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Abstract. Recently, the correlation filter (CF)-based methods have achieved great success in the field of object
tracking. In most of these methods, the CF utilizes L2 norm as the regularization, which does not pay attention to
the stability and robustness of the feature. However, there may exist some unstable points in the image because
the object in the video may have different appearance changes. We propose a tracking method based on a
structured robust correlation filter (SRCF), which employs the L2;1 norm as the regularization. The robust CF
can not only retain the accuracy from the regression formulation but also take into account the stability of the
image region to improve the robustness of the appearance model. The alternating direction method of multipliers
algorithm is used to solve the L2;1 optimization problem in SRCF. Moreover, the multilayer convolutional features
are adopted to further improve the representation accuracy. The proposedmethod is evaluated in several bench-
mark datasets, and the results demonstrate that it can achieve comparable performance with respect to the
state-of-the-art tracking methods. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI
.28.6.063005]
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1 Introduction
Visual object tracking is a hot research topic in the domains
of computer vision, multimedia, etc. It has been successfully
used in many fields, such as video surveillance,1,2 traffic
monitoring,3 and motion analysis, and has attracted the atten-
tion of more researchers.4,5 However, realizing accurate and
robust tracking is still a challenging task because there are
many complex conditions, including appearance deforma-
tion, occlusion of similar or different objects, illumination
variations, scale changes, background clutter, etc.

According to the appearance model, the tracking methods
can be divided into two types, i.e., the generative model6–12

and the discriminative model.13–17 The generative model
often formulates tracking as a matching problem, which only
uses the information of the target. On the contrary, the dis-
criminative model utilizes the information of both the target
and the background, which is always formulated as a binary
classification or a regression problem. Because the discrimi-
native model-based methods use more information, they
can get better performance during the tracking process.
Furthermore, the regression formulation, which uses more
spatial information, attracts more attention because it repla-
ces the sparse sampling in binary classification with dense
sampling.

Recently, some tracking methods based on a correlation
filter (CF), which corresponds to the regression formulation,
have achieved great success.18–21 On one hand, the CF
addresses the sparse sampling in binary classification model,
which makes full use of the spatial information. On the other
hand, by introducing circulant assumption to generate train-
ing samples, CF can greatly improve the efficiency of sample
selection and speed up the training and detection process by

fast Fourier transform (FFT). Bolme et al.18 first model the
appearance by learning the CF and propose a minimum out-
put sum-of-squared error filter tracking method, but this
method does not make full use of the spatial constraints.
Henriques et al.19,22 exploit the circulant structure of the local
image patch and learn a ridge regression as well as a CF for
tracking. Danelljan et al.23 develop the adaptive color attrib-
utes based tracker by adding the color attribute to augment
the intensity feature. Zhang et al.24 incorporate geometric
transformations into a CF-based network to handle boundary
effect issue.

Inspired by the successful applications in face recogni-
tion, image detection, image classification, etc., deep learn-
ing has been introduced into tracking by some researchers as
well. For example, Wang and Yeung25 introduce an autoen-
coder into tracking and develop the first deep learning-based
tracker. Li et al.26 present a single convolutional neural net-
work (CNN) based tracking method, which can learn effec-
tive feature representations. Nam and Han27 propose to learn
multidomain CNN for tracking, which is composed of shared
layers and multiple branches of domain-specific layers. Due
to the powerful representation ability, deep learning greatly
improves the tracking performance. Commonly, deep learn-
ing works together with the generative model, different clas-
sifiers, or regression algorithms, thus, the tracking methods
with deep learning still retain the disadvantages of these
formulations.

Recently, some researchers28–31 have also proposed some
new tracking methods, which utilize both the deep CNN and
CF to further improve the tracking performance. For exam-
ple, Ma et al.28 develop the hierarchical convolutional fea-
tures based tracking, which exploits the multiple levels of
abstraction for pyramid representation under the CF tracking
framework. Mueller et al.30 present the context-aware CF
tracking, which takes global context into account and*Address all correspondence to Shunli Zhang, E-mail: slzhang@bjtu.edu.cn
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incorporates it into the CF. Danalljan et al.29 introduce a fac-
torized convolution operation and a compact generative
model of the training sample distribution in CF tracking,
which greatly improves the tracking efficiency. However,
in most of these methods, only L2 norm is used and less
attention is focused on the unstable positions in the image
region. In practice, because of the appearance changes
caused by deformation or occlusion (Fig. 1), there always
exist unstable points in the region.

In this study, we propose a tracking method based on the
structured robust correlation filter (SRCF) with L2;1 norm.
First, to address the impact of the unreliable points in the
image region with a multichannel feature, we develop a
robust CF and formulate tracking as a structured robust
regression problem. By introducing the structured sparse for-
mulation, the stable features can be adaptively selected.
Further, we derive the solution algorithm corresponding to
the SRCF based on alternating direction method of multiplier
(ADMM) approach. Second, based on the traditional CF
tracking methods, we implement a concrete tracking algo-
rithm based on the proposed SRCF. Specifically, we extract
the multilayer multichannel features with CNN for represen-
tation, which can further improve the representation ability.
Moreover, we also present a judgment-based update model
to improve the tracking robustness in complex conditions.
We evaluate the performance of the proposed tracking meth-
ods on many public datasets, and the experimental results
illustrate that the proposed tracking method based on
SRCF with L2;1 norm can achieve comparable performance
to many state-of-the-art trackers.

The remainder of this study is organized as follows. In
Sec. 2, we introduce the related work of classical CF-based
tracking. In Secs. 3 and 3.5, we describe the proposed SRCF
and its corresponding tracking method, respectively.
Section 4 shows the experimental results and the last section
concludes the study.

2 Correlation Filter Tracking
Before discussing our proposed tracking method based on
the robust CF, we first review the tracking method based
on the traditional CF.22 Hereby, we briefly introduce the key
components of the CF tracker, which includes the ridge
regression formulation, fast realization with FFT, the dense
sampling, and the circulant assumption.

The CF corresponding to the ridge regression is repre-
sented as follows:

EQ-TARGET;temp:intralink-;e001;326;650min
w

λkwk22 þ kXw − yk22; (1)

where w denotes the model parameter, X ¼ ½xð1Þ;
xð2Þ; : : : ; xðnÞ�T , xðiÞ denotes a training sample,
y ¼ ½y1; y2; : : : ; yn�T , and yi is the label corresponding
to xðiÞ.

Based on the circulant assumption, we can obtain the
solution to 1 in Fourier domain:

EQ-TARGET;temp:intralink-;e002;326;548ŵ ¼ x̂�⊙ŷ
x̂�⊙x̂þ λ

; (2)

where ŵ and x̂ corresponding to the Fourier transform of w
and x, respectively, ⊙ denotes the elementwise multiplica-
tion, and ŷ is the Fourier transform of y. With the learned
ŵ, the filtering response r can be obtained in the following
frame.

CF tracking brings many benefits. First, by formulating
tracking as a regression problem, the spatial information
of the image can be fully utilized, and the appearance model
built based on the CF can be represented more accurately.
Second, based on the circulant assumption, much more train-
ing samples can be generated virtually without increasing the
computation complexity. Since the regularization term in the
traditional filter is L2 norm, it can be realized fast by using
FFT algorithm. However, because the object is always

(a) Appearance changes caused by deformation.

(b) Appearance changes caused by occlusion.

Fig. 1 Appearance changes caused by (a) deformation and (b) occlusion.
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moving in the video sequences, the appearance of the object
may change heavily, which will generate unstable regions. In
this condition, L2 norm is not robust to the outlier points and
the appearance model may be not accurate enough.

3 Tracking with Structured Robust Correlation
Filter

3.1 Overview
To address the unstable points and improve the accuracy of
the appearance model, we formulate tracking as a robust
regression problem and develop a SRCF-based tracking
method. The overview of the proposed method is shown
in Fig. 2. Different from the traditional ridge regression
formulation, we formulate tracking as a structured robust
regression problem with L2;1 norm, which can adaptively
select the robust features for tracking. First, the SRCF with
L2;1 norm regularization, which is built based on the training
region and predefined response map, is trained. Then, the
learned filter is used for tracking in the following frame.
Specifically, the multilayer CNN features are used to
improve the representation ability. Moreover, an update
model with judgment and incremental strategies is con-
structed to accommodate the filters.

3.2 L1 Norm Based Robust Correlation Filter
We first introduce the robust CF with L1 norm, which is suit-
able for the single-channel feature. In this condition, each
element of the feature corresponds to a specific position
in the image region. Therefore, using L1 norm can adaptively

choose the stable points, alleviating the effect of the appear-
ance changes.

Assume that the training sample matrix is denoted as X,
whose element is xðiÞ and its corresponding label is denoted
as yi. Similar to the sample generation in the traditional CF,
X can be approximately obtained by circular shifts of x.
Inspired by the feature selection property of the L1 norm and
considering the stability of the points, we develop the CF
with L1 norm:

EQ-TARGET;temp:intralink-;e003;326;653min
w

λkwk1 þ kXw − yk22: (3)

Note that L1 norm is used as the regularization term to
replace the original L2 norm.

3.3 L2;1 Norm-Based Structured Robust Correlation
Filter

L1 norm is only suitable for the single-channel feature. Since
the single-channel feature always means intensity, it is not
able to represent the appearance accurately. Commonly, to
improve the representation ability, the single-channel feature
can be extended to multichannel feature, such as histogram
of oriented gradient (HOG), CNN, etc. In the condition of
multichannel feature, there is a group of feature elements
in each specific position of the image region. Choosing the
specific group of features can be taken as a structured sparse
learning problem, which can be solved by L2;1 norm. Thus,
L1 norm is extended to L2;1 norm to select the stable feature
group. Correspondingly, the new CF with L2;1 norm regulari-
zation is named SRCF.

(a) Training the structured robust correlation filters

(b) Tracking with learned filters

Fig. 2 Overview of the proposed tracking method: (a) Training the SRCFs and (b) tracking with learned
filters.
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The CF with L2;1 norm regularization can be represented
as

EQ-TARGET;temp:intralink-;e004;63;730min
W

kΣjXjWj − yk2
2
þ λkWk2;1; (4)

whereW denotes the multichannel parameter,Wj means the
j’th channel of W, and Xj is the j’th channel of X.

3.4 Optimization
We employ the ADMM algorithm to solve the problem in
Eq. (4). By introducing the auxiliary variable V and adding
more constraints, Eq. (4) becomes

EQ-TARGET;temp:intralink-;e005;63;613min
W

kΣjXjWj − yk2
2
þ λkVk2;1; (5)

which is subject to

EQ-TARGET;temp:intralink-;sec3.4;63;565V ¼ W:

Then, the Lagrange function can be represented as
EQ-TARGET;temp:intralink-;e006;63;519

L ¼ kΣjXjWj − yk2
2
þ λkVk2;1

þ hU;V −Wi þ ρ

2
kV −Wk2F; (6)

where U is the Lagrange multiplier and ρ is the penalty
parameter. The parameters can be iteratively updated under
ADMM framework. The detailed solving process is
explained as follows.

First, update W with the other parameters fixed. In this
condition, the optimization problem becomes

EQ-TARGET;temp:intralink-;e007;63;397min
W

kΣjXjWj − yk2
2
þ hU;V −Wi þ ρ

2
kV −Wk2F: (7)

By setting the gradient of Eq. (7) with respect to W to 0,
we can get the closed-form solution:

EQ-TARGET;temp:intralink-;e008;63;336Wj ¼ ΣkðXT
kXk þ ρIÞ−1ðXT

j yþ ρVj þ UjÞ; (8)

where Vj and Uj denote the j’th channel of V and U,
respectively.

Based on the circulant assumption, the feature matrix Xj

can be obtained by circular shifts of xj, where xj is the j’th
channel of the center sample feature map x. Thus, by FFT
algorithm, the Fourier transform of the parameter W in the
j’th channel is represented as follows:

EQ-TARGET;temp:intralink-;e009;63;224Ŵj ¼
x̂�j⊙ŷþ ρV̂j þ Ûj

Σkx̂�k⊙x̂k þ ρ
: (9)

Second, update V with the other parameters fixed.
Hereby, the optimization problem becomes

EQ-TARGET;temp:intralink-;e010;63;153min
V

λkVk2;1 þ
ρ

2
kV −Wþ U∕ρk22: (10)

The problem with both L2;1 norm and L2 norm in Eq. (10)
has a closed-form solution:

EQ-TARGET;temp:intralink-;e011;326;752V ¼ max

�
0;1 −

λ

ρkW − U∕ρk2

�
ðW − U∕ρÞ: (11)

Third, the rest of the parameters can be updated as
follows:

EQ-TARGET;temp:intralink-;e012;326;695U←Uþ ρðV −WÞ ρ←μρ; (12)

where μ is the update coefficient. By iteratively updating W,
V, Z, and μ for several times, the solution can be convergent.
Then, the model can be built and used for tracking in the
following frames.

3.5 Tracking with SRCF
Under the CF tracking framework, we develop the tracking
method with the proposed SRCF. Moreover, we utilize the
convolutional feature to represent the appearance and use
a judgment strategy to improve the accuracy of the update
model.

3.5.1 Representation

The representation in tracking includes two parts: selection
of the training and searching regions and feature extraction.
Since we follow the CF tracking framework, we adopt the
same region selection scheme. For the training region, we
select an image region that has the same center as the target
and a much larger area. On one hand, the larger region can
satisfy the circulant assumption, which is useful for the fast
realization with FFT. On the other hand, because the training
samples are sampled approximately based on circular shifts,
the larger region indicates the dense sampling, which
improves the discriminability of the model. The searching
region is selected in the next frame according to the same
manner as the training region.

Once the training or searching region is selected, specific
features can be extracted for better representation. In the
original CF tracking method and some variants, both the
intensity and HOG features are adopted. Inspired by the
powerful representation ability of convolutional features,
we extract the convolutional features via VGG-Net, which
is trained in the ImageNet dataset and achieves excellent
performance on classification and detection challenges.
Different layers of the features describe the image from
different aspects, i.e., the lower layers have more location
information while the higher layers keep more semantic
information. Because both location and semantic informa-
tion is important for tracking, we use several layers of the
convolutional features for representation.

3.5.2 Training SRCF

Because the convolutional features with multiple layers are
used for representation, we train a multilayer SRCF group as
the appearance model. Assume that the feature map of
the training region in the l’th layer is Xl. According to
Eqs. (7)–(12), we can train an individual SRCF correspond-
ing to each feature layer. Then, the CFs in all layers are
collected and taken as the model fŴlg for tracking.

3.5.3 Determining the tracking result

Assume the multichannel feature map of the searching region
in the l’th layer is Zl. Based on the trained SRCF fWlg and
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its Fourier transform fŴlg, we can calculate the response
map r̂ in the Fourier domain:

EQ-TARGET;temp:intralink-;e013;63;728r̂ ¼ ΣlwlΣjŴ
l
j⊙Ẑl

j; (13)

where Ẑl
j is the j’th channel of Ẑl and wl denotes the weight

of the l’th layer. By calculating the IFFT of r̂, we can get
the response map r in the spatial domain. Further, the final
tracking result is determined by the maximum of r.

3.5.4 Model update

To better capture the changes of the appearance, the CF
should be updated in a timely manner. Besides, online learn-
ing should be adaptively controlled to avoid learning the
occlusion. In our method, the model update includes two
stages. In the first stage, to alleviate the impact of the occlu-
sion, we present a judgment strategy to control the update.
We calculate the cosine similarity of two consecutive frames:

EQ-TARGET;temp:intralink-;e014;63;544sðxtI ; xt−1I Þ ¼ xtTI xt−1I

kxtIk2kxt−1I k2
; (14)

where xtI denotes the intensity feature of the region in t’th
frame. If sðxtI ; xt−1I Þ is larger than a predefined threshold
Thu, it is considered that the current model can retain the
accuracy and we do not update model. Otherwise, the model
needs to be updated to capture the changes of the appearance
model. By the judgment strategy, the over learning of the
occlusion can be alleviated while the significant changes can
be learned timely.

In the second stage, we utilize an incremental strategy to
realize the model update. Once it is determined to update, we
can select a new training region in the current frame and
extract its multichannel feature. Then, the model is updated
by

EQ-TARGET;temp:intralink-;e015;63;356

AlðtÞ ¼ θAlðt − 1Þ þ ð1 − θÞX̂lðtÞ;
BlðtÞ ¼ θBlðt − 1Þ þ ð1 − θÞX̂l�ðtÞ⊙X̂lðtÞ; (15)

where Xt is the feature map extracted from the current frame,
AðtÞ and BðtÞ denote the molecular and denominator
for training in the current frame, Að1Þ ¼ Xð1Þ, Bð1Þ ¼
X̂�ð1Þ⊙X̂ð1Þ, and θ denotes the update rate. Then, by iter-
atively solving the problems in Eqs. (7) and (10), the new
tracking model can be trained with At and Bt.

3.5.5 Scale adaption

During the tracking process, the scale of the object may be
changed. To obtain better tracking performance, we adopt
the scale adaption strategy23 to address the scale changes.
Besides the translation filters used for location, the scale
filter is built to estimate the optimal scales of the target.
The scale filter is learned based on the image patch centered
around the target and 33 scales are used for scale estimation
(Algorithm 1).

4 Experiments

4.1 Implementation Details
We denote the proposed tracking method as SRCF, which is
initialized as follows. VGG-Net-19 network is used to extract
features and the outputs of the conv3-4, conv4-4 and conv5-4
are taken as the features. For each layer of the feature, we
train a corresponding model and the final tracking response
map is the summation of the response in the above three
layers. The weights of the above three layers are set as 1,
0.5, and 0.25, respectively. For the Gaussian function,
σ2 ¼ 0.1. The regularization parameter α is set as 0.01.
The coefficient ρ is set as 3 and the iterations for ADMM
are set as 15. The judging threshold is set as 0.99 and the
update rate is set as 0.99. The padding factor for the larger
region selection is set at 1.8. All parameters are fixed for all
sequences.

The precision plots and success plots, which are obtained
by precision and success rate (SR), are used to evaluate the
performance of the trackers. Precision is calculated by the
ratio of the number of frames in which center location error
is smaller than a threshold Thp and the number of the total
frames. Visual overap rate (VOR) is defined as the average of
Score ¼ areaðRS∩RGÞ

areaðRS∪RGÞ, where RS and RG represent the bounding
boxes of the tracking result and ground truth, respectively.32

SR is defined as the ratio of the number of success frames
and the total frames, where tracking in one frame is taken to
be successful if the VOR in that frame is larger than a

Algorithm 1 SRCF tracking: iteration in frame t .

Input:

Frame I t ; Previous object position pt−1; Robust filter fWlg.

Output:

Object position pt and corresponding bounding box; Updated filter
fWlg.

1: Tracking.

(1) Crop the candidate image patch at pt−1 from I t and extract
the convolutional features conv3-4, conv4-4 and conv5-4 of
VGG-Net-19;

(2) Calculate the response map r̂ by Eq. (13);

(3) Determine the optimal position pt by taking the maximum
value of r̂.

2: Update.

(1) Crop the training patch at pt from I t , and extract and
augment the features conv3-4, conv4-4 and conv5-4 of
VGG-Net-19;

(2) Judge whether to update by calculating the similarity s with
Eq. (14).

IF: s > Ths , NOT update;

ELSE:

(2.1) Update the Al ðtÞ and Bl ðtÞ by Eq. (15);

(2.2) Learn the filter fWlg by solving Eq. (4) with ADMM.
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Fig. 3 (a) Precision plots and (b) success plots of SRCF and the competing trackers on all 51 sequences
in OTB-2013. The precision at Thp ¼ 20 pixels and the AUC score are put in the bracket behind the
name of the tracker.
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Fig. 4 (a) Precision plots and (b) success plots of the trackers with different features.
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Fig. 5 (a) Precision plots and (b) success plots of the trackers with different layers.
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predefined threshold Ths. By assigning different values to
Thp and Ths, the precision plots and success plots can be
obtained to display the overall performance. The area under
the curve (AUC) is used as another evaluation criterion
as well.

4.2 Comparison with State-of-the-Art Methods
We compare the performance of the proposed SRCF tracking
method with several state-of-the-art tracking methods in
the OTB-2013 dataset.33 The competing trackers include

DSLT,34 MetaCREST,35 MetaSDNet,35 DaSiamRPN,36

STRCF,37 CNNSVM,38 MEEM,39 KCF,22 Struck,40 SCM,41

TLD,42 ASLA,43 HDT,44 and CXT.45

We first evaluate the overall performance of the proposed
SRCF tracker and the competing trackers. The comparison
results are shown in Fig. 3, which displays the precision plots
and the success plots of SRCF and the competing trackers. It
can be seen that our SRCF achieves the precision at 20 pixels
0.911, which ranks the second among the trackers, and
obtains the AUC score 0.653, which ranks the fifth and out-
performs most of the competing trackers.
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Fig. 6 (a) Precision plots and (b) success plots of SRCF with L2;1 norm and the CF with L2 norm in
OTB-2013.

Fig. 7 Examples of the SRCF with L2;1 norm and the CF with L2 norm. (a)–(c) Sequence walking2 and
(d)–(f) carscale.
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4.3 Ablation Study
4.3.1 Feature representation

In our method, we exploit the powerful representation ability
of the CNN and extract the features from three different
layers of VGG-Net-19 for representation. To verify the role
of the CNN features, we build another two trackers, which
only use the handcrafted features, i.e., HOG and grayscale
features for comparison. We evaluate the performance of the
trackers in the OTB-2013 dataset and show the result in
Fig. 4. It can be found that the tracker with CNN feature
achieves better performance on both the precision and suc-
cess plots. Specifically, we can also see that the precision at
20 pixels and AUC obtained by the SRCF tracker with only
HOG feature also outperform the KCF method by 2.5% and
5.9%, respectively.

Since we use three different layers of VGG-Net-19, i.e.,
the conv3-4, conv4-4, and conv5-4 for comprehensive rep-
resentation, we further implore the contribution of each layer.
Besides the standard tracker, which uses all of the three
layers, we build another three trackers, each of which makes
use of the feature in a single layer. The comparison results on
OTB-2013 are shown in Fig. 5. It can be seen that, among the

competing trackers, the tracker with the conv4-4 obtains the
best precision and success plots, the tracker with the conv5-4
achieves the second-best results, and the tracker with the
conv3-4 ranks the third. However, by combing features in
all of the three layers, the tracking performance can be
further improved, indicating that all three layers have a
significant contribution for tracking.

4.3.2 Analysis of regularization

The main difference between our formulation and the tradi-
tional tracking methods is that we adopt the structured robust
regularization with L2;1 norm instead of the original L2 norm
(Frobenius norm for multichannel feature). Hereby, we
explore the contribution of L2;1 norm by building a new com-
parison tracker with L2 norm. Hereby, the CF with L2 norm
has the same configuration with the standard SRCF except
the norm regularization.

The comparison results on the OTB-2013 dataset are
shown in Fig. 6. It can be found that the precision at Thp ¼
20 pixels of the tracker with L2;1 norm is 0.912, whereas the
precision obtained by the L2 norm is 0.898. The AUC score
of L2;1 norm is 0.652, which outperforms the L2 norm by
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Fig. 8 (a) Precision plots and (b) success plots of update with and without judgment.
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Fig. 9 (a) Precision plots and (b) success plots of SRCF and the competing trackers in OTB-100 dataset.

Journal of Electronic Imaging 063005-8 Nov∕Dec 2019 • Vol. 28(6)

Guo, Zhang, and Bao: Structured robust correlation filter. . .



1%. Figure 7 shows two examples that SRCF with L2;1 norm
gets better results than CF with L2 norm. Note that the pro-
posed SRCF outperforms the traditional CF tracking method,
indicating that the L2;1 norm achieves better robustness than
the L2 norm.

4.3.3 Analysis of model update

In our method, we develop a judgment-based update model
to adaptively learn the appearance changes, which can effec-
tively handle the appearance changes and occlusion prob-
lems. To explore the impact of the judgment-based update
model, we also build a tracker, which only uses the tradi-
tional update model without judgment. The comparison
results in OTB-100 dataset are shown in Fig. 8. It can be
seen that the precision and AUC score of the SRCF tracker
with judgment outperform that without judgment by 2.3%
and 1.8%, respectively, indicating that the performance of
SRCF can be further improved by introducing the judgment-
based update.

4.4 Evaluation in More Datasets
Besides the OTB-2013 dataset in which the SRCF tracker
has achieved good results, we also evaluate its performance
in more datasets, including the Tcolor128 dataset,46 OTB-
100 dataset,47 VOT2016 dataset,48 and VOT201749 dataset
to explore the effect of the settings of the tracker.

4.4.1 Evaluation in the OTB-100 dataset

We further evaluate the performance of SRCF in OTB-100
dataset, which includes 100 different sequences. We com-
pare SRCF with several famous tracking methods, including
DSLT,34 MetaCREST,35 MetaSDNet,35 DaSiamRPN,36

STRCF,37 CNNSVM,38 MEEM,39 KCF,22 Struck,40 SCM,41

TLD,42 ASLA,43 HDT,44 and CXT45 in this dataset. The com-
parison results of precision plots and success plots are shown
in Fig. 9. We can see that SRCF achieves similar perfor-
mance to that in OTB-2013 dataset. The precision at Thp ¼
20 pixels of SRCF is 0.854, which ranks the fifth among the
competing trackers and AUC score is 0.613, which ranks
the sixth.

Fig. 11 Precision plots and success plots of SRCF and the competing
trackers in VOT2016 dataset.

Fig. 12 Precision plots and success plots of SRCF and the competing
trackers in VOT2017 dataset.
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Fig. 10 (a) Precision plots and (b) success plots of SRCF and the competing trackers in Tcolor128
dataset.
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4.4.2 Evaluation in the Tcolor128 dataset

There are 128 color sequences in the Tcolor128 dataset, in
which the sequences are collected from various circumstan-
ces, including highway, airport terminal, railway station, etc.
Hereby, we evaluate our SRCF tracker in the Tcolor128
dataset with the competing trackers, which include ECO,29

ADNet,50 MEEM,39 KCF,22 Struck,40 VTD,51 CN2,23

ASLA,43 and L1APG.52 The overall precision plots and the
success plots over the whole dataset are shown in Fig. 10.
It can be observed that the precision at Thp ¼ 20 pixels
obtained by SRCF is 0.698, and the AUC score is 0.504, both
of which rank the third among the competing trackers. In this
dataset, the MEEM method achieves good results on both
criteria. Since MEEM adopts the color feature, the encoded
LAB color model greatly improves the performance.
However, ECO, ADNet, and our SRCF tracker, which use
deep convolutional features, have more powerful representa-
tion ability and get better tracking performance. Moreover,
we would like to encode the color feature to further improve
our method as well.

4.4.3 Evaluation in the VOT2016 and VOT2017
datasets

We further evaluate the performance of SRCF in VOT2016
and VOT2017 datasets, each of which contains 60 challeng-
ing sequences. The accuracy and robustness scores are used
as the criteria for evaluation. In VOT2106 dataset, we mainly
compare our method with DaSiamRPN, DSLT, SA-Siam,53

SiamRPN,54 SRDCF, Staple,55 Struck, KCF, ASMS,56

BDF,57 HCF,28 DFST,58 and SAMF,59 and the comparison
results are shown in Fig. 11. Our SRCF tracker ranks the
eighth on accuracy and fifth on the robustness. We also com-
pare our method with DasiamRPN, KCF, MEEM, SA-Siam,
SiamFC, SiamRPN, SRDCF, Staple, L1APG, Struck, and
ASMS in VOT2017 and display the results in Fig. 12. It can
be seen that the proposed SRCF tracker gets better robust-
ness than most trackers, indicating that the L2;1 norm can
improve the robustness to some degree.

4.5 Running Speed
The running speed is also important for the tracker. Our
method is implemented in MATLAB on a PC with an
Intel i7 CPU 3.4 GHz and a Nvidia GTX1080 GPU. We
compare the running speed of our SRCF and some famous
trackers in OTB-100 dataset and show the result in Fig. 1. We
can see that the SRCF runs at 1.55 frames∕s, which is similar
to MDNet,27 LSART,60 faster than C-COT,61 SCM, and
slower than KCF, DaSiamRPN, MEEM, DSLT, STRCF, and
MetaCREST. Although the L2;1 norm increases the robust-
ness, it also decreases the running speed. Thus, some parallel
strategies will be explored to further improve the running
speed in the future.

Since our SRCF tracker is realized based on the CF
tracking framework, it retains many advantages of CF

tracking methods. For example, it can make full use of the
spatial information of the training region, which can improve
the representation accuracy. Moreover, it also borrows the
feature extraction method from the deep learning algorithms,
which further improves the representation ability. Compared
to the methods that also follow the CF tracking methods, e.g.,
ECO, STRCF, SRDCT, Staple, and HDT, our SRCF tracker
runs slower because of the L2;1 norm, but it also improves the
tracking robustness by adaptively selecting the robust fea-
tures. On the other hand, compared to the methods that adopt
the end-to-end deep neural network, such as SiamRPN,
DaSiamPRN, MetaSDnet, and LSART, SRCF may obtain
some lower accuracy but does not need complex training
process. In addition, compared to the sparse learning-based
methods, such as SCM, L1APG, and ASLA and ensemble
learning-based methods, such as MEEM, SRCF has signifi-
cant advantages on both accuracy and robustness (Table 1).

5 Conclusion
In this study, we present a tracking method based on SRCF.
Different from the traditional CF, which only uses L2 norm
for regularization, the proposed method introduces L2;1 norm
to deal with the unstable region and is suitable to the multi-
channel CNN features. Besides, we also use the ADMM
method to solve the L2;1 problem in the SRCF. The proposed
method is tested on many public datasets and outperforms
many state-of-the-art tracking methods. In the future, we
expect to improve the method’s efficiency to satisfy the
real-time applications.
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