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ABSTRACT. Significance: Photoacoustic imaging (PAI) provides contrast based on the concen-
tration of optical absorbers in tissue, enabling the assessment of functional physio-
logical parameters such as blood oxygen saturation (sO2). Recent evidence
suggests that variation in melanin levels in the epidermis leads to measurement
biases in optical technologies, which could potentially limit the application of these
biomarkers in diverse populations.

Aim: To examine the effects of skin melanin pigmentation on PAI and oximetry.

Approach: We evaluated the effects of skin tone in PAI using a computational skin
model, two-layer melanin-containing tissue-mimicking phantoms, and mice of a con-
sistent genetic background with varying pigmentations. The computational skin
model was validated by simulating the diffuse reflectance spectrum using the add-
ing-doubling method, allowing us to assign our simulation parameters to approxi-
mate Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations
were run to obtain idealized photoacoustic images of our skin model. Photoacoustic
images of the phantoms and mice were acquired using a commercial instrument.
Reconstructed images were processed with linear spectral unmixing to estimate
blood oxygenation. Linear unmixing results were compared with a learned unmixing
approach based on gradient-boosted regression.

Results: Our computational skin model was consistent with representative literature
for in vivo skin reflectance measurements. We observed consistent spectral coloring
effects across all model systems, with an overestimation of sO2 and more image
artifacts observed with increasing melanin concentration. The learned unmixing
approach reduced the measurement bias, but predictions made at lower blood
sO2 still suffered from a skin tone-dependent effect.

Conclusion: PAI demonstrates measurement bias, including an overestimation of
blood sO2, in higher Fitzpatrick skin types. Future research should aim to character-
ize this effect in humans to ensure equitable application of the technology.
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1 Introduction
Photoacoustic imaging (PAI) is an emerging molecular imaging modality that provides contrast
based on the absorption of light by different molecules (chromophores) in tissue. These mol-
ecules may be endogenous, such as hemoglobin, melanin, lipids and water, or exogenous, cover-
ing a range of contrast agents.1,2 PAI has the potential to recover the concentration of each of
these chromophores based on their unique optical absorption spectra, by acquiring data at multi-
ple wavelengths and subjecting the reconstructed images to multispectral processing methods.3

For example, the recovery of relative concentrations of oxy- and deoxy-hemoglobin is commonly
used to derive oxygenation maps from PAI with linear spectral unmixing.4 Obtaining accurate
maps of chromophore concentrations, however, is limited by spatial variations in light fluence,
which are significant at depth and are highly dependent on the surrounding distribution of optical
absorbers and scatterers.3 This is often referred to as ‘spectral coloring’. Several factors can affect
tissue optical properties, including age,5 low blood perfusion,6 or skin tone,7 which consequently
affect the ability to extract quantitative information from PAI.

Measurement biases introduced by the differential absorption of melanin in darker skin tones
have been identified in several technologies where light passes through the skin before making a
quantitative measurement, including pulse oximeters,8–18 bilirubinometers,19,20 wearable technol-
ogies,21–24 cerebral oximeters,25 and optical reflectance measurements.26 These biases can have
significant implications for patient management, an issue that came to the fore in the manage-
ment of COVID-19 patients, where the over-estimation of blood oxygenation by pulse oximetry
in black patients may have led to under-diagnosis of hypoxemia compared to white patients.17

PAI also relies on the transmission of light through the skin and is thus also expected to be subject
to similar limitations.

Skin tone is typically defined according to the Fitzpatrick scale, which provides a ranking
based on the response of the skin to ultraviolet light determined by a questionnaire, from type I
(always burns, never tans) to type VI (never burns, pigmented skin). A few studies have begun to
emerge that examine skin tone measurement bias in PAI.27–30 Higher Fitzpatrick skin type grad-
ing was shown to reduce PAI signal-to-noise ratio deep in the tissue and introduced biases in the
estimated blood oxygenation.27–30 An empirical calibration scheme has been proposed to correct
these biases.29 These early studies highlight the key challenges associated with varying skin tones
in PAI, how we measure skin tone, and how we develop fluence compensation schemes. The first
of these key challenges could be tackled using more quantitative measures of skin tone, for exam-
ple, measurements based on colorimeters. The second may be improved by data-driven
approaches, which improve on standard linear unmixing schemes for photoacoustic oximetry
but have not been tested in cases of varying skin tone.4,31–35

Here, we undertook a systematic evaluation of the effects of skin melanin concentration on
PAI, using a combination of simulation, phantom, and animal models to examine the highlighted
challenges. We illustrate that linear spectral unmixing is highly dependent on skin tone and intro-
duces biases in photoacoustic oximetry. These biases mirror observations made in pulse
oximetry.17 We demonstrate that learned spectral decoloring can partially compensate for this
bias, recovering less biased oxygenation values. We underscore these findings in animal studies,
showing a systematic overestimation of blood oxygenation with increasing skin pigmentation.
Our results provide a theoretical basis upon which we can interpret future studies in patients with
different skin tones.

2 Methods

2.1 Computational Models
To assess the effects of skin tone on PAI in a controlled setting, we developed a computational
forearm model imitating the structure and physical properties of the skin. The model was con-
structed in Python using absorption and reduced scattering spectra obtained from the literature.36

Three variations of the model were used: a layer-only model for calibration with adding-doubling
reflectance simulations, a varying blood oxygenation model for optical modeling, and a realistic
model for full photoacoustic simulation. These distinctions were made to allow thorough char-
acterization of the models under computational constraints. To bridge the gap between simulation
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and experiment, we also simulated optical absorption in the agarose phantom model (described
in Sec. 2.5).

The first model consisted of three parallel layers. The first layer represented the epidermis,
modelled as 60 μm thick, with optical absorption from a varying concentration of melanosomes.
The melanosome volume fraction was chosen by first simulating diffuse reflectance (Sec. 2.2)
over a range previously identified in the literature (1.3% to 43%37) and adjusting the simulation
range to align as closely as possible with individual typology angle (ITA) values associated
with different Fitzpatrick types.38 The resulting parameters were then qualitatively verified
using a publicly available integrating sphere forearm skin reflectance dataset (Fig. S1 of the
Supplementary Material).39 We settled on six logarithmically-spaced values of melanosome con-
centration between 2% v/v and 40% v/v, representing the six Fitzpatrick skin types. The second
layer, representing the dermis, was 1 mm thick, containing blood (0.2% v/v, 70% oxygenation),
water (65% v/v) and lipid (20% v/v).36 The third layer, representing generic tissue, filled the rest
of the simulation volume. It consisted of blood (2.5% v/v, 70% oxygenation), water (65% v/v),
and lipid (20% v/v). The absorption spectra for these three layers are shown in Fig. 1(a).
Scattering properties were defined by a combination of Rayleigh and Mie scattering, assuming
a constant scattering anisotropy of 0.9. These values are representative of typical values in each
region.36 This simplified layer model was used for validation purposes, using adding-doubling
simulations of diffuse reflectance. The structure formed the basis of all simulations, with blood
vessels added for Monte-Carlo simulations.

To model the effects of changing blood oxygenation in a blood vessel on the photoacoustic
initial pressure, Monte-Carlo simulations were run with the varying blood oxygenation model,
giving the optical absorption distribution. This model was based on the layer structure described
above with the addition of a cylinder of radius 1.25 mm, at a depth of 2.5 mm below the epi-
dermis, representing a blood vessel of varying oxygenation (between 0% and 100%).

To evaluate the effects of a more realistic tissue model, a third model, the realistic forearm
model, was subjected to both optical and acoustic simulations, giving full photoacoustic data that
was processed using normal reconstruction and analysis procedures. Two cylinders were added
to the layer model, one representing an artery (100%-oxygenated blood, radius 1.25 mm at a
depth of 2.5 mm below the epidermis) and one representing a vein (70% oxygenated blood,
radius 0.625 mm at a depth of 2.5 mm).

We also ran optical simulations of the cylindrical phantoms (Sec. 2.5), with approximately
identical optical absorption and scattering properties as the agarose phantoms. We defined the
model in Python, with a grid size of 100 μm in an array of size (220 × 220 × 220). The tube in the
center of the phantom was modeled as a cylindrical absorber of radius 0.75 mm containing blood.
Concentric absorbers were added representing the inner part of the phantom (23 mm diameter,
water absorption and intralipid scattering) and the outer layer of the phantom (1 mm thick, vary-
ing melanosome volume fraction, intralipid scatterer). The absorption coefficients of the melanin
layer were defined by finding the melanosome volume fraction that gave the same optical absorp-
tion coefficient at 700 nm as measured in the double integrating sphere system (Table S1 in the
Supplementary Material, Sec. 2.6).

2.2 Adding-Doubling Simulations
The layer-only skin model was validated using the adding-doubling model of diffuse
reflectance40 to allow for fast evaluation of the reflectance spectra at several wavelengths
(450 nm to 900 nm in 20 nm steps) in the visible and near-infrared ranges. We additionally
calculated the reflectance at 685 nm to enable direct comparison with literature values.41 The
reflectance spectra were converted into an RGB image and an ITA metric using a D65 standard
light source and a 10-deg standard observer in the Python color-science library.42 ITA has been
proposed as a quantitative measure of skin tone and can be obtained from low-cost colorimeters.
ITA was calculated from skin reflectance spectra using the following equation:

EQ-TARGET;temp:intralink-;e001;117;124ITA ¼ arctan

�
L� − 50

b�

�
×
180

π
; (1)

where L� and b� are taken from the CIELAB color space, representing luminance [ranging from
black (0) to white (100)] and the range from yellow to blue, respectively.
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2.3 Monte-Carlo Simulations
We simulated the PAI optical forward model using the varying blood oxygenation model
described above using a custom version of MCX (https://github.com/IMSY-DKFZ/mcx), giving
initial pressure distributions that correspond to an idealized photoacoustic image. The model was
defined on a grid with a pixel size of 60 μm, which allowed the simulation to run in a sufficiently
short time while ensuring that the simulations were sufficiently detailed. The light transport
through the model was simulated with 107 photons per simulation, at 21 equally spaced wave-
lengths between 700 and 900 nm inclusive.43

We used an illumination geometry, which approximates a clinical PAI system (MSOT
Acuity, iThera Medical GmbH, Munich, Germany), consisting of a single optical fiber with
a beam divergence of 8.66 deg, 43.2 mm above the surface of the probe, directed at an angle
of 22.4 deg from the imaging plane, intersecting the imaging plane 2.8 mm outside of the probe.44

Optical simulations of the agarose phantoms were run using the same customized version of
MCX with an illumination geometry approximating a pre-clinical photoacoustic system
(MSOT inVision 256-TF, iThera Medical GmbH, Munich Germany), defined on a grid of size
100 μm. The illumination geometry consisted of five radially distributed fiber bundle pairs.44 The
version of MCX used in these experiments is available on GitHub: https://github.com/
BohndiekLab/melanin-phantom-simulation-paper. 107 photons were simulated per fiber bundle,
for a total of 108 photons. All simulations were run on a computer with 2 NVIDIA Quadro 8000
GPUs (48 GB GPU RAM each), Intel Xeon Gold 6230 CPU at 2.10 GHz (40 cores), and
256 GB RAM.

2.4 Acoustic Simulations
To determine the impact of acoustic modeling, we ran the forward acoustic model in j-Wave45 to
calculate the pressure time series detected by the ultrasound transducer array for the initial pres-
sure distributions. Simulations were run in three dimensions, with a grid size of 240 μm, and a
speed of sound of 1500 m s−1. Three-dimensional initial pressure distributions were taken from
Monte-Carlo simulations and down-sampled by a factor of four, and their propagation was simu-
lated. The resulting pressure distributions were evaluated using band-limited interpolation sen-
sors in the position of the sensors in the photoacoustic system. The pressure time series were
recorded and processed in the same way as the experimental data.

2.5 Phantom Design
Phantoms were used to validate the simulations in a real photoacoustic system. A custom-made
3D-printed polylactic acid mold was constructed to fabricate a two-layer cylindrical phantom
with an inner scattering compartment and an outer compartment containing melanin to model
the epidermis. The mold consisted of two cylindrical compartments, one of radius 9 mm and one
of radius 10 mm. A polyvinyl chloride tube (inner diameter 1.5 mm, outer diameter 2.1 mm;
VWR 228-3857) was placed in the center of the phantom mold to enable blood flow through the
phantom.

Agarose-based phantoms were fabricated using standard methods.46 The inner phantom
mixture consisted of a mixture of agarose for mechanical robustness and intralipid for scattering.
1.5% (w/v) agarose (Sigma-Aldrich 05039) was added to Milli-Q water and heated until it dis-
solved. Once the mixture had cooled to ∼40°C, 2.08% (v/v) of pre-warmed intralipid (20% emul-
sion, Sigma-Aldrich I141) was added and mixed, before being poured into the inner
compartment of the phantom mold and allowed to set, constituting the inner 9 mm radius of
the phantom. Synthetic melanin (Sigma, M8631, 2.5 mgmL−1 stock in dimethyl sulfoxide) was
added to a separate batch of the base mixture at the desired concentrations (Table S1 in the
Supplementary Material). Once the inner compartment was set, the outer layer mixture was
added and again allowed to set at room temperature (Fig. S2 in the Supplementary Material).

2.6 Phantom Characterization
A custom double integrating sphere system was used to characterize the optical absorption and
reduced scattering coefficients of the phantom material. Samples were placed between two inte-
grating spheres (Avantes, AvaSphere-50, 50 mm internal diameter), both of which were
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connected to a spectrometer (Avantes, Starline Avaspec-2048) via an optical fiber. The reflec-
tance integrating sphere was connected to a broadband light source (Avantes, Avalight-HAL-s-
mini) via an optical fiber. Circular samples (approximate diameter: 5 cm) of the agarose mixture
with and without melanin were prepared with a thickness of ∼3 mm. Sample thickness was
measured using vernier callipers. Each agarose sample was placed between the two spheres and
the transmittance and reflectance were measured. Optical scattering and absorption coefficients
were calculated using the inverse adding doubling method,47 assuming a scattering anisotropy
factor of 0.89 and refractive index of 1.34.48 These measurements were made on three replicates
of each sample, over a wavelength range of 450 to 900 nm at 1 nm steps.

2.7 Blood-Flow Circuit
A blood-flow circuit was used to control the oxygenation of blood flowing through the tube
centered in the two-layer cylindrical phantom, enabling photoacoustic measurements of blood
with known ground-truth blood oxygenation as described previously.49,50 Briefly, we measured
the oxygen partial pressure (pO2) and the photoacoustic spectrum of the blood simultaneously.
We used fresh whole blood from Wistar rats (6 to 9 months, Charles River Laboratories). All
blood samples were anti-coagulated in ethylenediaminetetraacetic acid (EDTA), stored at 4°C,
and processed within 48 h. The blood was pumped around the circuit using a peristaltic pump
(Fisher Scientific CTP100), and the oxygenation was controlled by initially oxygenating the
blood using hydrogen peroxide (30% (w/w) in deionized water, Sigma-Aldrich 7722-84-1) and
then slowly injecting 0.03% w/v sodium dithionite (ACROS Organics 7775-14-6, in PBS) using
a syringe pump (10 μLmin−1, Harvard, MKCB2159V). To measure the blood pO2, two oxygen
fluorescence quenching needle probes (Oxford Optronix, NX-BF/O/E) were placed before and
after the phantom; the average of these measurements was taken as the ground-truth pO2 in the
phantom. pO2 was converted to blood oxygenation (sO2) using the Severinghaus equation.

51 The
values were extracted using custom code on an Arduino UNO and fed to a computer over USB
where they were read and stored using custom code in MATLAB. Experiments were conducted
at 37°C.

2.8 Animal Procedures
All animal procedures were conducted under personal and project licences issued under the
United Kingdom Animals (Scientific Procedures) Act, 1986 and reviewed by the Animal
Welfare and Ethical Review Board at the CRUK Cambridge Institute. The protocols were
approved locally under compliance forms CFSB2317 and CFSB2348.

To understand the effects of skin pigmentation in a model in vivo setting, we compared non-
pigmented albino mice (n ¼ 10, C57BL/6 albino, Janvier Labs, France, 10 to 13 weeks old) to
pigmented “B6”mice (n ¼ 10, C57BL/6J, Charles River, 10 to 13 weeks old). The B6 mice were
further subdivided qualitatively based on the visual appearance of pigmentation patches in color
photographs (Fig. S3 in the Supplementary Material) into a non-pigmented group (n ¼ 8 scans)
and a pigmented group (n ¼ 11 scans). Albino mice were imaged once and B6 mice were imaged
twice (2 weeks apart) to allow the development of pigmentation after hair removal. Repeat mea-
surements of the same mouse were treated as independent measurements for statistical analysis
given the time lapse between measurements.

2.9 Photoacoustic Imaging
Phantoms and mice were imaged using a pre-clinical multispectral photoacoustic tomography
system (MSOT inVision-256TF, iThera Medical GmbH).46 Briefly, excitation pulses were pro-
vided by a tunable optical parametric oscillator, pumped by a nanosecond Nd:YAG laser (10 Hz
repetition rate up to 7 ns pulse duration). A custom optical fiber assembly creates a diffuse ring of
uniform illumination over the imaging plane within the sample. The sample is coupled to the
transducers using a water bath. For ultrasound detection, an array of 256 toroidally focused ultra-
sound transducers covering a 270 deg circular arc and radius of 4 cm was used with a center
frequency of 5 MHz and 60% bandwidth.

For phantom imaging, a single cross-sectional slice of the phantom was imaged continu-
ously during the blood deoxygenation procedure until the blood was completely deoxygenated.
Phantoms were placed in a custom animal holder (iThera Medical GmbH, Munich, Germany),
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wrapped in a thin polyethylene membrane, with water used to couple the phantom to the mem-
brane. Imaging was performed at wavelengths from 700 to 900 nm inclusive with 10 nm steps
and frame averaging was enabled (10 averages) to improve the signal-to-noise ratio.

Mice were prepared for imaging according to our standard operating procedure.46 Briefly,
the mice were shaved and depilatory cream was used to remove excess hair. The mice were
anaesthetized using <3% isoflurane in a 50% pure oxygen/medical air mixture and placed in
a custom animal holder (iThera Medical GmbH, Munich, Germany), wrapped in a thin poly-
ethylene membrane, with ultrasound gel (Aquasonic Clear, Parker Labs) used to couple the skin
to the membrane. The holder was then placed within the PAI system and immersed in deionized
water maintained at 36°C for Hb and HbO2 imaging acquisition. The animal respiratory rate was
maintained in the range 70 to 80 b.p.m. with 1.5% isoflurane concentration for the entire scan. A
single cross-sectional slice through the kidneys and spleen was imaged. Frame averaging was
enabled (four averages) to minimize the effects of breathing motion artifacts. 10 repeat scans
were taken at each of the following wavelengths 700, 730, 750, 760, 770, 800, 820, 840,
850, and 880 nm.

2.10 Image Reconstruction and Processing
Simulated, phantom, and in vivo photoacoustic data were processed using the Python photo-
acoustic tomography analysis toolkit (PATATO, https://github.com/bohndieklab/patato).

Acoustic simulation images were reconstructed by filtered backprojection with a grid spac-
ing of 60 μm and a field of view of 18 mm × 40 mm. Phantom and in vivo images were recon-
structed by filtered backprojection with a grid spacing of 75 μm and a field of view of 25 mm. A
band-pass filter was applied to all of the time series data, with a bandpass range of 5 to 7 MHz.

Linear spectral unmixing was applied to all simulated, phantom, and in vivo datasets using
the matrix pseudo-inverse function in NumPy52 and literature values for the optical absorption
spectra of oxy- and deoxy-hemoglobin.36 Photoacoustic estimates of the blood oxygenation
(denoted with a superscript EST sOEST

2 to differentiate it from the true blood oxygenation,
sO2) were made pixel-wise from the unmixing components as the ratio of the oxyhemoglobin
to the total hemoglobin. To evaluate the potential for a machine-learning approach to improve
photoacoustic oximetry in the presence of melanin, a learned spectral decoloring 31 algorithm
was trained on a numerical tissue model containing varying levels of melanin in the epidermis
layer (0.1% to 5% melanosome v/v). We simulated 500 unique volumes 19.2 mm3 in volume
with a resolution of 0.3 mm that contained up to nine blood vessels with a random radius and
blood oxygenation. The tissue background contained a blood concentration of 1% (v/v) and an
oxygenation of 70%. These design parameters were developed independently of this study and
simulations were obtained using the SIMPA framework.44 From the simulated initial pressure
distributions, we used a histogram-based gradient boosting regression tree as the inversion algo-
rithm with a maximum depth of 16 and otherwise default hyperparameters as implemented in the
scikit-learn (version 1.2.1) Python package.

Unless otherwise specified, manual polygon regions of interest (ROIs) were drawn and aver-
age spectra or unmixed components were calculated by masking the defined regions. In phan-
toms, the ROIs were taken around the blood tube and the melanin compartment. The melanin
compartment was defined by drawing an ROI around the whole phantom and eroding the poly-
gon by 1 mm. The difference mask between the drawn and eroded polygons was applied to the
photoacoustic images, giving the multispectral data within the melanin region. Mean photo-
acoustic and unmixed component values were extracted. In mice, ROIs were drawn around the
whole mouse body. The body ROI was eroded by 1 mm to subdivide it into a “skin” region (outer
1 mm) and a “body” region (inner region). Negative pixel values were included in the median
spectra calculation to illustrate image reconstruction artifacts. For unmixed sOEST

2 calculation,
pixels were excluded if either of the unmixed oxy- or deoxy-hemoglobin coefficients were neg-
ative; the overall sOEST

2 was calculated as the ratio of the median oxyhemoglobin component to
the median total hemoglobin. The median was chosen because of the high negative pixel per-
centage in the body of the pigmented mice. Pixels near the open region of the detector were
manually excluded from the analysis as the image reconstruction is less well posed in that region,
leading to artifacts.
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Line plots of the photoacoustic signal through the mice were generated by constructing a line
through the kidneys and vena cava of the mice. To ensure constant placement of this line, it was
constructed to be 6.5 mm from the surface of the mouse closest to the spline, and perpendicular to
an axis through the spine and aorta. This construction was observed to pass through the kidneys
and vena cava in albino and non-pigmented mice. The same construction was applied to the
heavily pigmented mice, where the kidneys and spleen were not visible, to give a direct com-
parison. The values of the reconstructed image, total hemoglobin map, and blood oxygenation
were calculated along this line using the interpnd function of SciPy.52

2.11 Statistics
Statistical analyses were conducted in Python using the statsmodels library. The relationship
between continuous variables was quantified by linear regression. A log transformation was
applied where specified to ensure that the residual normality assumption is upheld in each linear
model. The residual normality assumption was tested using the Shapiro-Wilk test (p > 0.1 for all
models). For the in vivo data, the relationship between each response variable and the mouse
pigmentation was assessed using a linear model, with both mouse strain (Albino or B6) and
pigmentation (not pigmented or pigmented) as independent variables. The model related the
response variable (sO2 or photoacoustic signal) to a sum of the effect due to mouse strain and
pigmentation with no interaction term.

3 Results

3.1 Computational Model of Skin Shows Good Agreement with Literature
Based on Adding-Doubling Reflectance Measurements

We first validated our computational model of human skin, with the assigned optical absorption
spectra in the epidermis [Fig. 1(a)], by calculating diffuse reflectance spectra using the adding-
doubling method. We chose six values of melanosome concentration to represent the typical
physiological range observed in the population. The calculated spectra show decreasing reflec-
tance with increasing melanosome concentration and broadly increasing reflectance with wave-
length, as one would expect given the profile of optical absorption of melanin [Figs. 1(a)
and 1(b)]. We then calculated the ITA for each reflectance spectrum, allowing direct comparison

Fig. 1 Diffuse reflectance simulations validate Monte–Carlo simulation parameters and enable the
assignment of simulations to equivalent Fitzpatrick skin types. (a) Optical absorption spectra in the
tissue model were assigned according to the desired melanosome concentration (2% to 40% v/v,
gradations of brown) in the skin layer, dermis below (gray) and background absorber (blue).
(b) Diffuse reflectance spectra were calculated using the adding-doubling method.
(c) Reflectance values simulated at 685 nm cover the physiological range of skin reflectance.
(d) Red, green, and blue images were simulated from the reflectance spectra and the six models
were assigned to the six Fitzpatrick skin types (shown by inset label I to VI).
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with in vivo measurements from skin colorimeters. These ITA values (67 deg to −47 deg) are
consistent with previous observations made in vivo using the Fitzpatrick skin type (Table 1).53

Reflectance at 685 nm was evaluated for each tissue model, giving a range of reflection coef-
ficients from 0.20 to 0.72 over our simulated range of melanosome concentrations [Fig. 1(c),
Table 1] again consistent with previous literature.41 To enable qualitative evaluation of our skin
model, the reflection coefficients were converted into red, green, and blue (RGB) images
[Fig. 1(d), Table 1]. Our results align closely with literature values made of skin reflectance using
a single integrating sphere (Fig. S1 in the Supplementary Material).39 For the remainder of the
paper, results from different Fitzpatrick skin types are color coded according to the calculated
RGB values for consistency [Fig. 1(d)].

3.2 Photoacoustic Simulations with the Skin Model Show Spectral Coloring
Due to Skin Pigmentation

Multispectral Monte-Carlo simulations using the computational skin model with an embedded
blood vessel showed how the optical absorption values are affected by melanosome concentra-
tion and hence Fitzpatrick skin type [Fig. 2(a)]. In simulations of fully oxygenated blood, we
observed an increase in the optical absorption within the skin at all wavelengths with increasing
Fitzpatrick type [Fig. 2(b)]. The optical absorption in the epidermis increased more than 10-fold
between Fitzpatrick I and Fitzpatrick VI at 700 nm [379 a.u. in FP I, 4128 a.u. in FP VI,
Fig. 2(c)]. Spectral coloring is observed within the blood vessel region, which manifests as a
decrease in the mean-normalized absorption at lower wavelengths and a corresponding increase
at higher wavelengths [Fig. 2(d)]. Absorption measurements within the blood vessel region, how-
ever, decrease by a factor of 1.7 from Fitzpatrick I to Fitzpatrick VI [44.6 a.u. in FP I, 26.7 a.u. in
FP VI, Fig. 2(e)]. Combined optical and acoustic simulations of a realistic tissue model revealed
additional image reconstruction artifacts associated with backprojection, including negative pix-
els and streaking artifacts (Fig. S4 in the Supplementary Material). Quantitative results from the
blood and skin regions in the acoustic simulations were consistent with those made with solely
optical simulations, so the remainder of the simulation study was performed using the Monte-
Carlo optical simulation alone for computational practicality.

Spectral coloring observed in the blood vessel biased the linear spectral unmixing blood
oxygenation estimate [Fig. 3(a)]. Encouragingly, the bias can be somewhat overcome when using
learned spectral unmixing trained on independently generated numerical tissue models contain-
ing varying melanin concentrations [Fig. 3(a)]. Considering the spectral changes observed
[Figs. 2(d) and 2(e)], it appears that learned unmixing can better cope with the spectral corruption
that presents as a reduction in normalized optical absorption at low wavelengths and a relative
increase at higher wavelengths for higher Fitzpatrick skin types. With fully oxygenated blood,
linear unmixing estimates of photoacoustic sOEST

2 reveal a non-linear relationship with
Fitzpatrick skin type [Fig. 3(b)] and a linear relationship with melanosome concentration
[p < 0.001, gradient = 0.218, 95% CI (0.200, 0.235)]. Blood oxygenation estimated with learned

Table 1 Parameters of the skin simulations (melanosome concentration, absorption coefficient)
and quantities derived from adding-doubling simulations (reflectance, ITA, and HEX color value).
The equivalent Fitzpatrick skin type was assigned based on literature values.53

Melanosome
concentration
(v/v, %)

Absorption
coefficient at
685 nm (cm−1)

Reflectance at
685 nm

ITA
(deg)

Assigned
Fitzpatrick
skin type

HEX
color

2.0 3.45 0.72 67 I #CBB9A8

3.6 6.28 0.65 56 II #C3AC95

6.6 11.43 0.57 41 III #B69A7F

12.1 20.81 0.46 20 IV #A28367

22.0 37.89 0.33 -6.9 V #8A6B54

40.0 68.98 0.20 -47 VI #6E574C
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unmixing also increases linearly with melanosome concentration but with a smaller gradient
[p < 0.001, gradient = 0.150, 95% CI (0.117, 0.183)] [Fig. 3(b)].

3.3 Blood Flow Phantoms Confirm Melanin-Associated Bias in an Experimental
Photoacoustic System

Cylindrical phantoms were enclosed in a melanin-containing outer layer with concentrations
equivalent to Fitzpatrick types below I, II, and IV [Fig. 4(a)]. A blood flow circuit was connected

Fig. 3 Estimation of blood oxygenation in simulated data using linear and learned spectral unmix-
ing. (a) sOEST

2 estimates increase with increasing Fitzpatrick type when using linear spectral unmix-
ing, whereas estimates are closer to the ground truth when using learned unmixing, particularly at
high and low blood oxygenation levels. (b) sOEST

2 estimates for fully oxygenated blood using both
approaches are shown as a function of Fitzpatrick type and melanosome volume fraction. The
shaded area shows 95% confidence intervals.

Fig. 2 Monte–Carlo simulations of light transport through the skin model show decreased signal
and increased spectral coloring in an underlying blood vessel with increasing Fitzpatrick skin type.
(a) Photoacoustic initial pressure (upper), unmixed total hemoglobin (THb, middle), and unmixed
blood oxygenation (sOEST

2 , lower) in representative examples for fully oxygenated blood in the
vessel. (b) Epidermis PA initial pressure as a function of wavelength for all Fitzpatrick types and
(c) at 700 nm as a function of Fitzpatrick type. (d) Normalized blood PA initial pressure as a function
of wavelength for all Fitzpatrick types and (e) at 700 nm as a function of Fitzpatrick (FP) type.
Fitzpatrick types are denoted with graded brown coloration according to the RGB definitions in
Fig. 2(d). Scale bar = 2 mm applies to all images in panel (a).

Else et al.: Effects of skin tone on photoacoustic imaging and oximetry

Journal of Biomedical Optics S11506-9 Vol. 29(S1)



to a tube through the center of the phantom, allowing continuous monitoring of the blood oxy-
genation. The optical properties of the phantoms were confirmed using double integrating sphere
measurements (Fig. S5 and Table S1 in the Supplementary Material). By imaging the phantoms
over time, as the blood was adjusted from fully oxygenated to fully deoxygenated, the photo-
acoustic measurements were related to the known blood oxygenation (Fig. S6 in the
Supplementary Material). Images of these phantoms show strong absorption in the melanin outer
layer and blood flow tube, with image reconstruction artifacts visible around the blood inclusion
and near the melanin layer, particularly visible with the higher concentrations of melanin
[Fig. 4(b)]. The photoacoustic signal in the outer layer increases with melanin concentration
[Figs. 4(b) and 4(c)]. Wavelength-dependent spectral coloring is observed in the blood spectrum
with increasing melanin concentration, with normalized photoacoustic signals relatively lower at
shorter wavelengths and higher at longer wavelengths, consistent with the optical absorption
properties of melanin [Fig. 4(d)] and simulation findings.

Furthermore, examining the unmixed sOEST
2 as a function of the reference blood sO2 mea-

surements reveals the effect of spectral coloring on PAI signal quantification [Figs. 5(a) and 5(b)],

(a)

(c)

(d)

(b)

Fig. 4 Skin-mimicking blood-flow phantoms show spectral coloring. (a) Schematic diagram of the
agarose phantom setup, showing a 1 mm-thick outer layer containing synthetic melanin and a
blood inclusion with varying oxygenation. (b) Reconstructed photoacoustic (PA) images at
800 nm (upper), linear unmixed total hemoglobin (THb, middle), and linear unmixed blood
oxygenation (sOEST

2 , lower) maps. Image reconstruction artifacts can be observed near the blood
inclusion and near the outer melanin layer (particularly clear in sOEST

2 ). (c) The photoacoustic sig-
nal in the outer cylinder of the phantom shows an increase with increasing melanin concentration.
(d) Normalized photoacoustic spectra from the blood region show the effect of spectral coloring
over a range of blood oxygenation levels. Scale bar = 5 mm.
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with higher melanin concentrations giving higher photoacoustic estimates of blood oxygenation
when using linear spectral unmixing. Learned unmixing again reduces the disparity between low
and high melanin concentrations, particularly at higher blood oxygenation levels [Fig. 5(b)].
Linear unmixing estimates of sOEST

2 increase with melanin concentration [p < 0.001;
gradient ¼ 0.162 mLmg−1, 95% CI (0.161 mLmg−1, 0.163 mLmg−1)], whereas learned
estimates do not [p ¼ 0.50; gradient ¼ 0.051 mLmg−1, 95% CI (−0.603 mLmg−1,
0.706 mLmg−1)]. Analyzing simulations of digital twins of these phantoms in the tomographic
PAI system showed consistent trends (Figs. S7 and S8 in the Supplementary Material).

3.4 Mouse Models Underscore the Severity of the Impact of Skin Pigmentation
on Photoacoustics in vivo

Two closely related mouse models showing differential pigmentation were used to observe the
effects of skin pigmentation on PAI in vivo (Figs. S3 and S9 in the Supplementary Material).
Qualitative inspection of the image data clearly shows the increase in photoacoustic signal from
the skin region in the presence of pigmentation and an associated decrease in photoacoustic
signals measured from the body region in those pigmented mice [Figs. 6(a) and 6(b)]. The spectra
extracted from the ROIs show spectral coloring is clearly present in the pigmented mice. Spectra
also demonstrate an increased presence of artifacts, such as negative pixels [Fig. 6(b)]. Line
profiles across the mice [Figs. 6(c)–6(e)] further emphasize these findings, highlighting the high
level of optical absorption in the skin of the pigmented mice, artifactual increase in the total
hemoglobin signals from the same region, and an increase in noise in the body of the mouse
in the sOEST

2 image.
Considering data from a single wavelength [700 nm, Fig. S9(A) in the Supplementary

Material], the photoacoustic signal in the skin region of pigmented mice is significantly higher
than in non-pigmented and albino mice (p ¼ 0.010). Interestingly, there is also a significantly
higher signal in the skin of non-pigmented B6 mice than in albino mice (p < 0.001). There was
no significant difference between the photoacoustic signal, taken at 700 nm, in the body of the
albino mice compared to the non-pigmented B6 mice (p ¼ 0.95), however, there is a signifi-
cantly lower signal in the body of the pigmented B6 mice (p < 0.001) [Fig. S9(B) in the
Supplementary Material]. The photoacoustic signal within the skin shows a negative correlation
with the photoacoustic signal in the body of the mouse (p < 0.001) [Fig. 7(a)]. Unmixed
estimates of blood oxygen saturation are significantly higher [Fig. 7(b)] in pigmented mice
compared to non-pigmented (p ¼ 0.025) and albino mice (p ¼ 0.019). There is a strong positive
correlation between the skin photoacoustic signal and the sOEST

2 in the body of the mouse

Fig. 5 Comparison of linear unmixing and learned unmixing of blood oxygenation in skin-
mimicking phantoms. Linear unmixing and learned unmixing blood oxygenation estimates
(sOEST

2 ) are calculated and compared for varying melanin concentrations (a) Note that disconti-
nuities in this plot arose from the rapid decrease in blood oxygenation from around 0.5 in the
0.21 mgmL−1. This is also shown as a function of melanin concentration at a high blood oxygena-
tion, 95% (b). The line of best fit from a linear model is shown. Linear unmixing sOEST

2 increases
significantly (p < 0.001) with melanin concentration, whereas learned unmixing increases but not
significantly (p ¼ 0.50).
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[Fig. 7(c), p < 0.001], demonstrating that a higher melanin pigmentation in the skin leads to an
overestimation of the underlying sO2. Comparing these results to Fig. 6(e), on the other hand,
where negative pixels were included, appears to show a decrease in sOEST

2 in pigmented mice
compared to albino and non-pigmented mice across the single line plot. These findings highlight
the potential influence of different approaches to image reconstruction and quantification on the
observed bias.

Learned spectral unmixing was applied to the mouse data, with fair performance in albino
and non-pigmented B6 mice. In pigmented mice, no clear improvement was observed over linear
unmixing, with reconstruction artifacts dominating the oxygenation maps (Fig. S10 in the
Supplementary Material).

Fig. 6 Photoacoustic images of mouse spleen and kidneys in albino and pigmented mice show
substantial variations in signal intensity within the skin region and body regions. (a) Reconstructed
photoacoustic images at 700 nm (upper), linear unmixed total hemoglobin (THb, middle), and lin-
ear unmixed blood oxygenation (sOEST

2 , lower) maps. Regions of interest (body = central region of
the blue dashed line, skin = outer region of the blue dashed line) and line profiles used for quan-
titative analysis are shown on the single wavelength image. (b) Median photoacoustic spectra from
the skin and body of albino mice (blue, n ¼ 10), non-pigmented B6 mice (yellow, n ¼ 8) and pig-
mented B6 mice (orange, n ¼ 11). Line profiles through the kidneys, taken 6.5 mm from the sur-
face of the mouse nearest the spine, of the photoacoustic signal at 700 nm (c), THb (d), and sOEST

2
(e). The shaded area shows the standard error. Scale bar = 5 mm.
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4 Discussion
Measurement bias in optical oximetry due to the differential light absorption of melanin in darker
skin is widely acknowledged, yet the impact on PAI data has barely been tested. Tackling this
challenge is key to ensuring equity in the use of PAI and in biomedical optics more generally. To
understand the underlying physics behind this phenomenon, we undertook a systematic study
using a computational skin model, a simple tissue-mimicking phantom, and animals with varying
skin pigmentation on the same genetic background. We then applied two different spectral
unmixing approaches, linear unmixing and learned unmixing, revealing how spectral coloring
caused by melanin can influence quantitative PAI.

Our findings confirm the presence of a measurement bias in PAI, with increased spectral
coloring in the presence of melanin in all models. The spectral coloring trend is consistent with
the optical properties of melanin; the absorption coefficient of melanin decreases with wave-
length, so light propagation through tissue is more greatly attenuated at shorter wavelengths,
a phenomenon that becomes more apparent as melanin concentration increases. Spectral coloring
leads to a substantial overestimation of unmixed sOEST

2 with increasing Fitzpatrick skin type. The
difference in sOEST

2 quantification between Fitzpatrick I and Fitzpatrick VI may be as large as 9
percentage points based on our simulations, which is similar to typical differences observed
between cancer models.54 It is, therefore, unlikely that sO2 derived from linear spectral unmixing
in its present form could be applied equitably when translated into the clinic for cancer detection
or staging. The measurement of relative changes may be more robust to measurement biases,
however, translation to the in vivo setting remains challenging, given the need for paired mea-
surements and ground-truth data.

Fortunately, we observed that fundamental limitations in linear spectral unmixing, which
have been characterized previously,4,49,50 may be partially mitigated using a learned spectral
unmixing approach. Learned spectral unmixing demonstrated improved quantification relative
to the ground truth in simulations and phantoms, and reduced the disparity between Fitzpatrick
skin types, particularly in highly oxygenated blood. Learned unmixing, however, could not over-
come the fundamental limitations of our backprojection-based reconstruction pipeline, which
cannot accurately reconstruct the true initial-pressure distribution, particularly in regions adjacent
to strongly absorbing structures. Strong optical absorbers lead to significant artifacts, such as
streaking and negative pixels, as can be seen clearly in the center of the images of heavily pig-
mented mice.55 Blood oxygen quantification was poor in negative pixel regions both with linear
and learned unmixing.

Our study showed consistent agreement between Monte-Carlo simulations, phantoms, and
in vivo studies, both in quantitative measures and image reconstruction artifacts. We expect our

Fig. 7 Increased skin pigmentation reduces the photoacoustic signal in the body, and linear
unmixing estimates of blood oxygenation are increased in pigmented mice. (a) The mean skin
photoacoustic signal negatively correlates with the mean body photoacoustic signal
(p < 0.001). (b) sOEST

2 , averaged across the body of B6 mice is significantly higher than that of
albino mice (p ¼ 0.025), and pigmentation is a significant factor in the linear model
(p ¼ 0.019). (c) sOEST

2 averaged across the body region, correlates with skin photoacoustic signal
(p < 0.001). Averages were taken across the regions defined in Fig. 6.
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observations to transfer well into human data, however, there are further features of in vivo im-
aging that were not considered here and could further limit the use of PAI equitably in the clinic.
In this study, we did not consider the effects of high acoustic impedance structures, such as
bones, which could reflect the downward propagating photoacoustic wave from the epidermis,
giving image reconstruction artifacts. Furthermore, the appearance of image reconstruction arti-
facts would be dependent on the ultrasound detection geometry, which differs between the pre-
clinical photoacoustic system used here, and typical handheld photoacoustic systems used in a
clinical setting. The effects of noise were not considered in our simulations, which would domi-
nate in regions of low light fluence, such as deep in the tissue, particularly in the higher
Fitzpatrick skin types. Additional noise could adversely affect the spectral unmixing results,
particularly as the energy of different wavelengths will vary, and so affect the noise profiles.
The presence of noise, acoustic reflection artifacts, and differences in ultrasound detection geom-
etry, may explain the disagreement between this study and recently published in vivo data, which,
contrary to this study, showed a decrease in linear spectral unmixing estimates of sO2 with
increasing Fitzpatrick type.29 Future studies should explore ways to improve image reconstruc-
tion in the presence of strong optical absorbers and acoustic heterogeneity, for example with
model-based reconstruction methods. A substantial expansion of the available data from human
subjects of varying skin pigmentation is required to thoroughly characterize this phenomenon
across a range of PAI systems and methods.

5 Conclusion
PAI demonstrates a clear measurement bias with the presence of melanin in the skin. Spectral
unmixing results were highly dependent on melanin concentration, which could introduce
unintended biases into future human photoacoustic studies. Reproducible and equitable appli-
cation of quantitative PAI will likely require a combination of physics-based, data-driven, and
empirical methods to account for varying light fluence and tissue properties fairly across the
population.
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