analysis.

3.5 Effect of Different Types of Training Data on Classification Performance of
Optimum Model Type

Figure 4 shows the ROC curves and the area under the curve (AUC) for the RUSBoost,
when trained on different types of training data. It is noteworthy to mention that the AUC of
all differently trained models is similarly high, indicating a high classification performance
(Fig. 4).

Table 4 displays the sensitivity and specificity with the 95% CI at the optimal operating point
of each of the respective ROC curves. Training on a combination of ex vivo and in vivo data yields
a slightly higher sensitivity (96.7% (95% CI 95.6% to 98.2%) and specificity (90.6% (95% CI
86.3% to 97.9%) compared with models trained on either ex vivo or in vivo data. This finding is in
accordance with the marginally higher MCC (Table 3) and AUC (Fig. 4) of this model.
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3.6 Classifiction of Tumor Locations In Vivo
Figure 5 displays the correctly and incorrectly classified tumor locations (IC and DCIS) with
their corresponding tumor-margin distance and area percentage of tumor for the in vivo mea-
surements. Overall, there appears to be a negative, linear correlation between tumor percentage
and the distance to the tumor margin. This was found in our earlier research as well.65 This occurs
because the tumor percentage for each measurement location is evaluated within a two-dimen-
sional region extending up to 2 mm from the margin. When the average distance to the tumor is
greater, it is likely that there will be a lower percentage of tumor tissue in that area. In total, there
were 31 in vivo tumor locations in the entire dataset (Table 1). As can be seen in Fig. 5, most of

Table 2 Optimum features according to MRMR analysis, ranked by feature importance score.

Rank Selected feature

1 Slope of the measured spectrum between 1213 and 1248 nm

2 Slope of the measured spectrum between 931 and 1195 nm

3 Wavelength of the left inflection point of the peak between 1224 and 1331 nm

4 Maximum difference between the slope and the measured spectrum between 1142 and 1225 nm

5 Maximum difference between the slope and the measured spectrum between 1021 and 1102 nm

6 Slope of the measured spectrum between 999 and 1034 nm

7 Slope of the measured spectrum between 1395 and 1430 nm

8 Wavelength of the right inflection point of the peak between 1404 and 1437 nm

9 Slope of the measured spectrum between 1467 and 1502 nm

10 Wavelength of the right inflection point of the peak between 1142 and 1225 nm

11 Slope of the measured spectrum between 1121 and 1401 nm

12 Slope of the measured spectrum between 932 and 967 nm

13 Slope of the measured spectrum between 1112 and 1147 nm

14 Wavelength of the right inflection point of the peak between 1224 and 1331 nm

15 Slope of the measured spectrum between 1201 and 1236 nm

16 Wavelength of the right inflection point of the peak between 1382 and 1574 nm

17 Wavelength of the right inflection point of the peak between 1404 and 1437 nm

18 Slope of the measured spectrum between 883 and 1149 nm

19 Maximum difference between the slope and the measured spectrum between 1224 and 1329 nm

20 Slope of the measured spectrum between 932 and 967 nm

21 Slope of the measured spectrum between 926 and 1149 nm

Table 3 Classification performance for four different types of classification models, when trained
on different types of DRS data and tested on in vivo data.

Type of training data Linear SVM Quadratic SVM Weighted KNN RUSBoost

MCC (SD) Ex vivo 0.67 (0.007) 0.57 (0.016) 0.59 (0.007) 0.73 (0.010)

In vivo 0.62 (0.055) 0.58 (0.048) 0.58 (0.036) 0.74 (0.029)

In vivo + Ex vivo 0.71 (0.037) 0.59 (0.055) 0.61 (0.021) 0.76 (0.028)
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Table 4 Sensitivity and specificity of the RUSBoost model for distinguishing tumorous tissue from
healthy breast tissue in vivo, when trained on different types of data.

Sensitivity (%) (95% CI) Specificity (%) (95% CI)

Trained on in vivo data 96.1 (94.6 to 97.9) 87.6 (70.2 to 93.4)

Trained on ex vivo data 96.0 (94.5 to 97.3) 85.7 (77.1 to 89.2)

Trained on ex vivo and in vivo data 96.7 (95.6 to 98.2) 90.6 (86.3 to 97.9)
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the tumor locations (28) were identified correctly, and only 3 tumor locations were misclassified.
All misclassified locations have a distance>1.0 mm from the resection margin, which according
to the Dutch guidelines is not considered a positive margin.24 In earlier research, we found that
similar DRS classification models are more prone to misclassifying ex vivo tumor locations with
a higher tumor-margin distance and lower tumor area percentage.65 A similar trend can be seen
in Fig. 5.

4 Discussion
In breast-conserving surgeries, it is essential to ensure negative resection margins to minimize
the risk of local tumor recurrence and the potential need for subsequent surgeries or additional
radiotherapy. However, no standard method is employed yet to support margin assessment by
surgeons. With the ability to discriminate tumorous tissue from healthy tissue with high accuracy
on the margin of ex vivo BCS specimens,65 DRS has the potential to be applied as a real-time
margin assessment tool during breast-conserving surgeries. However, optimal strategies for
selecting training data and the performance of different DRS classification models on breast
tissue, which can subsequently be applied in vivo during BCS, has not been fully evaluated yet.

In this study, we therefore built an extensive dataset of DRS measurements on ex vivo breast
tissue and in vivo breast tissue, which we used to develop four different types of classification
models to evaluate the classification performance on DRS data acquired from in vivo breast
tissue. We investigated which type of training data yielded optimum results for the classification
model with the highest performance.

For all built model types, the classification performance when trained on DRS data acquired
from ex vivo tissue was comparable to the classification performance when trained on DRS data
acquired from in vivo tissue. This could be explained by the fact that all selected features were
situated in the near-infrared wavelength range, where fat and water are the primary absorbers.
In an earlier study of our group, it was found that the fat fraction in combination with the total
volume of fat and water provided the best discrimination between tumorous breast tissue and
healthy breast tissue.55 This optical parameter did not change significantly when comparing
ex vivo tissue measurements with in vivo tissue measurements.56,66 On the other hand, the rapid
change in ratio of oxygenated to deoxygenated hemoglobin post surgery substantially impacts
the optical absorption in the visual wavelength range. Therefore, based on our previous results,
no features were extracted from the visual wavelength range.

The RUSBoost has the highest classification performance on any type of training data
compared with the other investigated models. The highest performance is achieved when the
RUSBoost is trained on a combination of DRS data acquired from ex vivo tissue and in vivo
tissue, with a MCC of 0.76. The explanation for the high performance of this particular model
is that the RUSBoost model alleviates the imbalance of the in vivo dataset using random under
sampling and boosting.67

When analyzing the three ROC curves for the RUSBoost models trained on DRS data from
(1) ex vivo tissue, (2) in vivo tissue, and (3) ex vivo and in vivo tissue, it was evident that the AUCs
of all models were comparably high. Similarly, all models had a high sensitivity and specificity at
the optimal operating point. The sensitivity of all models is higher compared with the specificity,
which is desirable because missing any tumor tissue on the margin has a more negative impact on
the clinical outcome of a patient. Thus our data show that it is possible to mainly use ex vivo data
for training the models. The results showed that training on a combination of ex vivo and in vivo
data yields the highest performance metrics, with an AUC of 0.98, sensitivity of 96.7% (95% CI
95.6% to 98.2%), and specificity of 90.6% (95% CI 86.3% to 97.9%). A probable explanation for
the slightly higher performance is the higher amount of available data for training compared with
the models trained on only ex vivo or only in vivo data.

It should be noted that during this research, we carefully correlated the measured tissue
locations to the corresponding region in the H&E sections. However, the area percentages of
tissue types and the tumor-margin distances could only be calculated from the 2D H&E region
derived from a few cell layers, whereas the actual probed volume is a bigger 3D volume.
Therefore, the calculated parameters in the H&E section will not completely correspond with
the probed tissue volume. Furthermore, it should be mentioned that the tissue percentage
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distribution among the ex vivo tissue locations is slightly different from the in vivo tissue loca-
tions. A possible explanation for this difference is that the data acquisition on ex vivo tissue could
be performed in a more controlled method, and US imaging was available to localize tumor areas
in some specimens. Because the data distribution is slightly different for the in vivo locations,
including tumor locations with higher tumor percentages and healthy locations with higher fat
percentages, this dataset could possibly lead to less misclassifications compared with the ex vivo
dataset. This could partially explain the finding in a previous study in which we built an
RUSBoost model on an ex vivo dataset to distinguish tumorous tissue from healthy tissue up
to 2 mm from the margin ex vivo and found a sensitivity of 93% and a specificity of 75%, which
were lower performance metrics compared with the findings in this study (sensitivity of 97% and
specificity of 91%).65 An underexposed point in our manuscript would be the influence of differ-
ent patient and tumor characteristics on the classification accuracy of the models. Unfortunately,
the individual groups in our study were too small to perform any subgroup analyses. However,
this would be an interesting point to study in the future.

Our ultimate goal is the clinical application of DRS for real-time margin assessment during
BCS to improve surgical outcomes. For this purpose, it is important to perform the DRS mea-
surements at the exact tissue locations with a high probability of a (focally) positive margin.
There are two possible options to solve the issue of finding these locations: (1) using a second
modality to find the measurement locations and (2) applying continuous DRS measurements.
For the first option, US imaging combined with deep learning based tumor segmentation could
be a valuable addition. In an earlier study, we found a median dice score of 0.88 when using an
ensemble approach for tumor segmentation in US images of BCS specimens,65 which shows
great potential to be applied as a modality to find the correct locations for margin assessment.
In the second option, the DRS probe could be moved over the entire margin, permitting quick
measurements and classification in a continuous manner. The feasibility and diagnostic accuracy
of both options should be investigated in a follow-up study.

5 Conclusion
In this study, we have advanced toward the use of fiber-optic DRS for intra-operative margin
assessment during BCS. We built an extensive set of DRS data acquired from ex vivo and in vivo
breast tissue and built several classification models to discriminate tumorous tissue from healthy
tissue up to 2 mm from the resection margin. The optimum classification model had a similarly
high performance for classifying DRS data from in vivo tissue, when trained on ex vivo and/or
in vivo data. By training on a combination of ex vivo and in vivo data, we achieved an MCC of
0.76, a sensitivity of 96.7% (95% CI 95.6% to 98.2%), a specificity of 90.6% (95% CI 86.3% to
97.9%), and an AUC of 0.98. These results show the potential of DRS to be applied as a tool to
support margin assessment in real time during BCS. To achieve this ultimate goal, additional
research needs to be performed regarding the optimum method to find the tissue locations with
a high probability of a (focally) positive margin during BCS.
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