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Abstract. Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy char-
acterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma
surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is
achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we
have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture
energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band
straightening, histogram features characterizing densities, and global lung measurements. Using stepwise for-
ward selection and leave-one-case-out cross-validation, a neural network was used for classification. When
applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule,
39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the
ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved
through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward
increased performance when the parenchyma is included, coupled with the large number of significant paren-
chymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant
versus benign nodules, assisting CAD-based nodule characterizations. © The Authors. Published by SPIE under a Creative

Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
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1 Introduction
Lung cancer is the leading cause of cancer-related death, killing
1.37 million people in the world in 2008 alone.1 While the over-
all 5-year survival rate of lung cancer is 15.9%, this statistic
greatly improves with early diagnosis, up to 52% for the earliest
stage of lung cancer.2 The significant improvement in survival
with earlier diagnosis has led to the implementation of screening
for high-risk asymptomatic individuals, such as smokers and
past smokers. Screening by computed tomography (CT) has
been found to be an effective technique. The National Lung
Screening Trial (NLST) found that using CT to screen for lung
cancer reduced lung cancer mortality by 20% compared to
screening using projection radiograph.3 However, 96.4% of the
nodules marked as suspicious on CT were found to be benign
upon further evaluation.4 These false positives result in unnec-
essary and invasive follow-up procedures and costs while incur-
ring additional emotional stress for the patient.

In an effort to reduce the number of false positives, a com-
puter-aided diagnosis (CAD) tool is sought to determine the
probability of malignancy of a lung nodule based on objective
measurements or features. CAD tools have the potential to

improve the accuracy of nodule classification (likely malignant
or benign) by acting as a second reader to radiologists.5,6 CAD
tools consist of two pathways. In the training pathway, features
are extracted from regions of interest (ROIs) with known out-
comes, analyzed, and selected for best classification. These
selected features are then used to train the classifier. The testing
pathway takes an ROI with an unknown outcome. The features
selected in the training pathway are extracted from the unknown
ROI and passed to the classifier, resulting in the predicted
outcome.

With the notion that benign and malignant lung nodules will
interact with surrounding lung parenchyma differently, we pos-
tulate that quantitative CT (QCT) CAD classification of lung
nodules can be improved by including characteristics of the
lung parenchyma surrounding the nodule. Developing a CAD
tool to identify lung cancer is a topic that has been explored
in many ways; however, current CAD approaches have focused
on the lung nodule itself. In reviewing the current literature, the
size, intensity, shape, texture, and location of the nodule have all
been found to be significant features in determining the diagnoses
of lung nodules.6–22 Several methods have been used to
characterize the shape of the nodule including sphericity8,17

and compactness,11,17 as well as qualitative descriptors of
polygonal shape,18 edge characteristics,7,19,20 and the presence
of spiculation.6,9,13 The texture of the nodule has also been
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quantified through different techniques, such as co-occurrence
matrix-based parameters and run-length statistics.15,16,22 Texture
has also been determined through a radiologist scoring system.8

While some of these features are readily computed from the
ROIs, such as attenuation properties,10,17,21 volume and
size,11,19,20 and sphericity,8,17 other features have been specified
based on user input—such as the presence of spiculation6,12,13

and how well-defined the margins of the nodule are.9,14 In sum-
mary, the majority of features used in classification have been
derived only from the nodule, despite the fact that the nodule
interacts with the surrounding parenchyma.

The volumetric data from CT imaging facilitates the early
detection of small pulmonary nodules (4 to 30 mm) that require
follow-up, often with repeated CT imaging to track nodule
growth as an indicator of malignancy. A sensitive CAD tool
capable of identifying those small nodules as very low risk for
malignancy could minimize repeated CT imaging and hence
radiation exposure in this population. However, for early iden-
tified pulmonary nodules, especially those less than 10 mm,
there are a limited number of CT data voxels within the solid
tumor, making them difficult to process through traditional
CAD tools. Incorporating the surrounding lung tissue in the ROI
associated with a lung nodule increases the amount of data avail-
able to the CAD tool for feature extraction and contributes
insight into the differences between how malignant and benign
nodules interact with the adjacent lung parenchyma.

2 Methods

2.1 Study Population

This was a retrospective study that included 50 solitary pulmo-
nary nodule cases (22 malignant and 28 benign) from previous
NIH funded studies: the NLST and the Chronic Obstructive
Pulmonary Disease Genetic Epidemiology (COPDGene) study.
Our study was approved by the University of Iowa institutional
review board, and informed consent of participants was
obtained. CT and demographic data were collected as a part of
the parent studies. For the NLST study, lung cancer diagnoses
were tracked as a part of the primary study outcomes; however,
COPDGene subjects were separately contacted and consented in
order to collect details related to nodules detected on their CT
studies that were acquired to study chronic obstructive pulmo-
nary disease (COPD).

Our study consisted of 14 cases from the Iowa cohort of the
NLST; 6 nodules were malignant and 8 were benign, all diag-
noses confirmed through pathology. The remaining 36 cases—
16 malignant and 20 benign—were from the COPDGene study.
For 12 of the malignant cases from the COPDGene study, the
diagnoses were confirmed using the COPDGene Lung Cancer
Registry, an ongoing ancillary study to collect diagnostic and
treatment information from participants with both COPD and
lung cancer. Additionally, 11 of the benign nodules remained
benign after at least 2 years of follow-up. The diagnoses of the
remaining four malignant and nine benign nodules from the
COPDGene study were determined by comparing the self-
reported presence/absence of lung cancer by the participants
and the radiologists’ qualitative description of the nodules in
their written reports. These 13 nodules will be reassessed upon
the return of the participants for stage II of the COPDGene
study.

2.2 Computed Tomography Data

NLST and COPDGene acquired CT data with very different
goals in mind. NLST, targeting annual screening for lung cancer,
developed a low-dose protocol to minimize participant exposure
to ionizing radiation. The low-dose CT scans from the NLST
cohort were acquired from a single center site, the University
of Iowa. All 14 NLST scans were collected with a tube voltage
of 120 kVp and a tube current–time product of 40 to 80 mAs on
either a Philips Mx8000, Siemens Sensation 64, or Siemens
Sensation 16 CT machine. While the NLST protocol specified
a slice reconstruction interval of 1.0 to 2.5 mm, additional high
resolution reconstructions were made at our institution and used
in this study.3 The three Philips scans had a slice thickness of
1.3 mm and were reconstructed with a B filter. The Siemens
scans had slice thicknesses of 0.75 mm (four scans) or 0.6 mm
(seven scans) and were reconstructed with a B30f kernel.

The imaging protocol for COPDGene was developed for
high resolution lung imaging to best characterize emphysema,
air trapping, and airway wall remodeling from the COPD dis-
ease process.23 The 36 higher dose CT scans from the COPDG-
ene subcohort were collected from Brigham and Women’s
Hospital, Columbia University Medical Center, Morehouse
School of Medicine, National Jewish Health, Reliant Medical
Group, Temple University, the University of California San
Diego, and the University of Iowa. Scans were collected with a
tube voltage of 120 kVp and a tube current–time product of
200 mAs. Reconstructions were performed with B, B31f, or
Standard kernel for Philips, Siemens, and GE respectively,
with slice thicknesses between 0.6 and 0.9 mm.

For each of the 50 subjects with an identified solitary pulmo-
nary nodule, the ROI was defined [Fig. 1(a)]. The ROI was
selected within the CT data to include the solitary pulmonary
nodule and immediate surrounding parenchyma. The amount of
parenchyma included in the ROI was roughly proportional to the
size of the nodule. Each ROI was manually segmented by a sin-
gle user (J.U.) to label the individual voxels of the ROI as nod-
ule, surrounding parenchyma, or invalid tissue. In addition, to
explore the impact of different segmentations on feature extrac-
tion, a subset of 12 cases was independently segmented by three
separate users (A.J., S.D., and K.K.). Voxels marked as invalid
tissue included chest wall and blood vessels; these voxels were
not used in feature extraction.

2.3 Feature Extraction

Voxels labeled as parenchyma and nodule were used in the
extraction of four classes of features [Fig. 1(b)]: intensity, shape,
border, and texture. Intensity characteristics included histogram
features, such as mean, minimum, and maximum intensity (in
Hounsfield Units), as well as measures of heterogeneity, such
as entropy and kurtosis; these were extracted from the nodule
and parenchyma voxels separately. Shape characteristics such
as sphericity and features comparing the surface of the nodule
to a sphere of equivalent volumewere extracted using the nodule
mask. The size of the nodule was also extracted using the
RECIST maximum diameter and the effective radius, calculated
from the volume of the nodule.

The texture of both the nodule and the parenchyma were each
quantified using a three-dimensional (3-D) extension of Laws
texture energy measures (TEM).24 These measures interrogate
the grey-scale images by looking for patterns in different gra-
dients. In the two-dimensional (2-D) application, five 5-element
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vectors that describe levels, edges, spots, waves, and ripples are
convolved with each other to form 25 5 × 5 matrices called ker-
nels. These kernels locate a different texture type in each dimen-
sion, such as edges in the horizontal and spots in the vertical. By
convolving the five-element vectors with the 25 2-D kernels,
125 3-D kernels in the form of 5 × 5 × 5 matrices were gener-
ated. These 125 kernels were convolved with each ROI, gener-
ating 125 texture volumes that, when combined and normalized
to account for the directional texture information, simplified into
34 rotationally invariant 3-D TEMs. Using the same method for
intensity feature extraction, the mean, variance, kurtosis, and
skewness of the textures for the nodule and parenchyma
were extracted for each 3-D TEM. This resulted in 272 texture
feature values.

A lung CAD tool developed by Way et al.22 examined the
nodule border through the use of a rubber band straightening
transform, originally implemented by Sahiner et al.25 This proc-
ess straightens the nodule based on the perimeter identified dur-
ing segmentation. While the identification of the boundary can
vary greatly between users and segmentation methods, the
centroid is minimally affected, as illustrated in Fig. 2. Quanti-
tatively, this was tested in the subset of 12 nodules segmented by
three different users, yielding a mean centroid difference of
0.45� 0.41 mm. By shifting the straightening from the border
of the nodule to the nodule’s centroid, the dependence on seg-
mentation is reduced. To accomplish this task [illustrated in
Fig. 3(a)], the axial slice of the ROI containing the centroid
was selected. For this 2-D slice, the distance between the cent-
roid and the closest bounding box edge was computed; this
length was determined to be the ray length. Rays were cast
from the centroid toward the edge of the bounding box radially,

Fig. 1 Flowchart of the computer-aided diagnosis (CAD) tool. (a) Segmentation: The region of interest
containing the nodule and the surrounding parenchyma is labeled as nodule or parenchyma. (b) Feature
extraction: Over 300 features are extracted from these two areas, and an additional 54 global features are
extracted based on characteristics of the lung. (c) Classification: Finally, the feature set is reduced and
the selected features are used to train the linear discriminant analysis (LDA) and artificial neural network
(ANN) classifiers, labeling a nodule as likely malignant or likely benign.

Fig. 2 Comparison of segmentation of a nodule compared to place-
ment of centroid. The nodule (a) was manually segmented by two
users: (b) A.J. and (c) S.D. The grayscale image of slice 20 is
shown in the top image, while the two segmentations with centroid
indicated are shown in the lower images. Though the segmentations
differ, the centroid placement remained constant at pixel location (29,
33, 20).
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resulting in 360 rays of uniform length, with each representing a
single row in the straightened image. Once the straightened image
was created, the border was analyzed [Fig. 3(b)]. As benign nod-
ules tend to have well-defined borders,26 we expect the average
rate of border change to be steeper, indicating a quicker transition
to parenchyma. However, for malignant nodules, which tend to be
spiculated, it is predicted that the intensity would change more
slowly and be more varied across the rows of the straightened
image (higher values in both of the variance border features).

As an additional area of interest, global features were included
to determinewhether imaging data captured within the same lobe,
third of the lung, and/or lung contain meaningful information
related to nodule diagnosis. Measures including region-specific
(lobe, third, or lung) mean and standard deviation intensity, tissue
volume, air volume, and percent emphysema (percent of voxels
< − 950HU on inspiratory imaging) were extracted through the
commercially available lung analysis software, Apollo Software
(VIDADiagnostics, Inc., Coralville, Iowa). About 54 global mea-
sures were included in feature extraction, leading to a total of 165
nodule, 139 parenchymal, and 54 global features.

2.4 Feature Selection and Classification

The 358 features collected from the ROIs were then reduced
through statistical analysis and feature selection [Fig. 1(c)]. A
statistical analysis module was created to determine which of
the features were statistically different between the malignant
and benign cases. Each feature was tested for normality using
the Jarque–Bera normality test. Additionally, the variances for
each feature were tested for equality. If the feature followed a
normal distribution and the variances for the malignant and
benign groups were equal, a two-sample t-test for equal varian-
ces was performed. If the feature followed a normal distribution
but did not have equal variances between the two groups, the
two-sample unequal variances t-test was used. Finally, if the
normality test showed the feature distribution was not normal, the
nonparametric Wilcoxon rank sum test was used. A feature with a

p-value <0.05 was determined to be statistically significant. This
statistical testing was used to reduce the number of features used
in feature selection in order to decrease computation time while
ensuring meaningful features were included in analysis.

To determine which of the significant features should be used
for classification, stepwise forward selection was used. A frame-
work was developed for optimizing feature selection when a
small number of ROIs were available in an effort to reduce
both performance and selection biases (Fig. 4). The performance
of the selected features at each step was estimated using leave-
one-case-out cross-validation on 49 cases, with the 50th case
completely left out of training and testing. This was repeated so
every case was completely removed from the process. Majority
voting was then used to select the best feature set at each stage of
stepwise forward selection. Features were added until the best
combination of features was found, with the total number of fea-
tures equivalent to 1 feature for every 10 ROIs to prevent over-
fitting;27 with 50 ROIs, features were added until five features
were selected or until performance was not improved with the
addition of more features. An artificial neural network (ANN),
the structure of which is illustrated in Fig. 1(c), was used for
classification. Performance was estimated using a leave-one-
out cross-validation method where 49 cases were used for train-
ing and the 50th used for testing. In the hidden layer, two nodes
were used in addition to the bias node. Due to the random ini-
tialization of weights during training of the ANN, this was
repeated 10 times to better approximate the classifier’s perfor-
mance. Classification using the features selected was also per-
formed using a linear discriminant analysis (LDA) classifier
[Fig. 1(c)]. Due to the deterministic nature of the LDA classifier,
the leave-one-out cross-validation method was performed once.

2.5 Classification Evaluation

The accuracy, sensitivity, specificity, and the standard deviations
of each measure were computed by averaging the leave-one-

Fig. 3 Process for quantifying the border from the straightened image. Nodule straightening: the slice
containing the centroid of the nodule mask is selected (a). The minimum distance from the centroid to the
bounding box edge is computed [circle in (b)] and rays cast radially for 360 deg [arrow head in (b)]. The
intensity values are interpolated along each ray for the straightened image [right panel in (b)]. Each row of
the straightened image contains the same number of pixels as the uniform-length cast ray, with the bold
line in (b) corresponding to the horizontal line in the row of the straightened image. The same process is
repeated for the nodule mask. The straightened mask is combined with the straightened image to remove
the invalid tissue (c). Feature extraction: for each row in the straightened image (c), a plot of intensity
versus column position is generated (e). Shown by the thick vertical lines, the minimum and maximum
column of the border is found from the straightened mask (d). A first-order polynomial was fit for each
intensity plot (e) over the column range in (d). The mean and variance of the slopes as well as the width in
the border was computed for features (f).
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case-out cross-validation results from 10 trials with each ANN
classifier. Performance was evaluated through ROC analysis in
which the area under the ROC curve (AUC) was obtained.
Additional performance measures of positive predictive value
(PPV) and negative predictive value (NPV) were also computed.
Classifier ROC curves were compared using the Delong method
to assess for differences in performance.28 Predicted classifica-
tion probabilities were averaged over the 10 trials for compar-
isons of ANN performance. All statistical comparisons were
two-sided and assessed for significance at the 5% level.

3 Experimental Results
Overall, the 50 cases ranged in nodule diameter from 4 to 30 mm
(11.9� 6.6 mm). The ROIs had mean dimensions of 27.8�
11.6 mm in the x direction, 28.9� 10.7 mm in the y direction,
and 21.2� 8.1 mm in the z or axial direction. The cohort of
malignant versus benign nodules had similar distributions of
lobar locations with the majority (12 malignant and 19 benign)
in the upper lobes. A statistically significant (p ¼ 0.01) differ-
ence in RECIST maximum diameter as measured by radiolog-
ists existed between malignant (14.4� 8.1 mm) and benign
nodules (9.8� 4.0 mm). We expect in the future, especially
within the lung cancer screening cohort, that this size bias
between the malignant and benign cohorts will not be signifi-
cant, as we describe in Sec. 4, and hence, in this study, CAD
tools were cross compared both incorporating and excluding
size features.

3.1 Statistical Analysis

Of the 358 features (165 nodule, 139 parenchymal, 54 global),
52 were found to be significant predictors of malignancy
(p < 0.05). In summary, the significant predictors incorporated
features from both the nodule and the surrounding parenchyma
including the following 47 features:

• Eleven intensity features—nodule mean, median, and
minimum intensities, nodule variance, nodule kurtosis,

nodule skewness, parenchyma mean and parenchyma
median intensities, parenchyma variance, parenchyma
entropy, and parenchyma kurtosis.

• One shape feature—sphericity, which examines the ratio
of surface area to the volume of the nodule.

• One size measure—the RECIST maximum diameter.29

• Thirty-four parenchyma texture variance features.

Comparatively, when only the nodule features were consid-
ered, only nine features returned as significant:

• Six intensity features—nodule mean, median, and mini-
mum intensities, nodule variance, nodule kurtosis, and
nodule skewness.

• One shape feature—sphericity.

• One size measure—the RECIST maximum diameter.

• One border feature—the mean intensity change across the
border.

There were five significant global features:

• The ratio of the percent of emphysema between the upper
and lower regions of the lungs.

• Two intensity features from the third of the lung contain-
ing the nodule—kurtosis and skewness.

• Two tissue volume measurements (cm3)—from the lung
containing the nodule and from both lungs.

The effects of this manual segmentation were analyzed by
comparing the feature values across three different segmenta-
tions (A.J., S.D., and K.K.). Based on the results of the one-
way analysis of variance test, none of the features varied signifi-
cantly from the others when segmented by a different user. The
intensity histogram (p ¼ 0.16 to 1.00) and shape (p ¼ 0.16 to
0.78) features were most affected by manual segmentation, as
expected due to reliance on the nodule mask. However, none
of the features were statistically significantly affected.

Fig. 4 Process for selecting the best set of features at each step along stepwise forward selection. For
each iteration, one case is left completely out of the internal loop, where accuracy approximations are
computed for each subset of features being tested. After acquiring accuracy approximations for all pos-
sible subsets for each set of 49 (N − 1) subcohorts, the feature set with the highest approximate accuracy
across all subcohorts is selected.
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3.2 Classification

From the subset of 47 statistically significant nodule and paren-
chyma features, the features chosen by stepwise forward selec-
tion for the ANN classifier can be seen in Table 1, along with the

performance of the classifier using leave-one-case-out cross-val-
idation. Likewise, the features selected for classification from
the nine-feature subset for the nodule only are also shown in
Table 1. Both classifiers selected the nodule minimum intensity
as a feature. While the nodule and parenchyma classifier

Table 1 Summary of performance measures for the artificial neural network (ANN) classifications. Due to the random initialization of the neural
networks during training, performance is reported in percent as the mean ± the standard deviation over the 10 trials. The positive predictive value
(PPV), negative predictive value (NPV), and the area under the ROC curve (AUC) are also reported.

Features selected

ANN leave-one-case-out classifier performance

# Correct
50 (22, 28) Accuracy Sensitivity Specificity PPV NPV AUC

Nodule and parenchyma features
Nodule minimum intensity,
Sphericity, Nodule kurtosis,
Parenchyma kurtosis,
Parenchyma variance

46 (20, 26) 92.00� 0.00% 90.91� 0.00% 92.86� 0.00% .909 .929 0.938� 0.009

Nodule features
Nodule minimum intensity,
Mean of slopes,
RECIST maximum diameter,
Nodule median intensity

44.9 (20.6, 24.3) 89.80� 1.48% 93.64� 2.35% 86.79� 1.73% .848 .946 0.918� 0.022

Nodule features—no size
Nodule variance,
Nodule minimum intensity,
Mean of slopes

43.9 (19.1, 24.8) 87.80� 1.14% 86.82� 1.44% 88.57� 1.51% .857 .895 0.872� 0.012

Nodule, parenchyma, and global features
Nodule minimum intensity, Sphericity,
Nodule kurtosis, Parenchyma kurtosis,
Intensity kurtosis of the third

48 (21, 27) 96.00� 0.00% 95.46� 0.00% 96.43� 0.00% .955 .964 0.932� 0.010

Table 2 Summary of performance measures for the linear discriminant analysis (LDA) classifications. The accuracy, sensitivity, specificity, PPV,
NPV, and the AUC are reported.

Features selected

LDA leave-one-case-out classifier performance

# Correct 50 (22, 28) Accuracy Sensitivity Specificity PPV NPV AUC

Nodule and parenchyma features
Nodule minimum intensity,
Sphericity, Nodule kurtosis,
Parenchyma kurtosis,
Parenchyma variance

42 (16, 26) 84.0% 72.7% 92.9% 0.889 0.813 0.847

Nodule features
Nodule minimum intensity,
Mean of slopes,
RECIST maximum diameter,
Nodule median intensity

33 (12, 21) 66.0% 54.6% 75.0% 0.632 0.677 0.710

Nodule features—no size
Nodule variance,
Nodule minimum intensity,
Mean of slopes

38 (17,21) 76.0% 77.3% 75.0% 0.708 0.808 0.713

Nodule, parenchyma, and global features
Nodule minimum intensity, Sphericity,
Nodule kurtosis, Parenchyma kurtosis,
Intensity kurtosis of the third

42 (17, 25) 84.0% 77.3% 89.3% 0.850 0.833 0.857
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selected intensity measures of both the nodule and the paren-
chyma and a shape feature, the nodule-only classifier selected
size and border features, in addition to intensity measures. For
the nodule-only classifier, only four features were selected
when up to five could be used to maintain the 1 feature per
10 cases rule of thumb. In this instance, performance was
not improved with the addition of a fifth feature. The ANN
built with nodule and parenchyma outperformed that built
with features from the nodule alone, correctly classifying 46
of the 50 nodules on average with an average AUC of 0.938,
compared to the nodule-only performance of 44.9∕50 and aver-
age AUC of 0.918. Both classifiers had similar sensitivities
(90.9% to 93.6%) or 20∕22 to 20.6∕22 correctly classified as
malignant.

As mentioned previously, the classifier built with features
only from the nodule selected the size feature: the RECIST
maximum diameter. Due to a size bias existing within the
cohort, as indicated by the statistical significance of this feature
(p ¼ 0.01), the size feature was eliminated from feature selec-
tion. Without this feature, the ANN relied on the border feature
and nodule intensities and only selected three features before
performance was not improved. This ANN had a resulting accu-
racy of 87.8% (43.9∕50) and an average AUC of 0.872 and suf-
fered a reduction in sensitivity and NPV compared to the ANN
built with nodule features including size. Overall, the ANNs
built with nodule-only features had worsened outcomes, includ-
ing decreased accuracy, specificity, PPV, and AUC.

A final trial looking at the impact of nodule, surrounding
parenchyma, and global features resulted in a similar set of fea-
tures being selected as the nodule and parenchyma CAD tool
(Table 1). Instead of parenchyma variance being selected as
the fifth feature, the kurtosis of the third of the lung containing
the nodule was selected. The ANN incorporating all three types
of features (nodule, surrounding, and global) had a performance
accuracy of 96.0% (48∕50), improved sensitivity and specificity
compared to the other classifiers, as well as improved PPV and
NPV. It had a similar but reduced AUC compared to that of the
nodule and parenchyma ANN, with an AUC of 0.932.

Across the four trials, AUCs for the CAD tools using ANN
classifiers ranged from 0.872 to 0.938. Their differences were

not statistically significant, although the modest sample size
in this study limits power to detect small differences. AUCs
for LDA classifiers ranged from 0.710 to 0.857 and were sig-
nificantly lower than those for the ANN classifiers (p < 0.05). A
comparison of the ROC curves for these classifiers can be found
in Fig. 5. The measures of performances for the LDA classifiers,
including the accuracy, sensitivity, specificity, PPV, NPV, and
AUC, are shown in Table 2. As seen with the ANN classifiers,
the nodule and parenchyma LDA (AUC ¼ 0.847) and the LDA
incorporating nodule, parenchyma, and global features
(AUC ¼ 0.857) performed better than the LDAs that included
only nodule features (AUC ¼ 0.710 to 0.713), providing addi-
tional support for the inclusion of parenchyma features in a
CAD tool.

4 Discussion and Conclusion
Existing CAD tools have focused primarily on characteristics
derived from the nodule. These CAD tools may be challenged
by early detected lesions due to the limited number of CT voxels
within the lung nodule. We sought to overcome this challenge
by incorporating parenchyma-derived features. Translation to
clinical applicability was also a goal of this CAD tool: as
lung cancer screening programs are implemented, a nodule clas-
sification approach that performs well regardless of CT scanner
manufacturer and variance across image acquisition protocols is
desired. Such a system would be able to act as a second reader to
a radiologist, providing a quantitative assessment of a nodule in
question as well as a likelihood-of-malignancy measure that a
radiologist can incorporate into the management plan of a nod-
ule. By utilizing features from the parenchyma as well as the
nodule and by incorporating data collected using a diverse
range of scanning protocols, we have developed a robust clas-
sification tool. Our comparison of classifiers found that the
ANN trained with both nodule and parenchymal features
trended toward increased performance in accuracy, specificity,
PPV, and AUC when compared to performance using features
derived from only the nodule, which supports the premise that
valuable information can be captured through including paren-
chymal features.

Fig. 5 ROC curves for the (a) ANN and (b) LDA classifiers. The ROC curves generated from the ANN
classifiers show better performance compared to the LDA classifiers, which is supported by the area
under the ROC curve values seen in Table 1 and Table 2.
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Different CT scanner manufacturers have independent tech-
nologies and reconstruction algorithms, which can affect the
quantitative, density-dependent grey levels (Hounsfield units)
obtained from the CT data. The issue of manufacturer variability
in CT data occurs not only in multicenter trials but will also play
a larger role as lung cancer screening becomes more widespread.
In addition to the diversity in the data due to CT scanner manu-
facturer, several other factors affect the QCT pulmonary mea-
sures, including patient positioning, maximum voltage (kV),
tube current–time product (mAs), and reconstruction methods.30

For example, as the mAs increases, the amount of noise is
decreased, changing the texture captured within the image.
By including scans collected with a diverse number of param-
eters, including scanner model, tube current–time product, and
slice thickness, we have challenged the designed CAD tool: the
features selected achieved high performance despite this CT
acquisition protocol variability within the cohort.

In feature extraction, we sought to take advantage of the
volumetric nature of the data by extracting features in three
dimensions. One such way was through the Laws’ TEM.
First developed in 1980, Laws’ TEM are computed through sim-
ple convolutions and moving-average techniques.24 Reports
have described techniques for extending Laws’ convolution ker-
nels in several ways, including extension to three dimensions.31

Another research study has used the application of Laws’ TEM
to predict prognosis of adenocarcinoma lung tumors, finding no
significant differences between high-risk and moderate-risk
patients with adenocarcinoma.32 We have expanded the work
described in Suzuki and Yaginuma31 to result in 34 rotationally
invariant texture image stacks, which we summarized into nod-
ule and parenchyma features, based on the binary masks
acquired from the original CT data. We found that textures
from the nodules were not significantly different between malig-
nant and benign cases; however, when the parenchyma was
examined, texture features were significant. We believe the tex-
ture may be quantifying vascularization within the parenchyma,
tumor spiculation, and parenchymal tissue compression as the
lesion invades into the parenchyma.

From the feature selection process, the texture features of the
parenchyma were key components in separating diagnoses.
Thirty-four of the 52 statistically significant features were tex-
ture features derived from the parenchyma. Other parenchymal
features were also found to be important during statistical test-
ing, including the variance and the kurtosis of the parenchyma
intensity and the kurtosis of the third of the lung containing the
nodule. These observations support the hypothesis that inclusion
of features from the surrounding parenchyma can aid in the clas-
sification of malignant and benign nodules. In addition, features
extracted from this straightened image were statistically signifi-
cant when looking at the nodule alone, indicating the modified
straightening of the border from the centroid yields a valid
analysis of border characteristics.

The parenchymal features’ influence on classification is also
important in regards to the size of lung tumors for which the CAD
tool was developed. The CAD tool was developed to aid in the
classification of nodules, lesions detected in CTwith a maximum
diameter of 4 to 30 mm. For small pulmonary nodules, especially
those <10 mm, the number of voxels from which nodule features
can be computed via CT data is limited. By showing that paren-
chymal features contribute to a probable diagnosis, the number
of voxels that can be used in feature extraction is increased.
Additionally, inclusion of the parenchymal features quantifies

the reaction of the nodule to its surroundings. The significance
of these features further shows that by examining the nodule
alone, valuable classification data is being ignored.

There is a statistically significant size difference between the
malignant and benign nodules in our cohort. Our cohort consists
of nodule cases from the NLST and COPDGene clinical trials.
The majority (38/50) of nodules included in this study were
detected via the first CT time point. This is known as the preva-
lence time point: nodules detected at this baseline scan cannot be
differentiated between asymptomatic existing disease and an
early-stage newly developed nodule. Due to the typically
rapid growth rate of malignant nodules, these nodules tend to
be larger upon detection (incidental or prevalence). However,
with yearly lung cancer screening, the goal is to detect newly
developed malignant nodules when they are small and localized.
The most valuable CAD tool for this screening population
will facilitate early diagnosis of CT-identified nodules without
requiring longitudinal follow-up imaging and growth pattern
data, and hence, the elimination of size bias between the cohorts.
While the ANN classifier built from the nodule alone relied on
the maximum nodule diameter feature, the classifier that took
into account the surrounding parenchyma did not depend on
size as a feature. We feel that this indicates potential of this CAD
tool’s performance stability across both prevalence and sub-
sequent screening time points.

4.1 Limitations

The ANN classification approach incorporated a stepwise for-
ward selection method utilizing majority voting. This approach
was designed to take advantage of a smaller training dataset
while still allowing the maximum number of features to be
selected without leading to over-fitting or over-training. While
we reported a trend of increased CAD performance through
incorporation of parenchymal features, the modest sample
size in this study did not allow us to demonstrate statistically
significant improvements in AUC. We are currently collecting
a retrospective clinical cohort to which this CAD approach
will be applied for further testing and validation in a larger
cohort.

The nodule cases in this study were manually segmented,
which is a time-consuming process. However, we present sta-
bility of our features despite separate segmentations by three
independent users, as support for the adaptability of our system
to accommodate automated or semiautomated segmentation
approaches in the future.

Ensuring accurate truth in the diagnoses of the cases is always
a major concern in CAD development. While COPDGene’s pri-
mary goal is to study COPD, the identification and determina-
tion of lung cancer is a secondary purpose that, until recently,
relied heavily on participant reporting. However, recent support
has been acquired for the collection of clinical diagnosis, clas-
sification, and treatment approach for participants with lung
cancer. This ongoing project has led to confirmation of lung
cancer diagnoses for 18 of the 22 malignant nodules for the
cohort. Additionally, the COPDGene study is currently re-
recruiting participants for a second phase of testing (including
CT) scheduled for 5-year postphase I testing to assess progres-
sion of COPD within the cohort. This has led to 19 of the 28
benign nodules being confirmed as benign with at least 2 years
of follow-up. The diagnoses of the remaining four malignant
and nine benign nodules will be verified upon the participant’s
return for phase II of COPDGene. Additionally, as COPDGene
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participants return for phase II, we will continue to expand the
number of nodules in the cohort to better assess the statistical
significance of the differing classifiers' performance.

4.2 Conclusions

In this study, we report the development of an expanded feature
extraction method and accompanying ANN CAD approach for
lung nodules detected with CT; incorporating QCT features
from not only the solid nodule but also the surrounding lung
tissue. The resulting ANN classifier was based on five fea-
tures—two nodule intensity features, one size feature, and two
parenchyma intensity features that also quantify texture and
resulted in excellent lung nodule classification (AUC of 0.94,
PPV of 0.91, and NPV of 0.93). While the AUC was not
improved when global features were included, the PPVand NPV
of the nodule, surrounding, and global ANN were improved
(AUC of 0.93, PPV of 0.96, and NPV of 0.96). The ANN
tools that incorporated only nodule features achieved lower per-
formance values (AUC of 0.92, PPVof 0.85, and NPVof 0.95).
This study was underpowered to show statistically significant
improvement in the resulting AUC values of the systems, due
to a modest sample size. However, the trend toward increased
performance when the parenchyma is included, coupled with the
large number of significant parenchymal features indicate the
value of the developed, expanded QCT feature set.
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