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Abstract. Ovarian cancer has the lowest survival rate among all gynecologic cancers predominantly due to late
diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no
reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that
provides depth-resolved, high-resolution images of biological tissue in real-time and demonstrates great poten-
tial for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of
OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must first be separated from
the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields
three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing tech-
niques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imag-
ing, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the
retina. To address these challenges, we evaluate a set of algorithms to segment OCT images of mouse ovaries.
We examine five preprocessing techniques and seven segmentation algorithms. While all preprocessing
methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32%� 1.2%.
Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 94.8%� 1.2%
compared with manual segmentation. Even so, further optimization could lead to maximizing the performance
for segmenting OCT images of the ovaries. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1
.014002]
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1 Introduction

1.1 Burden of Ovarian Cancer

Despite concerted efforts to improve patient outcomes, ovarian
cancer remains the deadliest gynecologic malignancy in the
United States. While ovarian cancer is not exceedingly common,
the disease maintains a high mortality rate, with median 5-year
survival less than 45%.1 One cause of this is the fact that ovarian
cancer can grow to a large size before causing signs or symp-
toms, leading to a high proportion of advanced disease at the
time of detection. In fact, a large majority of patients have
already experienced spread of their disease to local or distant
tissues at initial diagnosis, resulting in a significantly poorer
prognosis.2

This insidious pattern of disease progression has led to strong
interest in the area of ovarian cancer screening, with the ultimate
goal of identifying early-stage tumors, while the patient is
still asymptomatic, allowing more effective treatment. Various
screening modalities have been investigated to reduce the bur-
den of the disease including physical examination, transvaginal
ultrasound, and serum tumor marker measurement (most com-
monly Ca-125).3 Other screening tests and multimodal protocols
have also been investigated; however, at this time, no routine
screening is recommended in average-risk patients.4 As such,
there remains a strong need for a high-quality, minimally inva-
sive modality for effective detection of early-stage ovarian
malignancies.

1.2 Optical Coherence Tomography

Optical coherence tomography (OCT) is an interferometric
imaging technique first introduced in 19915 that yields depth-
resolved, high-resolution images of tissue, providing informa-
tion about the tomography and microstructure. Historically,
OCT has been successfully applied to biological imaging in
the human eye,6–8 the lung,9,10 the esophagus,11 the coronary
artery,12,13 in addition to a number of other organs, including
the ovaries.14–18 The physical principle of OCT systems is sim-
ilar to that of ultrasound, except that OCT systems measure
time-resolved backscattered light instead of sound waves.19 A
complicating factor of OCT is the depth dependence of the sys-
tem performance. Lateral resolution varies throughout the sam-
ple depth. In addition, the axial resolution degrades in deeper
tissue as a result of breaking the assumption of single-scattering
of light; furthermore, absorption by the tissue attenuates the sig-
nal. Ultimately, the image statistics vary as a function of depth,
which can frustrate attempts at quantitative analysis. Despite
these drawbacks, OCT is a widely applied and robust approach
to characterizing tissue microstructure. In particular, OCT has
shown great potential for disease diagnostics and tissue classi-
fication in the ovaries by imaging a wealth of microstructural
features, including the stroma, epithelium, and collagen.14–17,20

A myriad of different image analysis techniques have
recently been investigated in the scope of classifying tissue
health based on OCT images. Some examples include structure
and texture analysis,21–25 convolutional neural networks,13,26,27

and other machine-learning techniques.10,28,29 Quantitatively
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characterizing tissue with such approaches has shown great
promise as a diagnostic aid. One important step to test and
evaluate the suitability of different methods relies on mouse
models, which are critical to provide a systematic control in
which to observe biological variations. However, in the scope
of ovarian OCT imaging, the mouse ovaries must first be sep-
arated from the image background due to the small organ size
relative to a typical OCT system field of view. This process,
known as image segmentation, allows the relevant image con-
tent to be extracted and analyzed, preventing corruption from
background features. The need for segmentation is not unique
to ovarian OCT imaging: segmentation is a common challenge
in medical imaging.30,31 Unfortunately, pre-existing solutions
are tuned to a given application and do not translate well
between imaging modalities.32 Segmentation can be accom-
plished either manually or automatically. While accurate,
manual segmentation is time-intensive, particularly when OCT
yields three-dimensional (3-D) data. Also of importance, appro-
priate preprocessing is required to suppress noise to best seg-
ment the image. Much work has investigated noise-reduction

and automated segmentation for retinal OCT imaging;33 how-
ever, little has considered the application to the ovaries,
which exhibit higher structural variance and inherent inhomo-
geneity than the retina. Hence, to efficiently evaluate quantita-
tive analysis methods for ovarian OCT imaging, finding
an effective approach to automatic segmentation is critical.
A robust segmentation algorithm would widely inform the
field of OCT imaging as the application has expanded to
organs, such as the esophagus,11 colon,34 and coronary artery,12

where segmentation is required to quantitatively assess tissue
health.35,36 Here, we evaluate a set of preprocessing techniques
and segmentation algorithms for the purpose of segmenting
OCT images of the ovaries.

1.3 Image Segmentation Methods

Many different approaches to segmentation have been proposed
in the scope of medical image processing.30,32,33 These methods
can be separated into different groups, depending on the under-
lying mathematics involved (Fig. 1). Classical segmentation

Fig. 1 Image segmentation algorithms can be decomposed into different classes, depending on
the mathematics involved. We test seven of the most commonly found techniques for medical image
segmentation, each of which belongs to a different class of algorithm.

Journal of Medical Imaging 014002-2 Jan–Mar 2019 • Vol. 6(1)

Sawyer et al.: Evaluation of segmentation algorithms for optical coherence. . .



techniques partition the image into nonoverlapping, continuous,
segments based on the value of some features, such as brightness
or texture.37–39 Pixel classification methods are an extension of
classical approaches, albeit the constraint on region continuity is
relaxed. Thresholding the image remains one of the simplest and
most intuitive approaches to segmentation. In this case, a histo-
gram is created to cluster pixels according to some feature, such
as pixel intensity or a texture parameter. The thresholds are
selected to partition the histogram, where the pixels residing
in a given partition are assigned a label for segmentation.
Depending on the feature represented in the histogram, thresh-
olding can be used to segment based on edges or regions; other
methods use a combination of the two and are referred to as
hybrid algorithms.40 For example, the watershed algorithm is
a widely used technique where regions of different classes
are first seeded based on finding maxima in a distance-transform
of the image; the regions are then grown until the sources
meet.41 The resulting boundary between sources is taken then
as the segmentation.

Pattern recognition algorithms can perform segmentation
by identifying inherent structure in an image. These algorithms
can either be supervised or unsupervised; in either case, the
algorithm identifies patterns in the image, which are then
used to partition the image area. Supervised approaches are
first trained on a set of manually segmented images that are
used as reference; examples include artificial neural networks
and support vector machines (SVM).42,43 Recently, deep learn-
ing methods have found increasingly widespread application
for segmentation and analysis. The most notable is the U-
Net, which was developed specifically for biological image
segmentation.44 Unsupervised methods, also known as cluster-
ing methods, do not need training data; however, properly ini-
tializing the algorithm parameters is essential for accuracy.45–47

Another class of segmentation algorithms is referred to as
global optimization methods, which are based on energy min-
imization techniques. One such example is graph cutting,
where the image is represented as an adjacency graph.48,49

In this graph, the vertices represent pixels of an image, and
the weight between two vertices is the similarity between
two given pixels. The graph is then partitioned by cutting
the vertex connections to create different groups. The optimi-
zation minimizes the summation of the weights that are cut,
which can be thought of as minimizing the energy in the sys-
tem. Another form of energy-minimization is to fit a model to
the image, which takes advantage of morphologic or structural
characteristics. Examples of this include fitting deformable
models and parametric curves to an image.50,51 Recently,
one such technique known as the active contour model has
found much success in medical image segmentation.52–54 An
active contour model is applied by initializing a so-called
snake, which is a two-dimensional (2-D) path within the
image. This path can be constrained with different boundary
conditions and the algorithm proceeds by fitting this path to
the contours in the image. This deformable path is an energy
minimizing spline influenced by image forces, defined to pull
it toward object contours, which are balanced by internal forces
that resist deformation. Active contours may be understood as
a special case of the general technique of matching a deform-
able model to an image by means of energy minimization.
While quite robust, the active contour approach does require
knowledge of the desired contour shape beforehand to properly
initialize the path.

Other classes of segmentation exist that are found less fre-
quently in medical image analysis; for example, registration-
based methods, such as ATLAS warping,55,56 other machine
learning models including active appearance modeling,42,57,58

and a method known as locally excitatory globally inhibitory
oscillator network (LEGION), which is based on a biologically
plausible computational framework inspired by a biological
oscillator network.59,60 In this paper, we test the performance
of seven different segmentation techniques for segmenting
OCT images of the ovaries: intensity thresholding, the water-
shed algorithm, k-means clustering, graph cutting, an SVM,
active contour modeling, and a deep neural network. While
numerous other approaches to segmentation exist, these seven
methods are a representative sample of the most widespread
approaches to segmentation in medical imaging, covering a
wide range of the different classes of segmentation.

2 Methods

2.1 Optical Coherence Tomography System

Three-dimensional OCT imaging was completed with a swept
source OCT system (OCS1050SS, Thorlabs). The system oper-
ates in noncontact mode with a central wavelength of 1040 nm
and spectral bandwidth of 80nm. The axial scan rate was
16 kHz, and the power on the sample was measured as 0.36 mW.
The system was set to average four axial scans. The OCT
system has 11 μm transverse resolution and 9-μm axial
resolution in tissue. Imaging volume was 4 mmðX lateralÞ ×
4 mmðY lateralÞ × 2 mmðZ axialÞ and 750 × 752 × 512 pixels
(voxel size of approximately 5 μm × 5 μm × 4 μm). The image
volume was exported as a series of 2-D en face (X − Y) images,
or slices, and saved to disk as .tif image files.

2.2 Mouse Model

For this experiment, we used a mouse model of ovarian cancer
and imaged mice of different ages, genotypes, and reproductive
statuses. Females of the transgenic mouse model (TgMISIIR-
TAg) spontaneously develop bilateral epithelial ovarian
cancer.61,62 Both transgenic females and their wild type female
littermates were imaged. Two reproductive status groups were
obtained by dosing with 4-vinylcyclohexene diepoxide dis-
solved in sesame oil, which induces follicular atresia mimicking
postmenopause63 or vehicle (sesame oil). We imaged mice at
4 and 8 weeks of age. In total, we acquired 70 images to analyze.
By examining mice at different ages, reproductive status, and
genotypes, we introduce biological variability into the dataset,
thus creating a challenging segmentation problem.

2.3 Image Processing

2.3.1 Manual segmentation protocol

We established a ground truth set of segmentation masks
by manually segmenting each image using the ImageJ
program.64 To do so, a given 3-D image stack was loaded,
where each en face slice in the stack represented a different
depth. We located the first valid image by finding the most
superficial image slice where the ovaries were visible and the
image was not occluded by artifacts such as strong surface
back reflections. A mask was then drawn around the ovaries
using the create mask tool [Fig. 2(a)]. The result was a binary
mask where the value was one within the drawn region of
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interest and zero elsewhere. The image was saved to disk, and
the process was repeated every 10 slices until the average bright-
ness within the ovary dropped below 20% of that recorded from
the first valid image. Once this step was complete, the segmen-
tation mask was linearly interpolated between each manually
segmented slice to account for the sampling step of 10 slices
[Fig. 2(b)].

We choose to segment every 10 slices to reduce the time
required for a full segmentation (∼100 to 120 slices). While
this action may result in a decrease in accuracy, the shape of
the organs evolves roughly linearly on a small scale; thus,
the approximation by sampling every 10 slices (4 μm, less
than two axial resolution units) is reasonable. We quantified
the error introduced by interpolating the segmentation mask dur-
ing manual segmentation. To do so, we manually segmented an
ovary using every slice in the valid region. We then compared
the accuracy of this result to the segmented mask created by
interpolating between every 5, 10, and 20 slices using the per-
formance metric defined in Sec. 2.3.4.

All images were segmented by a single observer; however,
there is a degree of uncertainty as the observer must decide
where the segmentation boundary is. To evaluate the error inher-
ent in manual segmentation, a different individual segmented 25
randomly selected ovaries. We compared the randomness intro-
duced by a given observer by computing the similarity between
the two results. One factor that contributes to this observer error
is the decreased signal through the imaging depth. As the im-
aging depth increases, we expect the signal within the center of
the ovaries to decrease, as incident light propagates through
more volume and absorbed more. Conversely, light striking

the edge of the roughly spherical ovaries will remain high, as
it undergoes relatively less attenuation [Fig. 2(c)].

2.3.2 Preprocessing techniques

Preprocessing is an essential step of OCT image analysis due to
the speckle noise intrinsic to all OCT images.65 The presence of
speckle noise, among other sources of noise, reduces image
quality and can prohibitively frustrate some analysis techniques,
such as texture analysis22,29,66 and boundary identification.33 In
the body of literature, nearly all OCT image analysis methods
consist of a preprocessing step to suppress electronic and
speckle noise. The most common approach is to apply a median
filter; however, other filtering methods have been successfully
applied, which may offer advantages in preserving spatial
resolution or reducing processing time.33 Of these possibilities,
we examine five representative preprocessing techniques for
the reduction of speckle noise in OCT images (Fig. 3). These
include mean and median filtering with a 5 × 5 pixel kernel
size, as well as Gaussian filtering with a standard deviation
of five pixels. Additionally, we applied nonlinear anisotropic
filtering (50 iterations; gamma = 0.1) and low-pass filtering
(thresholded at 50% frequency content).

The kernel size was selected to attenuate the effect of speckle
in the image. Speckle caused by multiple scattered light and
electronic noise is effectively one resolution unit in size;19 there-
fore, our kernel size was chosen as two resolution units in size to
eliminate the speckle. Given the system specifications, two res-
olution units correspond to ∼4.5 pixel, leading to the selection
of a 5-pixel kernel size. This kernel size, along with the

Fig. 2 (a) Individual slices of the OCT image stack were manually segmented using ImageJ. (b) This was
repeated throughout the image depth and interpolated to yield the final segmented volume. (c) Due to the
absorbing nature of tissue, as the imaging depth increases, the signal within the tissue is expected to
decrease, while the signal at the edges will remain high.
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parameters for the anisotropic diffusion filtering and low-pass
filtering is consistent with what is found in the literature for
applications with similar lateral resolution.5,7,67 To evaluate
the performance of each preprocessing technique, we calculated
the average segmentation accuracy (defined in Sec. 2.3.4) across
a set of 10 randomly selected test images for the seven different
segmentation approaches. We also conducted segmentation on
the same set of 10 test images, no preprocessing. By averaging
the results of the 10 images for each preprocessing approach and
taking the ratio between the processed and unprocessed images
for each segmentation approach, we compute the relative
increase in performance. In addition, we recorded the computa-
tion time to compare the speed of each technique. We tested the
statistical significance of the results using analysis of variance
(ANOVA).

2.3.3 Segmentation algorithms

We tested the performance of seven different segmentation
techniques: intensity thresholding, the watershed algorithm,
k-means clustering, graph cutting, an SVM, and a deep neural
network. These seven methods are a representative sample of the
most widespread approaches to segmentation in medical imag-
ing. Each belongs to a different class of algorithm and are thus
indicative of how appropriate a given class may be for segment-
ing OCT images of the ovaries. Many other approaches to seg-
mentation exist; by examining the performance of this subset,
the results will inform further studies that may focus on a
specific class of segmentation algorithms to further optimize
the performance. For each case, we first filtered the images
using a Gaussian filter with a standard deviation of five pixels

to suppress speckle noise, which we found led to the most accu-
rate segmentation. We also scaled the means of each individual
slice to be equal to correct for the signal decrease caused by
attenuation. This preprocessing was applied to the entire dataset
before any segmentation was attempted. We evaluate the accu-
racy of each algorithm throughout the depth of the imaging
volume, investigating the maximum accuracy, processing time,
average positive predictive value (PPV) and negative predictive
value (NPV), as well as how well the algorithm maintains
accuracy throughout the image depth.

All image processing, including preprocessing, was
completed in Python using a computer with an Intel Core
I-4710HQ CPU (2.50 GHz) and 16 GB DDR3L memory.
Many segmentation algorithms are readily available in
Python; the algorithms tested here can be implemented using
the open-source scientific computing package Anaconda and
other packages available on Github. The parameters for each
segmentation algorithm were determined by optimizing the per-
formance on the most superficial image slice on the set of 10
randomly selected images selected previously. Thresholding
was performed by assigning all pixel values within a range
as the ovary; in this case, the threshold range was between nor-
malized pixel values of 0.3 and 0.7. For the watershed algorithm,
we generated the initial seeds for each region by computing the
distance transform of the image and finding the maximum value
in a local 25 pixel × 25 pixel window. The watershed algorithm
was then used to segment the image into nine sections, where
these nine sections were ordered according to the mean pixel
brightness; we then discarded the two brightest and two darkest
sections and merged the remaining five into the segmentation
area. The choice to discard the brightest and darkest sections

Fig. 3 (a) Five preprocessing techniques were investigated to suppress speckle noise in OCT images of
the ovaries. (b) We tested mean, (c) median, (d) low-pass, (e) Gaussian filters, (f) in addition to aniso-
tropic diffusion filtering. Each image here is a single en face slice.
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was determined by iteratively testing combinations of the sec-
tions; the most accurate segmentation was given by the central
five sections.

Similarly, we used k-means clustering with a compactness of
0.1 to segment into nine clusters, again where five clusters were
merged to represent the ovaries using the same process as
before. In this case, we constrained each of the clusters to be
contiguous, ensuring that all pixels in a group were spatially
connected. Next, we applied graph cutting using a normalized
graph cut algorithm; first, the images were presegmented by
being clustered into 30 groups. This presegmentation step is
a traditional step in graph cutting, and the choice of 30 groups
was found to improve the overall algorithm performance. Then,
the adjacency graph was constructed, and the cut made with a
maximum edge value of 0.15 and a threshold of 0.05. This
results in between eight to 10 segmentation areas, depending
on the image, which we again merged together according to
the mean brightness.

We next trained an SVM by splitting the image data equally
into training and testing sets, resulting in 35 images for each set,
equally distributed among genotype, age, and treatment. For
each pixel, a five-element feature vector was constructed
by recording the slice depth, the pixel brightness, and the
values of several local filters: a median filter (15 pixel ×
15 pixel kernel), mean filter (15 pixel × 15 pixel kernel), and
Gaussian filter (sigma ¼ 5). We used a radial basis function ker-
nel with a regularization parameter of 1.0. The SVM was then
trained by fitting the array of feature vectors to the ground truth
manual segmentation images for each of the training set. The
model was then used to predict the outcome for the test set.
Following the output from the SVM, we applied a binary closing
operation followed by a median filter to reduce uncharacteristi-
cally bright and dim in the result. The accuracy was computed
after applying the morphological operations. Note that this
median filter was applied to the postprocessed image and is
different than the initial preprocessing filter.

To test the ability of deep learning for segmentation, we
implemented the convolutional neural network known as U-Net,
which as been used with much success for biomedical image
segmentation.44 The U-Net architecture resembles an autoen-
coder, where the network consists of the repeated application
of two 3 × 3 convolutional layers, followed by a rectified linear
unit (ReLU) and a 2 × 2 max pooling operation with a stride of
2. This contracts the arrays, reducing spatial information but
increasing the information contained in the features. The arrays
are then expanded by upsampling the feature map, followed
by applying a 2 × 2 upconvolution and a concatenation with
the correspondingly cropped feature map from the contracting
path, and two 3 × 3 convolutions, each followed by an
ReLU. The final layer is a 1 × 1 convolution used to map
each 64-component feature vector to the two possibe classes
for binary segmentation. This is the standard architecture for
the U-Net; additional details about the network architecture
can be found in the literature. The same training and test sets
used for the SVM are used here: 35 images in each set, distrib-
uted equally among genotype, age, and treatment. Of the train-
ing sets, 10 images are selected for validation. The network was
trained for 20 epochs.

Finally, we fit an active contour model to conduct the seg-
mentation. We initialized the snake by selecting the most super-
ficial manually segmented image for a given image stack and
using the manually defined segmentation boundary to define

the initial contour. The segmentation then proceeds throughout
the image stack by using the contour from the previous image
as the new seed. Thus, this approach requires a single manual
segmentation, which is then propagated throughout the depth of
the image to yield the full 3-D segmented volume. We con-
strained the snake to be a closed curve and specified two addi-
tional parameters to characterize the snake evolution: a length
parameter (alpha), for which higher values make the snake
contract faster and a smoothness parameter (beta). For this
study, alpha was chosen as 0.001 and beta was chosen as
0.5. These values were selected by logarithmically evaluating
the parameter space and selecting those values that produced
the highest accuracy.

2.3.4 Performance metric

A digital image is represented in a computer as a matrix of num-
bers, where the magnitude of each number represents the signal
level. In the case of the OCT images in this study, the image is a
3-D matrix, where the size of each dimension is represented by
the pixel count in the x, y, and z directions. A single en face
image indexes the 3-D matrix along the z-axis, resulting in a
2-D matrix. Assessing the performance of the segmentation
amounts to comparing the similarity between two separate 2-D
matrices, one of which represents the ground truth, and the other
represents the result of the segmentation. These matrices can
subsequently be collapsed into a one-dimensional vector by con-
catenating the separate rows into a single array of numbers,
which has a length given by the product of the number of pixels
in the x and y directions. With this methodology, the similarity
of two images is analogous to computing the similarity between
two vectors.

Taking this approach to evaluate the performance of a given
segmentation method, the resulting segmentation mask was
compared with a ground truth mask obtained from manually
segmenting the images. The comparison was made between
the two binary masks that were generated during segmentation,
where the mask has a value of one corresponding to a pixel con-
taining the ovary and a value of zero otherwise. The images
therefore can be thought of as vectors of ones and zeros. The
accuracy was measured by correlating the two images, which
is analogous to taking the dot product. Mathematically, this
is expressed as

EQ-TARGET;temp:intralink-;e001;326;283M ¼ S · I
jSjjIj ; (1)

where M is the accuracy, S is the segmented image from the
algorithm, and I is the ground truth image. Scaling down by
the vector magnitude of each image results in a value between
one and zero, where one indicates that the images are identical.
One implication of using this metric is that the weight associated
with a true-positive result (correctly classifying an organ) is
higher than that of a true negative (correctly classifying the
background). Other performance metrics exist and can be
used interchangeably; in this study, we select this definition
for M due to the computational simplicity and widespread
familiarity.

To gain additional insight, we also use two standard perfor-
mance metrics: the PPV and NPV, defined as

EQ-TARGET;temp:intralink-;e002;326;96PPV ¼ TP

TPþ FP
; (2)
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and

EQ-TARGET;temp:intralink-;e003;63;741NPV ¼ TN

TNþ FN
: (3)

Other performance metrics exist and can be used inter-
changeably; in this study, we select these three metrics for a
broad understanding of how well each algorithm performs and
also for the widespread familiarity of each metric.

3 Results and Discussion

3.1 Manual Segmentation Error

We first tested the error introduced by interpolating the segmen-
tation mask during manual segmentation. We find that the two
masks yield an accuracy of 97.7% for sampling every 20 slices,
98.2% for sampling every 10 slices, and 98.3% for sampling
every 5 slices. We also examined how the choice of observer
can introduce randomness into the result. Comparing manual
segmentations between two observers for 10 randomly selected
images yielded a similarity of 97.6%; thus, the interpolation
process does not introduce more error than what is inherent
to the variation in the observer. We also observed that there
was no appreciably decrease in accuracy when observers ran-
domly sampled slices through the depth of an image. This
error varied minimally (<2%) over the sample of 25 images,
which indicates that the computed error is representative of
the total population. Furthermore, the error between the segmen-
tation algorithm results and the manually segmented slices com-
pared with the interpolated slices had no observable difference.
For each subsequent manual segmentation, we sampled every
10 slices.

3.2 Preprocessing Techniques

The average increase in accuracy when using different prepro-
cessing techniques (as compared with no preprocessing), as well
as the required processing time, is shown in Fig. 4. The results
indicate that Gaussian filtering and median filtering produce
the highest average improvement, with the Gaussian filtering

increasing relative accuracy by 32% when compared with seg-
menting an unfiltered image. Considering processing time, the
Gaussian filtering is also most rapid, completing in an average
time of 28.4 ms� 1.4 ms; second is the low-pass filter with an
average processing time of 73.6 ms� 1.2 ms. Taking these
results with the high statistical significance of the ANOVA test-
ing (p < 0.001), we can conclude that Gaussian filtering is most
suitable for preprocessing in our segmentation problem.

3.3 Segmentation Algorithms

Figure 5 illustrates the results of applying the seven segmenta-
tion techniques, showing the maximum segmentation accuracy
throughout the image depth. While each algorithm with the
exception of intensity thresholding yields high maximum accu-
racy (>85%), the active contour method performs best, with a
maximum accuracy of 94.8%� 1.2% on average (p < 0.01).
Evaluating the performance as a function of image depth
(Fig. 6), we see that clustering and active contour modeling
remain the most effective, while the other approaches suffer

Fig. 4 Average increase in segmentation accuracy (orange) and
processing time (magenta) of different filtering techniques. The
Gaussian filter performs best in both categories, while the median
filter also exhibits high accuracy and rapid processing time.

Fig. 5 Highest accuracy obtained by each algorithm for a single 2-D
slice throughout the image depth. Active contour modeling performs
the best, followed by K -means clustering and the SVM.

Fig. 6 Segmentation accuracy as a function of image depth. We see
that an active contour model maintains high accuracy throughout the
depth while thresholding; the watershed algorithm and the SVM
degrade rapidly throughout the depth. Clustering and graph cutting
perform reasonably well, but have a larger variation than active
contours.
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from high variations in accuracy throughout the depth. In
particular, the watershed algorithm, SVM, and thresholding all
significantly degrade in performance as a function of depth.

While clustering and graph cutting perform reasonably well,
active contour modeling is most accurate. These results may be
due to the high inhomogeneity of the image content for OCT
images. Methods such as thresholding and the SVM classifier
depend on pixel intensity; these vary throughout the image
depth and across the area of the ovary due to nonuniform attenu-
ation of light in the roughly spherical ovary; furthermore, much
of the connective tissue has similar levels of intensity to the ova-
ries. Thus, intensity-based methods cannot discriminate well
between these tissue types, nor do they adapt well to depth-
dependent intensity. One potential solution could be to train
the SVM or threshold based on local textural features, instead
of intensity features. As the local region is likely to undergo
similar changes throughout depth, much of the variance
could be reduced; hence, characterizing the local texture
would enable a more depth-independent feature. Furthermore,
qualitatively inspecting the OCT images, we observe that the
connective tissue exhibits different textural differences than
the ovary; therefore, texture could be a more appropriate feature
for segmentation than intensity.

While clustering and graph cutting consider pixel bright-
ness as well, they also incorporate spatial information by

weighting the pixels based on the location and enforcing con-
nectivity between segmented regions. Thus, this additional
information provides a constraint that makes the algorithm
more resistant to the changes in image content as a function
of depth. The watershed algorithm, which also includes
regional information, does not enforce connectivity and there-
fore is also highly susceptible to the changes in depth.
However, taken generally, we see that for the region-based
techniques, the accuracy is more consistent throughout the
image depth. This is not surprising, as the shape and contours
of the organs will remain continuous throughout the depth,
making these algorithms more robust to the variations in
image content throughout the depth.

Using the U-Net for deep learning, we see a marked improve-
ment over the traditional machine learning approach of the
SVM. However, the results are not as strong as what has
been observed for other biological segmentation applications
of the U-Net. This could be due to the lack of sufficient training
data. The results vary somewhat unpredictably throughout the
depth; this may indicate that the features learned by the U-Net
do not appear isotropically throughout the depth. With a more
extensive dataset, these feature maps could be refined to produce
a more accurate and consistent segmentation. Other potential
solutions include using a generative model to simulate addi-
tional training data. These methods have frequently been

Fig. 7 Propagating active contour snake throughout the tissue depth maintains high accuracy for delin-
eating the segmentation boundary throughout the tissue depth, from (a) the most superficial slice to
(b) shallow, (c) midrange, and (d) deep slices. The overall signal is attenuated as the depth increases,
which introduces challenges with other segmentation techniques.
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used to supplement limited datasets, and this remains an objec-
tive for future research.

The active contour model further improves on the region-
based techniques by seeding the algorithm with an initial seg-
mentation boundary curve. With this starting point, the algo-
rithm then deforms the boundary curve to fit the optimal
shape, given the contents of the image. Considering that
the shape of the ovary changes slowly throughout the image
depth, propagating the segmentation boundary throughout the
depth is highly effective by providing an initial condition
very close to the final solution. As a result, we observe high
accuracy throughout the entire image depth using this approach
(Fig. 7). As expected, the signal within the tissue drops as the
depth increases; however, the signal on the edges remains high,
preserving the boundary. This may be the cause of the character-
istic dip in accuracy observed in Fig. 6 for several of the seg-
mentation approaches; the contrast at the organ boundary may
decrease in the center of the imaging depth.

Observing the effectiveness of the active contour modeling,
we then considered if the segmentation could be propagated
throughout the image depth by sampling every N slices, instead
of using every slice. In this case, the sampled result could be

interpolated using the same approach as with the manual seg-
mentation. The processing time of the approach scales linearly
with the number of slices; therefore, by increasing the sampling
increment, we reduce the number of slices and hence the
processing time. Figure 8 illustrates the effects of increasing
the sampling increment. While the processing time decreases
linearly, we also observe a roughly linear decrease in the average
accuracy [Fig. 8(a)] for each segmented slice; furthermore, we
must consider the additional error introduced through the inter-
polation between slices [Fig. 8(b)], which evolves linearly as
well. Considering these factors, the processing time must be bal-
anced with the desired accuracy to determine the optimal sam-
pling depth. For example, if 88% average accuracy throughout
the image depth is sufficient, a sampling depth of eight slices
would be optimal.

Summarizing the results in Table 1, we report that active con-
tour modeling is the most accurate approach to segmenting OCT
images of ovarian tissue. The results are encouraging, showing
that accurate segmentation can be achieved throughout the
image depth with minimal user interaction. In addition, consid-
ering that a manual segmentation required ∼30 s for each slice,
the time required to segment the full image stack improves by

Fig. 8 Increasing the sampling depth for propagating the active contour through (a) the image leads to a
linear decrease in accuracy, (b) as well as an added interpolation error. The processing time for an image
stack decreases with an increased sampling depth, suggesting that an optimal sampling depth can yield
rapid processing time while maintaining high accuracy.

Table 1 Summary of performance for each segmentation algorithm. Active contours provide both the highest maximum accuracy, as well as the
most consistent accuracy throughout the depth of the tissue, as well as a rapid processing time. Note that the processing time for the SVM does not
include training.

Thresholding Watershed SVM Graph cut Clustering Active contour U-Net

Maximum accuracy (%) 62.4 86.4 89.5 86.5 89.4 94.8 93.4

Depth variation (%) 78.1 71.6 59.3 44.3 14.2 13.9 22.1

Avg. PPV 0.324 0.921 0.831 0.743 0.907 0.892 0.861

Avg. NPV 0.866 0.890 0.955 0.926 0.982 0.956 0.923

Processing time (s) 0.001 0.289 14.16 1.64 0.954 0.274 0.637

Manual input None None Training set None None Initial contour Training set
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approximately two orders of magnitude. Nevertheless, we iden-
tify several objectives for future investigation. First, while we
find that active contours are most effective of the tested algo-
rithms, other segmentation approaches exist, particularly in
the realm of machine learning, such as neural networks and68

active appearance modeling.31 Machine learning continues to
evolve and these algorithms could lead to more time-efficient
and accurate segmentation. In addition, the feature vector
used to train the SVM contains a relatively naive measure of
the local image content by simply inspecting the local mean,
median, and Gaussian average. Higher accuracies could be
achieved by developing a more descriptive feature vector,
such as one that incorporates texture analysis.69 Finally, with
the 3-D of OCT data, traditional segmentation approaches are
slow to process, as they consider each image in the stack iter-
atively. Extending these algorithms to apply to a 3-D image
could both increase the accuracy while improving the process-
ing time. While processing high-dimensional data is memory-
intensive, recent advances in computing have lowered this
barrier, making 3-D processing more feasible and an exciting
frontier in image processing.

4 Conclusions
We present the evaluation of seven different algorithms for the
segmentation of OCT images of the ovaries in addition to exam-
ining five preprocessing techniques to reduce speckle noise.
While all preprocessing methods improve segmentation,
Gaussian filtering is most effective, showing an improvement
of 32%� 1.2%. Of the segmentation algorithms, active contour
modeling performs best, segmenting with a similarity of
94.8%� 1.2% compared with manual segmentation. The
time required to perform the segmentation using this approach
increases by approximately two orders of magnitude. The results
suggest that active contour models are most suitable for seg-
menting 3-D image data that varies as a function of depth.
While encouraging, extending these algorithms to process 3-D
data, as opposed to a series of 2-D slices, could lead to higher
accuracy and more efficient processing.
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