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Abstract. k-Means (KM) is well known for its ease of implementation as a clustering tech-
nique. It has been applied for color quantization in RGB, YUYV, hyperspectral image, Lab, and
other spaces, but this leads to fragmented segments as the pixels are clustered only in the color
space without considering connectivity. The problem has been attacked by adding connectivity
constraints, or using joint color and spatial features (r, g, b, X, y), which prevent fragmented and
nonconvex segments. However, it does not take into account the complexity of the shape itself.
The Mumford—Shah model has been earlier used to overcome this problem but with slow and
complex mathematical optimization algorithms. We integrate Mumford—Shah model directly
into KM context and construct a fast and simple implementation of the algorithm. The proposed
approach uses standard KM algorithm with distance function derived from Mumford—Shah
model so that it optimizes both the content and the shape of the segments jointly. We demonstrate
by experiments that the proposed algorithm provides better results than comparative methods
when compared using various error evaluation criteria. The algorithm is applied on 100 images
in the Weizmann dataset and two remote sensing images. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI [DOI 10
.1117/1.JEL.30.6.063029]
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1 Introduction

Image segmentation is an essential preprocessing task in many computer vision problems. It
handles the problem of segregating regions of interest of an image that possess homogeneity
and are spatially connected. These segregated regions may represent objects and thus help
to recognize parts of satellite images, or patterns in biometric images, or detect diseased areas
in MRI/x-ray images. Segmentation is also extensively used in automation and other artificial
intelligence applications. Hence, profound research is still carried out and numerous image seg-
mentation techniques are available in the literature, but a universal method applied to any type of
image related to any image processing problem is not known.

1.1 Image Segmentation

Let the function g(x, y) represent light intensity at any point (x, y) of domain Q € R*> where an
image is captured. Image is then defined as g = {(x,y)|(x,y) € R?}. The RGB color represen-
tation of an image is mathematically represented by g(x,y) € R>. The aim is to find regions
Q,Q,,...,Q, forn €N, of adomain Q € R2, corresponding to different objects or their parts
or shadows in the image. In summary, the segmentation problem has the following definition:
Suppose Q be a domain of 4, find Q,Q,,...Q, such that
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and g varies smoothly over the regions Q;, i = 1,2, ..., n, but discontinuously over the boun-
daries between Q;, i = 1,2,...,n.

In terms of approximation theory, we can represent it as: find an approximation f of g in such
a way that each f; represents the region €; via a piece-wise smooth function.

Thresholding, clustering, and classification methods,!~ region-based methods,* and edge-
based active contour methods®”’ are different approaches to image segmentation.® The segmen-
tation problem has also been considered as an energy minimization problem. But to date,
obtaining a generalized solution that works without a priori facts about the object elements,
its characteristics, such as shape, color, texture, appearance of shadows, and overlapping of
objects, is an open problem.

1.2 Classical k-Means Clustering for Image Segmentation

Clustering is defined as an unsupervised learning task, where one needs to identify a finite set of
unknown categories called clusters.” Clustering can also be applied to image segmentation via
grouping the pixels by minimizing intrasegment similarity and by maximizing intersegment
similarity.

One of the categories of clustering is hard clustering, where a pixel belongs to one and only
one cluster. It is applicable to data sets that have sharp boundaries between clusters.'® This is
suitable also for image segmentation where the goal is to group the pixels into nonoverlapping
regions.

The most popular algorithm in hard clustering is classical k-means (KM).’ It is simple to
implement, and its computational cost is low, which makes it suitable for large data sets such
as images. Panwar et al.!' observed that performance of KM segmentation improves with
increase in the number of clusters when mean square error and peak signal to noise ratio are
used to measure the quality of the reconstruction.

Applying KM based on the pixel values, it corresponds to color quantization. However, this is
rarely enough for image segmentation because there is no control of the shapes and convexity of
the segments, which can therefore become very fragmented.

KM algorithm has also other drawbacks —such as the number of clusters k must be known
a priori.12 The algorithm is also sensitive to the initialization, which can lead to an inferior
clustering result. However, there are plenty of solutions in literature to attack these problems.
First, if the number of clusters needs to be solved, we need to revise the original minimization
function so that the number of clusters is no longer a parameter but a variable that is also
solved.'® The quality of clustering can be significantly improved using better initialization and
by repeating the algorithm 100 times.'* If not enough, a simple modification is to use random
swap algorithm instead,'> which practically never gets stuck into an inferior local minimum.

To use KM for image segmentation, the procedure is as follows: First, randomly select k
pixels from the image as the initial cluster centroids. Second, segment the image by labeling
every pixel by finding the minimum-squared Euclidean distance to every centroid. Third, cal-
culate new centroids by averaging the pixels belonging to the same clusters. The steps two and
three are repeated until the centroids stabilize. This procedure aims at optimizing sum-of-squared
error (SSE) between the pixels and their nearest centroid

S

However, using KM as such leads to color quantization where every pixel is mapped to
the nearest color regardless of its location in the image and the mapping of its neighbors. In
image segmentation, it is desired that the pixels close to each other in the image would be
assigned into the same segment; and vice versa, pixels far away would be assigned to different
segments.

The algorithm is shown as follows. It will find local minimum for the SSE function.
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Algorithm 1 Classical KM

X: original image, a set of N data vectors (image of N < n; x n, RGB vectors)
k: number of clusters
Cl: initialized k cluster centroids
C: final cluster centroids of k-clustering
P: {pili=1,..., N}, cluster label of image X
KM(X, Cl) - (C, P)
REPEAT
Cprev « CI,
/IGenerate optimal partitions
FORallj € [1, N]DO
FORallj € [1, k]| DO
SSE; « SSE(x;, ¢;);
pi < argminq ;< (SSE;)
/[Calculate optimal centroids
FORallj € [1, k]| DO
¢; < Average of x;, whose p; = j;

UNTIL C = Cprev

Many solutions also implement modifications to the KM algorithm. Theiler and Gisler'®
proposed a variant called contig-KM. It calculates within-cluster variance (V) to measure com-
pactness of the cluster, and discontinuity (D) at a single pixel as the fraction of its neighbors
that are in a different cluster. Contig-KM minimizes a linear combination of compactness and
discontinuity as AD + (1 — A)V where the parameter A defines the relative importance of these
two properties. They state that spatial contiguity and spectral compactness properties are nearly
orthogonal, i.e., meaning that we can make considerable improvements in the one with only
minimal loss in the other. Unlike conventional KM, Contig-KM updates the centroids immedi-
ately after a pixel changes its segment. Its time complexity is the same as that of KM: O(NkdI),
where d is the number of attributes (d = 3 with RGB images, d = 103 to 204 with the remote
sensing images), and [ is the number of iterations.

Fuzzy c-means (FCM) has also been applied to hyperspectral image (HSI) segmentation
using normalized spatial distance in addition to the normalized color distance.!” The difference
of FCM to KM is that the pixels can belong to multiple segments with a membership value in
range [0,1]. It is expected to provide smoother clustering result at the cost of higher time com-
plexity of O(Nkd*I). However, the results reported in Ref. 17 show that the result of standard
FCM (0.69) is worse than that of KM (0.72) and an additional processing step called Albedo
recovery was applied before clustering to reach better accuracy (0.81).

Lindsten et al.'® proposed relaxation of KM method formulated as a convex optimization
problem which does not require the number of clusters to be specified beforehand. Instead,
a regularization parameter is used to control the trade-off between model fit and the number
of clusters. They show that due to relaxation and convexification, the original NP-hard KM
problem becomes efficiently solvable but this means time complexity of O(n?) using semi-
definite programming, which is quite high compared with KM.

A two-step KM-based method was developed by Mignotte.'® The steps include detexturing
the input image and then using spatially constrained KM segmentation. The spatial constraint is a
set of color values around the pixel. The time complexity is the same as that of KM added by the
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detexturing process and the analysis of the spatial constraint. The method was reported to per-
form competitively with the state-of-the-art methods at the time.

A lot of research has been done so far; however, there are many issues that still need to be
addressed. Connectivity constraint can still generate complex shape. Spatial constraint tends to
keep the segments small but it can prevent to find segments of variable sizes. Many solutions
implement modifications to the standard KM algorithm, which itself should not be necessary if a
good algorithm and proper minimization function is used. In this paper, we attack the problem by
employing minimization function, which strictly controls the complexity of the shape via the
Mumford-Shah functional.

1.3 Mumford-Shah Model

Mumford—-Shah model is widely used and extensively studied energy minimization model for
image segmentation. It was introduced by Mumford and Shah in 1989%° with the aim at
segmenting the image into nearly homogeneous regions, separated by consistent boundaries.
It consists of finding the minimum of a functional, which is formed by combining the length
of the boundaries, the gradient of a smoothed version of the image and the difference of the true
and smoothed images.”! The Mumford—Shah functional is defined as follows:

B =i [ [ W =glPavay+ [ [ 19sraray + i), m

where function f approximates image g which is differentiable over the regions €2;

n
Q= UQ[UT.
i=1

Here, 7 is the set of arcs forming the boundaries, u and A are the positive weights that control
the quality of the approximation and the coarseness of the segmentation, respectively, and L(z)
denotes the total length of all the arcs belonging to 7. A large value of 4 will lead to fewer
boundaries. The goal is to minimize E, i.e., find f and 7 so that E is minimized; the smaller
the value of E, the better is the segmentation.

The first term in Eq. (1) ensures that f approximates the image g, i.e., gives us homogeneous
regions. The second term ensures that only smooth changes appear inside the segments. The
third term prevents boundaries from growing very large.

If the segments are homogeneous, the second term is no longer needed in Eq. (1). We then
obtain a simplified, piecewise constant Mumford—Shah model

E(f.7) = 2 / / If - gll2dxdy + AL(z). @)

There has been extensive use of these models in the areas of image denoising, image seg-
mentation, and image restoration.”> Algorithmic techniques to minimize the Mumford—Shah
functional includes the use of Douglas—Rachford algorithm (MS-DR) in Ref. 23, and several
implicit method used by researchers in Refs. 24-29. However, the existing approaches are rather
slow, the algorithms can be complex, and they may result in poor segmentation result if the
parameters are not tuned properly.

In this paper, we show how simple KM algorithm can be used to minimize Mumford—Shah
functional. It has all the same benefits as other Mumford—Shah-based methods but with faster
and simpler optimization algorithm. Besides the simplicity and speed, the other benefits are that
it avoids complex shapes, does not produce numerous tiny segments, and no algorithmic patches
are needed as the standard KM algorithm itself can be applied by simple modifications of the
partition step adopted with the shape constraint.

The method can be applied to any system where low level color-based segmentation is
needed as the first step of the process. These include scene classification, detection of human
activity in visual surveillance, assigning a name to a human face in image, classifying
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handwritten characters, and identifying land cover in satellite images. In this paper, we dem-
onstrate how the method applies to remote sensing images.

The rest of the paper is organized as follows. Section 2 introduces the proposed KM seg-
mentation using Mumford—Shah model. Section 3 explains the evaluation criteria. In Sec. 4, we
compare segmented images achieved through the proposed KM using Mumford—Shah model
with the ground truth images using criteria discussed in Sec. 3. In Sec. 5, we use the compactness
measure to evaluate multiphase segmentation of three methods: proposed KM using Mumford—
Shah model, KM, and regularized KM (reg-KM). Section 6 shows the application of the
proposed approach to HSIs. Conclusions are drawn in Sec. 7.

2 k-Means Using Mumford-Shah Model

The goal is to divide the image into m segments by optimizing certain criteria. Image segmen-
tation consists of two contradicting criteria: (1) similarity criterion such as variance, which mea-
sures goodness of the segment and (2) spatial connectivity criterion that penalizes pixels
belonging to different segment than their neighbors. KM includes only the similarity criterion,
the intracluster variance.

A reg-KM using Mumford—Shah was proposed by Ref. 30 combining the intensity and the
spatial information together. The model calculates reg-KM energy using two terms. First term
introduces the notion of size of the cluster in the regularization term using the scale. Scale is
obtained as P(A)/|A| where P(A) denotes the perimeter and |A| denotes the area of the cluster.
Second term measures the intracluster dissimilarity of the clusters in the same way as in the
KM. Their results show better classification of objects when using the combined approach
compared with using only the intensity values. However, the regularization term is optimized
when, for a given perimeter, the area is maximized. This happens for round shapes whereas
we should not direct the optimization toward any given shape. The time complexity of reg-KM
is O(NK*d).

We next present a new variant called Mumford—Shah KM (MS-KM). For spatial criterion,
we introduce a new term adopted from the simplified Mumford—Shah functional in Eq. (2). We
use the total boundary length of the segments. It drives the segmentation toward simplicity but
not directly toward any certain shape. We next outline how this can be done within the KM.

When generating the optimal partition in KM, the algorithm decides into which segment a
pixel will be assigned. Using Mumford—Shah function, the optimal assignment depends not only
on the pixel value as in standard KM, but also on its effect on the boundary length. Fortunately,
this can be calculated from image gradients easily. The result is a label for every pixel in the
image to indicate which segment it is assigned to.

The segmentation process goes as follows: First, we select m random centroids and initialize
the gradient at each pixel of image as 0. We obtain the label image P [see Fig. 1(a)] using
Mumford-Shah distance (MSD) defined in our algorithm (see Sec. 2.2). At the first iteration
the boundary length of each pixel is set to 0. Next, we calculate new centroids of each segment
by averaging the pixels belonging to the same segment. The assignment and centroid steps
are then repeated until maximum iterations have been reached, or until the Mumford—Shah
functional stop improving (AE < 0).

11010 1|0
2 1100
111,00

Fig. 1 (a) Labeled image and (b) gradient of the labeled image.
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The Mumford—Shah functional E is calculated at the end of each iteration as follows:

Ej < »_ {SSE;} +4%BL,

1<i<N

where sse; is the total squared error between every pixel to its cluster centroid, and BL is the total
boundary length of all the segments.

This functional is an extension of the standard SSE criterion. Similar A-based approach is
widely used in other multiobjective optimization problems. It jointly optimizes both the content
and the border of the segments, and therefore, it is expected to provide more robust segmentation
than simpler heuristics such as boundary smoothing of the connected components. For more
details about the theoretical properties of Mumford—Shah functional, we refer to Refs. 21 and
23, and for the properties of KM algorithm, we refer to Ref. 14.

2.1 Calculating Gradient and Boundary Length of the Segment

Gradient of the image is directional change in intensity or color in the image. Mathematically,
it can be defined as the derivative between the pixel value and its surrounding. In image process-
ing, it can be obtained by calculating the change in the horizontal and in the vertical direction
separately. Here, instead of intensity or color, we calculate gradient from the labeled image
[see Fig. 1(a)]. We use zero padding on the boundaries. Also, the gradient is calculated in back-
ward direction. Hence, the right and bottom borders of the image are not marked as boundary.
Gradient of the pixel at point (x,y) is calculated as

gp(x’ y)new = gp<xv y)nb left + gp(xv y)nb top — |p(x—1,y) - p(x.y)| + |p(x,y—1) — Pxy) |’ (3)

L [Pub = Py > 0
where gp(x,y),, = {0, [P — PEx ;V;| =0

We can conclude the boundary length directly from the gradients. The total boundary length
is computed by summing up the gradients of all the pixels in the label image

BL= Y {gpuy}- )

1<x,y<N
In Fig. 1, if we trace the boundary marked with red, we will find borders of length 21 pixels, in

total. The same result can be obtained by summing up the gradient values using Eq. (4).

2.2 Distance Calculation in MS-KM

From the second iteration onward, when deciding the cluster label to be assigned to a pixel, we
need to find out its effect on the boundary length (here gradient) when assigned to a particular

P(x,y) [Pab = Pyl 2Pnb total gp.,,) =
Assigned to in EPub left +
green Left Top Left Top ZPnb top
[7]
Cluster 4 |2 " 2 3 1 1 2
Cluster 2 7 0 5 0 ] i
[2]2
[7]
Cluster 7 |2 > 5 0 1 0 1

Fig. 2 Changed label of the pixel and the corresponding changes in gradients.
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Algorithm 2 KM using Mumford-Shah

X: input image, a set of N data vectors (image of N « ny x n, RGBvectors)
k: number of clusters
lambda: weighting factor controlling the coarseness of the segmentation
Cl: initialized k cluster centroids
C: final cluster centroids
iter: energy functional of Mumford-Shah equation
blen: boundary length of the segments
MS-KM (X, Cl, lambda) - (C, P)
FORalli € [1, N]DO
pi < 0;
iter < 1;
REPEAT
/I generate optimal partitions
GP « ImageGradient (P);
FORalli € [1, N|DO
FORallj € [1,k]|DO
MSD; « MumfordShahDist (GP;, x;, ¢;);
pi < argmin; ., MSD;
MSD; « min,;,{MSD;}
blen « CalculateBoundaryLength (GP);
Eiter < > 1<i<n{SSE;} + lambda + blen //[Compute functional E
/I Calculate optimal centroids
FORallj € [1, k] DO
¢; < Average of x;, whose p; = j;
iter < iter + 1;
UNTIL (AEje, < 0) OR (iter = maxiter)
MumfordShahDist (g, x, c) - MSD
/[Calculate gradient for the pixel x
IF |pro — px| > 0
gpx « 1
ELSE
gpx < 0

MSD « (x — ¢)? + lambda  gpx
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cluster. The boundary length of the pixel will be obtained as gradient using Eq. (4). It is further
illustrated in Fig. 2.

The decision about which segment the pixel is assigned to, is calculated by MSD, which is
calculated as follows:

MumfordShahDist(x, y, j) < (g(x.y) — ¢;)* + Axgp;(x. y),

where 4 is the weighting factor controlling the coarseness of the segmentation. In other words,
the distance is the squared Euclidean distance between the pixel and the centroid of the clusters
plus its new gradient value within that segment (weighted by 4). Thus, the distance incorporates
two different criteria—similarity and spatial convexity. The algorithm for MS-KM is given in
Algorithm 2. Its main structure is the same as KM containing both the optimal partitioning and
calculating the new centroids.

Even though the A-gp part is fixed during a single iteration, any change of the partition stage
will influence changes in the gp part of the equation. This will eventually create different seg-
mentation than KM. We further illustrate this with an example image of size 10 X 10 in Fig. 3.
Figure 4 shows the effect of the MSD on the small red object of the sample image.

Original KM MS-KM

. Iteration 1 . . Iteration 2
Initial (final) Initial Iteration 1 (final)
Blen 22 22 20 12
SSE 4.00E-04 4.00E-04 5.7864 10.9107
E 16.5004 16.5004 20.7864 19.9107
AE — — — 0.8757

Fig. 3 Sample image and results with KM and proposed MS-KM method.

Iteration 1 Iteration 2
SSE with centroid O SSE with Blen with label 0 MSD with
centroid 0 centroid 0
1.66
SSE with centroid 1 SSE with Blen with label 1 MSD with
centroid 1 centroid 1
0 1.44
Labeled Labeled after iteration 2
1|1 |1 |1 1 |1 |1 |1
1 1 1 |1 1
1|1 |1 |1 1 |1 |1 |1

Fig. 4 Merging of left pixel of small red object into cluster 1 from above sample image where
4=0.83.
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3 Experimental Evaluations

To evaluate the performance of our algorithm in case of two-phase segmentation, we use region-
based error metrics defined in Ref. 31 and structural similarity index.*> For multiphase segmen-
tation, we have used compactness measure.*

3.1 Bidirectional Consistency Error

Considering S; as segmentation obtained by an algorithm, and S, as one of the ground truth,
we calculate

|R(S1, Pi)/R(Sz’ Pi)|
IR(Sy, pi)l 7

E(S1.85.p;) = )

a value in the range [0.. X 1], where zero represents no error. Here, R(S, p;) is the set of pixels
corresponding to the region in segmentation S that contains pixel p;. Here, local error measure
is not symmetric, and it gives refinement measure in one direction only. It is to be noted that
E(S1,8,, p;) = 0if S, is a refinement of S, at pixel p;, but not the opposite. Using Eq. (5), the
following four evaluation measures can be calculated:

1.
GCE(S}, S,) = nmm{Z:E(shSz,Pi)»ZE(Sz,ShPi)}, (6)
1 .
LCE(S1.52) = ;Z min{E(Sy, S2. p;), E(S2, S1. pi)} O
1
BCE(S,. S,) = ;Zmax{E(Sl, Sy, pi), E(S2, 81, pi) } ®)
1 .
BCE*(S,,5,) = ;kam{max{E(S, .85, pi) E(S5. 81, pi)} ). )

Equations (6)—(8) represent the global consistency error (GCE), local consistency error (LCE),
and bidirectional consistency error (BCE), respectively. Equation (9) is the measure (BCE*)
obtained by computing the minimum error at every pixel, which is consistent with each ground
truth segmentation S; of that image. We will use BCE*.

3.2 Structural Similarity Index

Structural similarity index (SSIM)** measures the visual quality between two images. It is cal-
culated as a weighted combination of three factors luminance, contrast, and structural similarity.
It can be expressed as

SSIM(x, y) = [1(x. y)]%[c(x ) [s(x. y)]".

where [ is the luminance, c is the contrast, s is the structural similarity, and a, f, and y are the
positive constants. The three factors are calculated separately as follows:

2ppy + C
l(x,y) :2}726"
Hx +/’ty+ 1
20,0, + C,
— XY
c(x,y) —m,
X y
ey = 2t
0.6y + C3
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where p, and p, are the local means, o, and o, are the standard deviations, and o,, is the cross-
covariance between the two images x and y, respectively. If @ = f =y = 1, then SSIM sim-
plifies to

(2ﬂxﬂy + Cl) : (2Gx0y + CZ)
(uz + 154 C1) - (03 + 05 + Cp)

SSIM =

We use SSIM to calculate the similarity between the image generated by the segmentation result,
and the image generated from the ground truth segmentation.

3.3 Compactness Measure

Assessment of segmentation quality has been analyzed using combination of shape and
compactness.®® In Ref. 34, the authors used the idea of compactness in the area of measuring
super pixel compactness. Several approaches have been proposed for measuring shape compact-
ness of discrete regions. In Ref. 35, a review of several methods for measuring shape circularity
and compactness was done. They also survey some of the methods when scaling transformation
is applied to discrete regions.

Compactness is defined as the ratio of the area of an object to the area of a circle with the
same perimeter

Perimeter?
Compactness = ——— .
4.7 - area
The measure takes a minimum value of 1 for a circle. Objects that have complicated, irregular
boundaries have larger compactness.

3.4 Adjusted Rand Index

The Rand index (RI) computes a similarity measure between two segmentation results. All pairs
of pixels are considered and pairs that are assigned in the same or different segments in the
obtained segmentation and its ground truth are counted.

The RI score is then “adjusted for chance” to get adjusted RI using the following formula:

ARI = (RI — Expected_RI)/(max (RI) — Expected_RI)].

The adjusted Rl is thus ensured to have a value close to 0.0 for random labeling independently of
the number of segments and pixels and exactly 1.0 when the segmentations are identical.

4 Results for Two Phase Segmentations

We used nine random images from the Weizmann dataset®® depicting one object in the fore-
ground and their three ground truth segmentations. Figure 5 shows the original image and one
of the three ground truths. The resulting segmentations obtained by KM, reg-KM, MS-DR, and
the proposed MS-KM are shown in Fig. 6. The experiments were conducted on a desktop with
Intel Core i5 processor with 2.50 GHz speed, 8 GB RAM, 64-bit Windows 10 operating system.
The results of KM, MS-DR, and MS-KM depend on the choice of the initial centroids. We
therefore executed KM 20 times, calculated the BCE* error for every result, and then selected
the one with lowest BCE* value to obtain the best KM result. This was the used as the input to
MS-DR and the proposed MS-KM. The number of clusters was selected to match the ground
truth. The reg-KM method uses the change in the energy directly, that each pixel is moved to the
phase which locally minimizes the energy compared with the previous phase. The parameter
used for regularization gives an option of creating a new cluster. If the value of the parameter
is large, it increases the number of clusters. Here in Fig. 6, we show the results for only two
segments generated by reg-KM, by selecting the value of the parameter between 0.1 and 0.5.
Visually, the results show that the proposed method gives improved results with inclusion of
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Fig. 5 Original and one of the three ground truths.

scattered minute segments into bigger segments. Also, the proposed method gives smoother
boundaries, which can be seen in partial detailed images of Fig. 7.

Results of the BCE* error measure are given in Table 1. We can see that the proposed method
reduces the error of KM and reg-KM in eight out of the nine cases. The higher values of SSIM in
Table 2 indicate better quality segmentation using the proposed approach. Figure 8 shows the
effect of different values of 1 on the segmentation. The larger is the 1 value, the smoother are the
segments. Eventually, too many details will be lost.

We tested statistical significance of the results for the nine images in Table 2 by running KM
and MS-KM 10 times with different randomly chosen centroids as the initial solution. We used
one-tailed Wilcoxon signed-rank test for paired samples as normality of our distribution is not
satisfied. The observed value test-statistic W = 1 and the critical value at N =9 (p < 0.05) is
of W = 8, which shows that the difference between KM (0.69) and MS-KM (0.79) is statistically
significant. However, the difference between MS-DR (0.78) and MS-KM (0.79) is not significant.

The processing times are compared in Table 3. The proposed method is almost as fast as
KM (25% slower), and significantly than MS-DR (10 times faster) and reg-KM (600 times
faster). All KM variants share the same time complexity of O(NkdI) except reg-KM, which
uses slow O(Nk?d) initialization. MS-DR also uses KM as the initialization but the following
proximal splitting step by Douglas—Rachford has a higher number of iterations and more oper-
ations in each step, which together make the algorithm slower than the faster KM variants.

Figure 9 shows the effect of 1 on the results. As the images have nothing in common, we
cannot predict much about the value of 4 accept that the value 0.5 gives us the average result in all
the cases. Figure 10 shows the compactness measure when KM and MS-KM methods are
applied to 100 images of the Weizmann dataset. Resolution of the images in Weizmann dataset
vary from 300 X 170 (lowest) to 300 x 400 pixels (highest). For the proposed MS-KM method,
we have taken 4 = 0.5 which gives average results. The results can be even better if appropriate
A is taken for each image. These results are also statistically significant according to ANOVA
test (p < 0.00001).
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Fig. 6 Results of KM, Reg-KM, MS-DR, and the proposed MS-KM method.

5 Results for Multiphase Segmentation

We have used three selected images: horse, cows, and flowers. Figure 11 shows the resulting seg-
mentations obtained by KM, the proposed MS-KM, and reg-KM as per.*’ Visually, the results show
that the proposed method gives less fragmented segments with smooth and regular boundaries.

We can observe from Figs. 12—14 that the compactness value of all clusters by the case of
proposed MS-KM method is significantly smaller than that of the other techniques. We also
observe that the results of KM and reg-KM techniques are almost similar, except Fig. 13 where
reg-KM works better.

We also note that all KM variants tend to produce fragmented results despite the spatial
constraint. The reason is not the spatial constraint being too weak, but actually the opposite,
being too strong. Figure 15 demonstrates the issue with MS-KM using larger 4-pixel neighbor-
hood gradient instead of the proposed 2-pixel neighborhood. It is theoretically more solid but
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Name
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Lion
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Fig. 7 Partial images showing inclusion of minute segments into bigger segments and boundary

smoothing.

Table 1 Comparison using BCE* (the lower the better).

Name KM Reg-KM MS-DR Proposed MS-KM
Stone art 0.49 0.50 0.43 0.36
Broom 0.23 0.25 0.21 0.28
Dog 0.17 0.21 0.18 0.17
Stones 0.32 0.38 0.33 0.26
Egret face 0.13 0.14 0.07 0.13
Leaf 0.07 0.09 0.02 0.05
Lion 0.22 0.30 0.19 0.19
Nest 0.12 0.12 0.08 0.08
Redberry 0.10 0.14 0.08 0.09
Average 0.21 0.24 0.18 0.18

Table 2 Comparison using structural similarity index (the higher the

better).

Name KM Reg-KM MS-DR Proposed MS-KM
Stone art 0.37 0.37 0.58 0.64
Broom 0.67 0.67 0.84 0.78

Dog 0.77 0.77 0.80 0.80
Stones 0.64 0.64 0.64 0.68

Egret face 0.95 0.95 0.95 0.95

Leaf 0.49 0.49 0.66 0.64

Lion 0.70 0.70 0.81 0.85

Nest 0.80 0.80 0.86 0.87
Redberry 0.86 0.86 0.91 0.89
Average 0.69 0.69 0.78 0.79
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Fig. 8 Output for proposed MS-KM for various values of 1.

Table 3 Runtime in seconds.

Name KM Reg-KM MS-DR MS-KM
Stone art 0.16 144.27 2.19 0.31
Broom 0.14 440.77 1.79 0.29
Dog 0.05 64.42 1.42 0.12
Stones 0.07 40.39 4.06 0.08
Egret face 0.04 20.25 2.87 0.18
Leaf 0.09 26.15 2.58 0.39
Lion 0.10 199.50 2.27 0.29
Nest 0.09 15.78 1.36 0.08
Redberry 0.09 112.40 1.81 0.10
Average 0.16 118.21 2.26 0.20

0.50 -

0.40 A

o

-

o
1

. 4
%)
o
ks ||| |“ “l
X & X Q

% > e
E R R A I I R
o ¢ & R
S % <
m 1=0.25 mA=05 m A=0.75

Fig. 9 Effect of A for proposed MS-KM method on BCE* (the lower the better).
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Fig. 10 Frequency distribution of the compactness scores provided by KM and the proposed MS-
KM method for 1 = 0.5 (the lower the compactness the better).
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Fig. 12 Compactness for horse image.

will lead to fragmentation in practice. The reason is the KM initialization, which contains many
isolated subsegments, and KM with too strong spatial constraint is unable to erode these away as
well as the simpler 2-pixel gradient.

6 Application to HSIs

In this section, we apply the proposed MS-KM method to HSIs. Unlike RGB color image, which
stores the intensity value of three bands only (red, green, and blue), HSIs can have intensity
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Fig. 15 Fragmentations of the KM variants due to local optimality of isolated subsegments.

information of more than 100 spectral bands, which are in discrete intervals of 5 to 10 nm across
the visible to the infrared region. The spectral resolution is very high due to narrow band gap,
which leads to high dimensionality. However, the results in Ref. 15 have shown that the per-
formance of KM depends mostly on the overlap of the clusters in the feature space and is less
dependent of the dimensionality. This is also the case with the HSI images, which makes KM as a
suitable choice here.

We have used two images. First image is AVIRIS-Salinas HSI captured by 224-band AVIRIS
sensor in 1998 over agricultural fields in the Salinas Valley, California.’” The number of spectral
bands used is 204 (discarding 20 water absorption bands) and the total number of pixels is
512 x 217. Its ground truth with 16 classes is shown in Fig. 16. There are also unclassified data
in the ground truth, which are shown by white color.

Journal of Electronic Imaging 063029-16 Nov/Dec 2021 « Vol. 30(6)



Shah, Patel, and Franti: k-Means image segmentation using Mumford-Shah model

The second image is Pavia University HSI acquired by the ROSIS sensor over Pavia,
northern Italy.”” The number of spectral bands is 103, and the number of pixels is 610 X 610,
but some of the samples contain no information and have been discarded before the analysis.
Hence, the actual resolution is 340 X 610 pixels. The ground truth has nine classes. In this image,
there are also unclassified data in the ground truth, which are shown by white color in Fig. 16.

As a preprocessing step, we normalize bands using the following formula:

norm_val = (val — band_ min)/(band_ max —band_ min).

The number of clusters is set to 16 for the AVIRIS-Salinas image and to 9 for the Pavia
University image according to the number of classes in their ground truth data. The value of 1
is set to 0.5. The results of KM method and the proposed MS-KM are shown in Fig. 16. The
implementation of the reg-KM did not support HSIs. As expected, the segments generated by
the proposed method are much less fragmented than that of generated by KM. More detailed
analysis will follow.

Table 4 shows the BCE* error, adjusted Rand index (ARI), and SSIM for the KM and the
proposed method. In case of Pavia University image, the BCE* values are 0.27 by KM and 0.18
by MS-KM. Smaller BCE* values indicate better accuracy. The ARI values are very close to 1.0
by both methods. While the proposed method improves based on BCE*, the segmentation is
worse when measured by SSIM (0.94 versus 0.87). While MS-KM provides more convex and
visually pleasant segments, the color difference of those fragmented pixels is so high that they
cause measurable degradation in SSIM.

In case of AVIRIS-Salinas image, both BCE* values are close to 0.50 (0.47 and 0.46). While
RI values are still high (0.92 and 0.93), the results indicate that, regardless of the algorithm,
segmenting the image by spectral features alone is not sufficient even when using >100 bands.
This is evidenced by the fact that even the less fragmented segmentation by the proposed method
did not provide significant improvement according to any of the used measure.

Name Ground truth KM MS k-means

NS %

AVIRIS
- Salinas

Pavia
University

Fig. 16 Results of the proposed MS-KM.
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Table 4 Various error metrics for KM and MS-KM method.

KM MS-KM
Name BCE* RI SSIM BCE* RI SSIM
AVIRIS-Salinas 0.47 0.92 0.63 0.46 0.93 0.62
Pavia University 0.23 0.97 0.94 0.23 0.98 0.87

The authors of Ref. 38 have concluded that their nearest-neighbor density-based (NN-DB)
methods perform better than density-based spatial clustering of applications with noise
(DBSCAN), fast sparse affinity propagation (FSAP), and fuzzy C-means (FCM) regardless the
chosen number of clusters (obtained or initialized). For AVIRIS-Salinas image, the highest ARI
for all the methods mentioned in Ref. 38 is ~0.7. They reported that classes A and B cannot be
clearly identified by any of the methods in their tests, and by any methods in papers published
earlier. We have observed the same phenomenon with our tests.

The quality assessment of the segmentation results of HSIs requires precise and unbiased
ground truth.* When analyzed, the spectral signatures of the ground truth (GT) classes reveal
that several classes exhibit high heterogeneity. Especially for Pavia University HSI, it is observed
by the authors that the GT classes are not perfectly homogeneous and do not correctly represent
the diversity and variability of the land cover.

7 Conclusions

The approach is introduced by embedding the well-known Mumford—Shah model into KM. The
key contribution is to combine KM with Mumford—Shah model. Its main benefits are: (1) better
segmentation performance than other models used with KM and (2) significantly faster optimi-
zation than that of the existing optimization methods for Mumford—Shah model. The results of
the proposed approach are better than KM and reg-KM techniques in terms of shorter boundary
lengths, and 25% better SSIM-value than Reg-KM (0.24 versus 0.18). The proposed method is
almost as fast as KM (0.16 versus 0.20), 10 times faster than MS-DR (2.26 versus 0.20), and
600 times faster than reg-KM (118 versus 0.20).

The proposed method has two limitations. First, algorithm has the weakness of KM of being
sensitive to the initialization which can lead to suboptimal clustering results and also frag-
mented segmentation. These could be overcome by better initialization and repeats,'* or by
adding random swap step around the KM as in Ref. 40. The second limitation is that it was
tested only with color features (RBG and HSI), which are not good enough in all applications.
For example, the HSI examples showed that some segments cannot be modeled by the color
spectrum. This could be overcome by applying detexturing method as a preprocessing'® or
extending the method to be used with texture or some application-specific features. These are
points for future research.
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