Impact of deep learning-based image super-resolution
on binary signal detection

Xiaohui Zhang,>" Varun A. Kelkar,”’ Jason Granstedt, Hua Li,>%*

and Mark A. Anastasioo®P%*
University of Illinois at Urbana—Champaign, Department of Bioengineering, Urbana,
Illinois, United States
®University of Illinois at Urbana—Champaign, Department of Electrical and
Computer Engineering, Urbana, Illinois, United States
“University of Illinois at Urbana—Champaign, Department of Computer Science, Urbana,

Illinois, United States

dUniversity of Illinois at Urbana—Champaign, Cancer Center at Illinois, Urbana,
llinois, United States

®Carle Foundation Hospital, Carle Cancer Center, Urbana, Illinois, United States

Abstract

Purpose: Deep learning-based image super-resolution (DL-SR) has shown great promise in
medical imaging applications. To date, most of the proposed methods for DL-SR have only
been assessed using traditional measures of image quality (IQ) that are commonly employed in
the field of computer vision. However, the impact of these methods on objective measures of
IQ that are relevant to medical imaging tasks remains largely unexplored. We investigate the
impact of DL-SR methods on binary signal detection performance.

Approach: Two popular DL-SR methods, the super-resolution convolutional neural network
and the super-resolution generative adversarial network, were trained using simulated medical
image data. Binary signal-known-exactly with background-known-statistically and signal-
known-statistically with background-known-statistically detection tasks were formulated.
Numerical observers (NOs), which included a neural network-approximated ideal observer
and common linear NOs, were employed to assess the impact of DL-SR on task performance.
The impact of the complexity of the DL-SR network architectures on task performance was
quantified. In addition, the utility of DL-SR for improving the task performance of suboptimal
observers was investigated.

Results: Our numerical experiments confirmed that, as expected, DL-SR improved traditional
measures of 1Q. However, for many of the study designs considered, the DL-SR methods pro-
vided little or no improvement in task performance and even degraded it. It was observed that
DL-SR improved the task performance of suboptimal observers under certain conditions.

Conclusions: Our study highlights the urgent need for the objective assessment of DL-SR meth-
ods and suggests avenues for improving their efficacy in medical imaging applications.
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1 Introduction

Single-image super-resolution (SISR) is a classic image restoration operation that seeks to
estimate a high-resolution (HR) image from an observed low-resolution (LR) one.' A variety of
methods have been developed to achieve this goal, such as filtering and interpolation-based
approaches’ and more formal regularized inverse problem-based formulations,** to name a few.
Recently, deep learning-based image super-resolution (DL-SR) methods have been widely
employed and have shown great promise for SISR in terms of traditional image quality (IQ)
metrics such as mean square error (MSE), structural similarity index metric (SSIM), and
peak-signal-to-noise ratio (PSNR).5*

In medical imaging, images are often acquired for specific purposes, and the use of objective
measures of 1Q is widely advocated for assessing imaging systems and image processing
algorithms.”"> Although DL-SR algorithms can improve traditional IQ metrics,'®?! it is
well-known that such metrics may not always correlate with objective task-based IQ
measures.”> > Despite this, relatively few studies have objectively assessed image super-
resolution methods.'**® Dai et al.”’ evaluated six image super-resolution methods on popular
vision tasks such as edge detection and semantic image segmentation and found that the standard
perceptual metrics correlated well with the usefulness of image super-resolution to these tasks.
Jaffe et al.”® conducted a study in which the aesthetic IQ that DL-SR methods sought to improve
did not necessarily increase classification accuracy. However, none of these studies were carried
out with images, tasks, or observers relevant to medical imaging. Additionally, the data process-
ing inequality indicates that the performance of an ideal observer (IO) on a particular task cannot
be improved using image processing transformations.”” The scenarios under which DL-SR may
improve the performance of a suboptimal observer on a specified task have not been thoroughly
investigated. The purpose of this work is to evaluate DL-SR methods using task-based measures
as a preliminary attempt to address the issues raised above. For this study, two canonical DL-SR
networks were identified for the analysis. A variety of mathematical and learning-based numeri-
cal observers (NOs) were computed on the HR images, the LR images, and the images resolved
by the DL-SR methods. Receiver operating characteristics (ROC) analysis was employed to
quantify the performance of these NOs. Two stylized binary signal detection tasks were designed
to evaluate the DL-SR networks systematically and comprehensively under known statistical
conditions. Specifically, a signal-known-exactly and background-known-statistically (SKE/
BKS) Rayleigh discrimination task®**! was employed to assess the ability of a DL-SR to resolve
two small adjacent objects. The inherent detectability of the signal was varied, and its effect on
the utility of DL-SR for improving detection task performance was studied. The impact of the
depth of a DL-SR network on NO performance was investigated to see if the deep learning
mantra “deeper is better” holds true for signal detection performance.*” Additionally, a signal-
known-statistically and background-known-statistically (SKS/BKS) microcalcification (MC)
cluster detection task was employed to investigate under what circumstances DL-SR techniques
may improve the binary signal detection performance of a suboptimal observer.

The remainder of this paper is organized as follows. Section 2 describes the relevant back-
ground on linear imaging systems, the basic theory relating to binary signal detection tasks, NOs,
and DL-SR. Section 3 describes the setup for the numerical studies, and Sec. 4 describes the
results of the proposed evaluation. Section 5 presents a discussion on the salient findings, and
Sec. 6 concludes this paper.

2 Background

Many imaging systems are approximately described by a continuous-to-discrete (C-D) linear
imaging model:’

g ="Hf(r) +n, 1)

where f € L,(IR?) is the true object of interest that is a function of the d-dimensional spatio-
temporal coordinate r and g € [E™ is a vector that describes the measurement data. The mapping
H:1L,(R?) — E™ denotes the C-D forward operator that represents the data-acquisition process,
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and n € E” denotes the measurement noise. In practice, discrete-to-discrete (D-D) models
for the imaging system are often employed, in which case the object f(r) is approximated by
a vector f € E”, n € N and a D-D approximation H € E"*" is employed in place of H.’

2.1 Binary Signal Detection Tasks

A binary signal detection task requires an observer to classify the image as satisfying either
hypothesis H, or hypothesis H:

Hy: g=Hfy, +n=H(f, +f,)+n, )
leg:Hfl-i-n:H(fb-i-fsl)-i—n, (3)

where f;, € IE” denotes the background, f,, € E" and f;, € E" represent the signal under the two
hypotheses, H € E™*" refers to the D-D imaging operator, and n € E™ denotes the measure-
ment noise. The special case of f, = 0 corresponds to a task of detecting the presence or absence
of the signal f;, in an image. When f,, is a random vector drawn from a certain nondegenerate
distribution and f,, and £, are fixed known signals, the detection task is known as a SKE/BKS
detection task. Alternatively, if f; and f; are also random, then the detection task is known as a
signal-known-statistically and background-known-statistically (SKS/BKS) detection task. Both
of these tasks are considered in this work.

2.2 Numerical Observers for IQ Assessment

A NO for a signal detection task maps a given set of measurements g or, alternatively, an image
estimate f € [E” of the object obtained from g to a scalar test statistic ¢ that is used to determine

whether g or f satisfies H, or H| based on comparison with a predetermined threshold 7. The
NOs employed in this study are described below.

2.2.1 Ideal observer and ResNet-based observer

The IO is an observer that utilizes all available statistical information about the task at hand to

A

maximize task performance. An IO test statistic #;(f) is any monotonic function of the like-
lihood ratio:’

A = @)

p(E|Ho)

where p(f|H,) and p(f|H,) are the conditional probability density functions that describe image
estimate f under hypotheses H, and H;. The exact computation of an IO test statistic based on

~

A(f) is intractable in general, and Markov-chain Monte Carlo techniques have been proposed to
approximate it.*>** Recently, it has been empirically shown that the IO can be approximated by a
neural network-based observer.'* In this study, a residual neural network-based (ResNet-based)
classifier of sufficient capacity trained on a large labeled training dataset was employed to
approximate the 10. This will henceforth be referred to as the ResNet-IO. Note that, if this

A

network does not possess the capacity to accurately approximate #;g(f), the resulting NO will
be simply referred to as a ResNet-based observer. In this case, the ResNet-based observer is
a suboptimal observer.

2.2.2 Hotelling observer and regularized Hotelling observer

The Hotelling observer (HO) is the optimal NO under the condition that the employed test
statistic is a linear function of the data.” The test statistic for the HO is defined as
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A

to(F) = Wiof 5)
where
wio = K(f) ' AT (6)
is known as the Hotelling template and
A 1 A .
K(f) = 3 (Ko (F) + K (f)). @)

Here, K, (f) and K| (f) denote the covariance matrices of f under the hypotheses H, and H,

repsectively, and Af = E(f|H,) — E(f|H,) is the difference between the condition mean of f
under the two hypotheses.

A

In some cases, the covariance matrix K(f) can be ill-conditioned, and therefore its inverse
cannot be stably computed. To address this, a regularized Hotelling observer (RHO) is
employed. The singular value decomposition of K is written as

R
K= Z ovul, ®)
i=1

where R is the rank of K, 61 > 0, > ... > oy are the singular values of K, u; and v, are the right
and left singular vectors, respectively, and f denotes the complex conjugate transpose operation.

The truncated pseudoinverse K of K is employed as a stable approximation of K~!:
+ Lot
K] = Z—uivi, )

where 1 is a threshold for sigular value and P is chosen to satisfy 6p > A6 > op, . The trun-
cated pseudoinverse is then used to construct the RHO template, which is then used to obtain the
RHO test statistic:

triio () = Weno(4)TE = (K AD)TE. (10)

2.2.3 Gabor channelized Hotelling observer

To compute a channelized Hotelling observer (CHO) template, the image data f is first trans-
formed into a vector v € 4, g < n, known as the channel output, via a transformation v = Tf,
where T € E?*" is known as the channel matrix. The test statistic of CHO is then computed as

~

teno(f) = wlyoV. Y

where Wepo = KAV and K, = %(Kv,o + K, ) is the covariance matrix of the channelized
image data. Here K, ( and K, ; denote the covariance matrices of v under the two hypotheses
H, and H;. The CHO with Gabor channels (Gabor CHO) can be considered an anthropomorphic
observer.”*>" The channel matrix T employed in the Gabor CHO is specified as follows.
A Gabor function C; corresponding to the i’th row of T is defined in the spatial domain by
multiplying a sinusoidal wave with a Gaussian function:

x? +y? .
Ci(x,y) =exp( —(4 In2)— cos2zav;(x cos 6; + y sin 6;) + ¢, (12)

wi

where w; is the channel width, v; is the central frequency, 0, is the orientation, and ¢; is the phase.
The element v; of the channel vector v = Tf is then given by the scalar product of the discretized

version of C; with the 2D image representation of f.
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2.3 Deep Learning-Based Image Super-Resolution

In the context of an image super-resolution problem, an LR image fir € E*', n’ €N, n’ <n
can be formally thought of as being related to the sought-after HR image fyr € E” via the
following equation:

fir = Hyjufur +m, (13)

where Hy,, € E"*" represents a degradation operator that removes the higher spatial
frequencies from fyr and n denotes the noise. Given a specific LR image, an estimate
fsr € E* of the original HR image is obtained using image super-resolution methods.
However, this is a challenging ill-posed inverse problem. In recent years, deep learning has
been widely applied to achieve image super-resolution.”® A popular class of deep learning-
based approaches calls for establishing a mapping from the space of LR images to the space of
HR images:

fsr = So(frr). (14)

where Sy is a deep neural network parametrized by . For several supervised learning
approaches, a training dataset of size D consisting of paired LR and HR images,

{(f&;,fﬁ%)}D is utilized. A loss function is constructed based on a distance metric

i=1>
E(Sg(f(Li) )fﬁiz) between a super-resolved (SR) image and an HR image, and the optimal

A

parameters @ are estimated by approximately minimizing the loss function over the dataset:

~

RS )y gl
6 = arg ming BZE(So(f(U)?)’fﬁ‘li?)‘ (15)
=1

Various loss functions such as #; or ¢, loss, or a perceptual loss,*® can be used to define L.
Additionally, an adversarial loss that attempts to match the distribution of SR images to the
distribution of original HR images can also be employed.® The two DL-SR networks considered
in this study are the super-resolution convolutional neural network (SRCNN)® and the super-
resolution generative adversarial network (SRGAN).®

The architectures of these two networks are shown in Fig. 1. The architecture of the SRCNN
consists of feed-forward convolutional layers interspersed with pointwise rectified linear unit
(ReLU) nonlinearities.®** The SRGAN architecture consists of a generative network, which
is an image-to-image mapping network consisting of convolutional residual blocks interspersed
with pointwise ReLU nonlinearities. A discriminator network is jointly trained along with the
generative network and provides the adversarial loss for matching the distribution of generated
SR images to the distribution of HR images.®

3 Numerical Studies

Computer-simulation studies were employed to objectively evaluate the DL-SR methods
described above with two binary signal detection tasks: (i) a Rayleigh detection task and (ii) an
MC cluster detection task. The NOs described in Sec. 2.2 were computed on the SR images,
as well as the LR and true HR images, to objectively assess the impact of DL-SR on the con-
sidered tasks.

3.1 Clustered Lumpy Background

The CLB model was developed by Bochud et al.*’ to generate random backgrounds that resem-
ble mammographic textures. The value of a CLB image at position r is

K N
Ryr|”
f,(r) = ;Zl I(r—r;—r,. Ry ), where I(r,Ry) = exp <_a|1|4(16(9|1|')>' (16)
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Fig. 1 Architecture of the super-resolution networks employed in our study: (a) SRCNN and
(b) SRGAN.

Table 1 Parameters for generating CLB images.

x|

N Ly L, a p c

150 20 5 2 21 0.5 12

Here /(r, Ry) is known as the blob function. The integer K denotes the number of clusters that
was sampled from a Poisson distribution with a mean of K:K ~ Poiss(K), N, specifies the
number of blobs in the k’th cluster sampled from a Poisson distribution with the mean of
N:N ~Poiss(N), r; indicates the center location of the k’th cluster sampled uniformly over
the field of view, and r,, represents the center location of the n’th blob in the k’th cluster sampled
from a Gaussian distribution with the center of r, and standard deviation of ¢. The matrix Ry,
represents the rotation corresponding to the angle 6;, sampled from a uniform distribution
between 0 and 27, L(r) refers to the radius of the ellipse with half-axes L, and L,, and & and
p are adjustable coefficients. The parameters of the CLB model employed in both the Rayleigh
detection task and MC cluster detection task are shown in Table 1.

3.2 Rayleigh Detection Task with a Clustered Lumpy Background Model

The Rayleigh detection task is a natural task for assessing the resolution properties of imaging
systems and has been employed previously for optimizing tomographic imaging systems.**3!
This is a binary signal detection task, in which hypothesis H, corresponds to a signal f, con-
sisting of two adjacent point objects and hypothesis H, corresponds to a signal f; consisting of
a single-line object.
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3.2.1 Simulated image data for Rayleigh detection task

Given the definition of signals f, and f, provided above, the generation of LR images under H,
and H, is written as

Hy: fig = Hyofp +n=Hy, (f, +£,) +n, (17)
H,: fig = Hyof) +n=Hy, (f, +£) +n, (18)

where f;, denotes a CLB image of size 128 x 128 with parameters defined in Table 1 and n
denotes the measurement noise. Given an adjustable parameter L, termed the signal length,
f,, is specified by first defining two Kronecker delta functions separated by a distance of
L —2, and convolving them with a Gaussian function of standard deviation 1.375 pixels.
The signal £, is specified by first defining a horizontal line of length L, which is subsequently
convolved with the same Gaussian function. The signals are inserted such that the centers of the
signals coincide with the center of the image. The Rayleigh detection task was performed inde-
pendently on the following datasets, where the HR dataset consists of images of the type:

fuir =f,+n, i=0.1, (19)

the LR dataset consists of images of the type
fir = Hypye fi +n, =01, (20)

and the SR dataset consists of images of type
fsr = S(Hppyrf; +m). i =0.1, 1)

where Hy,,,; represents a Gaussian filter with a standard deviation of 1.5 pixels and
f; =f, + £, as defined in Eq. (17). Here, S denotes the DL-SR operation performed by either
the SRCNN or the SRGAN, and n denotes the sum of pixel-wise independent and identically
distributed (IID) Poisson noise with a standard deviation scaled by ¢, =0.013 and IID.
Gaussian noise with a standard deviation 6, = 0.35. The simulation of an example LR image
according to the described procedure is shown in Fig. 2.

Two separate studies were formulated based on the Rayleigh detection task.

1. Signal length variation study. In this study, the signal length parameter L, which pertains
to the distance between the two point objects in f;  or the length of the line in £, , was
varied to investigate the resolving power of the DL-SR algorithms. The signal lengths of
L =1{5,6,7,8,9} were employed in this study as shown in Fig. 3.

2. Network complexity variation study. To investigate how the DL-SR network complexity
correlates with the task performance for a fixed object model and task design, a network
complexity variation study in which the number of layers of a DL-SR network was varied

Fig. 2 CLB (f,), signals (fs, fs1), and combined images of the Rayleigh detection task.

fb + fsn Hblur(fb+f3()) Hblur(fb+f5[] )+1’l

.

fb+f51 ) Hblur(fb+fsl )

fb + f51 Hblur

—~
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Fig. 3 Example signal image ROIls with respect to different signal lengths.

was conducted. The SRGAN employs an additional tunable parameter controlling the
trade-off between the MSE loss and the discriminative loss, the optimal value of which
may depend, among other factors, on the number of layers in the network. Hence, only
SRCNN was employed in this study.

3.2.2 Training details for the DL-SR networks

For the signal length variation study, both the SRCNN and SRGAN were trained and evaluated.
The training and validation data for SRCNN consisted of 5000 and 625 class-balanced signal
present/absent images, respectively. For SRGAN training, due to more trainable parameters in
the SRGAN, 20,000 images were used for training, and 2000 images were used for validation,
respectively, Examples of HR, LR, and SR images produced by the networks are shown in
Fig. 4(a).

For the architecture variation study, seven SRCNNs with varying numbers of convolutional
layers ranging from 2 to 8 were employed. For all of the SRCNN:S, the filter size in the first layer
was fixed to 9 X 9, whereas the filter size for the other layers was fixed to 5 X 5. The number
of filters in all layers was fixed to 32, except the last layer, in which the number of filters was
fixed to 1. All SRCNNs were trained on 15,000 images and validated on 3000 images with class
balance.

The SRCNN was trained with an MSE loss, and the SRGAN was trained using an MSE
loss and an adversarial loss. All DL-SR networks to be evaluated in the Rayleigh detection
task were trained on mini-batches at each iteration using the Adam optimizer.*! The DL-SR
models that achieved the best performance on the validation set were used for evaluation.
Both DL-SR networks were implemented under the TensorFlow 2.0 framework and trained
on NVIDIA GPUs.

3.3 Microcalcification Cluster Detection Task with a Clustered Lumpy
Background Model

Motivated by the clinical value of detecting MC clusters in mammograms that may be associated
with malignancy in breast lesions,*** a stylized SKS/BKS binary signal detection task of

SRCNN SRGAN HR SRCNN
- |

—

Fig. 4 Examples of (a) HR, LR, and SR images from SRCNN and SRGAN in Rayleigh detection
task and (b) HR, LR, and SR images from SRCNN in MC cluster detection task.
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identifying an image with or without an MC cluster present was studied. The objective of this
study was to determine how the capacity of a NO affects observer performance on SR images. In
essence, whether or not SR aids the performance of suboptimal observers was systematically
studied.

3.3.1 Simulated image data for MC cluster detection task

The HR MC cluster dataset was created as follows. First, 128 x 128 CLB images were created to
simulate the mammographic backgrounds, as described in Sec. 3.1. The signal-absent HR
images f, correspond to the case in which f; = 0 and, hence, were kept equal to the CLB
images. The signal insertion pipeline employed to generate the signal-present HR image f,
is described as follows. A set of eleven 200 x 200 MC clusters segmented from digital mammo-
grams acquired with the Selenia Dimensions system (Hologic, Inc.), available at https://github
.com/LAVI-USP/MClnsertionPackage,** were employed to model the MC cluster signal. First,
one out of the eleven segmented MC clusters was chosen at random, and a random rotation
between 0 deg and 360 deg with zero padding was applied. Next, this rotated image sy;c was
cropped to a size of 128 x 128 and inserted into a CLB f, as*

f] = fb(CSMC + 1) (22)

The scalar ¢ represents a contrast factor uniformly sampled from the range [0.05, 0.06] that is
chosen to visually match the contrast of real lesion.

Given the generated HR image, the corresponding LR image was simulated as follows, based
on the degradation model described by You et al.:!’

fir = Hyeofi +0, 1 =0.1. (23)

Here Hyy,,, represents a Gaussian blurring operation with a standard deviation of 1.5 pixels,
followed by downsampling by a factor of 2. Pixel-wise IID. Poisson noise with a standard
deviation scaled by a factor ¢, = 0.0001 and IID. Gaussian noise with a standard deviation ¢, =
0.001 were added to both the HR and LR images. These noise values were chosen independently
of the Rayleigh task so as to not saturate the observer performance on the LR images. To enable
direct comparison with the HR and SR images, an additional operation U representing upsam-
pling by a factor of 2 was used on the LR images. Similar to the Rayleigh detection task, the MC
cluster detection task was performed on the following datasets: (1) the HR dataset consisting of
images of the type fyr =f; +n, i = 0,1 is one of the MC cluster-absent/present hypotheses;
(2) the LR dataset consisting of images of the type fi g = Hyy,of; +n, i = 0,1 along with
the additional upsampling operation U acting on f; and (3) the SR datasets consisting of
fsr = S(Uf R), where S denotes the DL-SR operation performed by SRCNN.

3.3.2 Training details for DL-SR networks

The SRCNN employed in this study was trained on a dataset of 40,000 images and validated on
a dataset of 4000 images, both with balanced classes. The network was trained with the Adam
optimizer*' with a learning rate of 5 x 10~ for 1000 epochs to minimize the MSE loss. The
SRCNN model with the best validation performance was used. Examples of the SR images
produced by the SRCNN along with the HR and the LR images are shown in Fig. 4(b).

3.4 Objective Evaluation of Deep Learning-Based Image Super-Resolution
Networks
3.4.1 Objective evaluation metrics for the Rayleigh detection task

To evaluate the DL-SR networks with task-based metrics, three NOs, namely the RHO, Gabor
CHO, and ResNet-10, were employed. The test statistics for the three NOs were computed on the
HR, LR, and SR images that were centrally cropped to a size of 64 x 64. ROC curves were
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computed, and the area under the ROC curve (AUC) was employed as a figure of merit. All
evaluation metrics were computed on balanced test dataset of 40,000 images. Nonparametric
estimation of the AUC confidence intervals was carried out using DeLong’s algorithm,***” with
the help of the pROC package in R.*® Additionally, traditional IQ metrics such as PSNR and
SSIM were computed on the LR and SR images.

To compute the RHO test statistic, 500,000 images containing two point objects and 500,000
images containing the line-shaped object were utilized to estimate the empirical covariance

N

matrix K(f). The threshold parameter A in Eq. (9) was swept in from 10~ to 107, and the
detection performance was evaluated on a validation set of 4000 class-balanced images. The
value of A that yielded the best RHO performance on the validation data was selected. This
RHO with the selected parameter A was applied to a test set consisting of 40,000 class-balanced
images.

The channel matrix corresponding to the Gabor CHO comprised a set of 60 Gabor channels.
Each Gabor channel was associated with one out of six passbands, one out of five orientations,
and one out of two phases. The six passbands each have a spatial frequency bandwidth of 1
octave with a center frequency v = 3/256,3/128,3/64,3/32,3/16 and 3/8 cycles/pixel. The
five orientations were 0,2z/5,47/5,6n/5, and 8z/5, and the two phases were O and 7z /2.
Examples of Gabor channel templates are shown in Fig. 5. The channelized covariance matrix
was estimated using 100,000 images from each class with 500,000 noise realizations for
each class.

The ResNet-10, as shown in Fig. 6(a), was employed to approximate the IO test statistic. To
obtain a good approximation of the IO using ResNets, the optimum network capacity needs to be
determined empirically by sweeping the number of layers used in the ResNet architecture and
choosing the configuration that gives the best detection performance. A large training dataset
must be used to correctly represent the data distribution. Here the network was initialized with
the help of the RHO template to give the best performance and to speed up convergence.
A family of ResNets comprising various numbers of residual blocks were trained on a dataset
consisting of 100,000 training images and validated on 4000 images from each of the two
classes. The binary cross-entropy loss was minimized using Adam optimizer with a learning
rate of 1 x 1075, Additionally, a “semionline learning” method in which the measurement noise
was generated on-the-fly as described in Ref. 14 was utilized to mitigate the overfitting problem.
The ResNet that had the best validation performance was chosen as the ResNet-10.

3.4.2 Objective evaluation for the MC cluster detection task

As described previously, the objective of this study was to investigate the potential benefit of
DL-SR as it relates to the capacity of an NO. A binary signal detection task was conducted to

Fig. 5 Examples of Gabor channel templates.
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Fig. 6 Architectures of (a) ResNet-approximated IO for Rayleigh detection task and (b) ResNet-
based observer for MC cluster detection task.

distinguish whether an image contains the MC cluster signal or not. To assess the task-based
performance, a family of ResNet-based observers consisting of 2, 4, 6, or 8 residual blocks,
respectively, were employed in the detection task. The architecture of the ResNet-based observ-
ers is shown in Fig. 6(b). Each of these observers was trained on class-balanced datasets of sizes
5000 10,000, 20,000, 50,000, and 100,000 by minimizing the binary cross-entropy loss, until the
detection capability of each observer was fulfilled. Each simulated MC cluster image in the
training dataset was augmented four times by flipping. The AUC values produced by the trained
ResNet-based observers on a held-out test set containing 20,000 images from each class were
used to evaluate the signal detection performance. The ResNet-based observer that achieves the
best test performance without further improvement with either a deeper network architecture or
a larger training dataset could be considered an approximated 0.

4 Results
4.1 Rayleigh Task

4.1.1 Impact of regularization on the Hotelling observer performance

In addition to introducing high-frequency features to an LR image, the DL-SR networks also
suppress the per-pixel IID. noise added to the LR images. Due to this, the covariance matrix

K(f' sr) Of the SR images is ill-conditioned. Hence, as mentioned in Sec. 2.2.2, regularization is
needed to stably invert it to obtain the Hotelling template. Hence, the performance of the RHO
depends upon the regularization parameter 1 employed for truncating the singular values of K.
Figure 7 shows the Hotelling templates of the HR images, the LR images, and the images SR by
the SRCNN and the SRGAN. It can be seen that, for low values of 4, the Hotelling template is
noisy due to the unstable inversion of K. On the other hand, for high values of 1, degradation of
the signal specificity corresponding to the truncation of singular values can be seen.

4.1.2 Impact of signal length on observer performance

The traditional IQ metrics and AUC values for the signal length variation study computed on
a class-balanced test set consisting of 40,000 images are plotted in Figs. 8 and 9, respectively.
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Fig. 7 RHO templates for the Rayleigh task of signal length 8 computed on (a) HR and LR
images and (b)—(f) images from SRCNN and SRGAN resulting from sweeping the regularization
parameter A.
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Fig. 8 Traditional IQ metrics including (a) ensemble MSE, (b) PSNR, and (c) SSIM of the HR, LR,
and SR images. Both the SRCNN and SRGAN consistently and significantly improved the 1Q
across various signal lengths in terms of these traditional metrics.
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Fig. 9 AUC values of the (a) RHO, (b) CHO, and (c) ResNet-IO for HR, LR, and SR images. It can
be seen that the DL-SR resulted in a small improvement in the CHO performance, but no improve-
ment in the RHO and ResNet-IO performance on the LR images. As such, the observer perfor-
mance on the HR images is much higher than the performance on the LR and SR images.

As seen in Fig. 8, the SR images generated by the SRCNN and SRGAN show an improvement in
1Q across various signal lengths compared with their LR counterparts in terms of the traditional
1Q metrics. Moreover, no significant changes on traditional IQ metrics were observed among SR
images when varying the signal length. This is due to the degradation model and DL-SR network
architecture being consistent across different signal lengths and the physical difference among
images with various signal lengths being minor.

However, as shown in Fig. 9, DL-SR performance as measured by NO performance provides
different insights into the DL-SR behavior. First, it can be seen that AUC values corresponding to
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all NOs increased consistently along with the increment of the signal length for the HR, LR, and
both types of SR images. This is due to the detection task becoming easier with an increasing
signal length. Second, the AUC values corresponding to HR images were significantly greater
than those on LR images and SR images. This suggested that the second- and potentially higher-
order statistical properties of the images may not be recovered by the DL-SR networks. Third, it
is worth noting that, in some cases, there was a small improvement in the AUC values of RHO
and a small but significant improvement in the AUC values of Gabor CHO corresponding to
the SR images as compared with the LR images. This could be interpreted by both the linear
observers, namely the RHO and the Gabor CHO acting on the SR images, having the benefit of a
nonlinear preprocessing block in the form of the DL-SR network. Finally, as shown in Fig. 9(c),
there was no improvement in the performance of the ResNet-IO as a result of the employed
DL-SR networks, which is consistent with the data-processing inequality.”’

4.1.3 Impact of number of layers in DL-SR networks on observer
performance

The traditional IQ metric MSE and the NO performance measured on the LR and SR images as
the number of layers in SRCNN was varied are shown in Figs. 10 and 11, respectively. As shown

SKE/BKS layer sweep
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w
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Fig. 10 Ensemble MSE between the SR and the HR images for SR networks with different
numbers of layers. The LR images yield an MSE of 0.4369.
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Fig. 11 RHO and CHO performance on SR images and LR images for SR networks with different
numbers of layers.
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in Fig. 10, the MSEs decreased when the number of layers in SRCNN increased, as expected.
This indicates that the DL-SR networks improved certain first-order statistics of the images.
However, this trend is not always consistent with the NO performance measured by AUC values.
As shown in Fig. 11, it was observed that the AUC values for the RHO measured on SR images
were no greater than those computed using the LR images. Also the RHO performance decreased
as the number of DL-SR network layers increased. This suggests that the second-order statistical
properties of the images were degraded by the DL-SR networks. To further analyze this, the

singular values of the covariance matrix K(f' sr) of the SRCNN-resolved images were computed
for networks having different numbers of layers. As shown in Fig. 12, the singular values indi-

cate that, as the number of layers in the DL-SR network increased, K(f’ sr ) became increasingly
ill-conditioned.

On the other hand, the AUC values for the Gabor CHO on SR images were greater than
those measured on LR images, and the performance of Gabor CHO on SR images increased
as the number of layer increased from 2 to 6, after which it saturated and reduced slightly for
the SRCNN composed of 7 and 8 layers. This suggests that the second-order statistics of the
Gabor channelized images were improved by the DL-SR networks but that this improvement
reached a plateau as the number of layers increased. The singular values of the covariance matrix
K, of the Gabor-channelized, SRCNN-resolved images were computed for the DL-SR networks
with different numbers of layers. As shown in Fig. 13, the singular value decay of K, is faster for
DL-SR networks with more layers, which is similar to the RHO.
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Fig. 12 Singular values of the empirical covariance matrix of the SR images from DL-SR networks
of different numbers of layers.
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Fig. 13 Singular values of the empirical covariance matrix of the Gabor channelized SR images
from DL-SR networks of different numbers of layers.
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4.2 Impact of Observer Capacity on Benefit of DL-SR for MC Cluster
Detection Performance

The objective of this study is to determine how the capacity of a NO relates to its task perfor-
mance on SR images. The traditional IQ metrics MSE, PSNR, and SSIM were computed for the
LR and SR images generated by the SRCNN on the MC cluster dataset. As shown in Table 2,
the 1Q measured with these metrics improved for the SRCNN-resolved images compared with
the LR counterparts.

The capacity of a ResNet-based observer was varied by varying the number of residual
blocks that constitute the ResNet. Figure 14 shows the performance of ResNet-based observers
consisting of 2, 4, 6, and 8 residual blocks trained on a dataset of 50,000 images (200,000 con-
sidering fourfold flip-augmentation). It was observed that ResNet-based observers of smaller
capacity benefited from the particular DL-SR network employed. In this case, the DL-SR net-
work can be interpreted as an additional prepreocessing block for the ResNet observer that effec-
tively increases the capacity of the observer. However, as the capacity of the observer was
increased, the SR operation gave diminishing returns toward improving the task performance.
As the NO performance plateaued with increasing capacity, it approached ResNet-10, and the
MC cluster detection performance on SR images was no greater than that in LR images. This
behavior is consistent with the data processing inequality,”® which suggests that postprocessing
operations such as image super-resolution will not increase the information content in the image.
As a result, the MC cluster detection performance of a ResNet-IO on SR images should not be
expected to surpass that of the original LR images.

Next, ResNet-based observers of varying depths were trained on datasets consisting of differ-
ent sizes to fulfill their corresponding capacity for each resolution. For each dataset, the optimal
ResNet-based observer was identified based on the best performance on the validation dataset.
The results in Fig. 15 show the performance of the optimal ResNet-based observer for each
dataset size. It was observed that, as the amount of available training data increased, the
MC cluster detection performance of the ResNet-based observers increased. More interestingly,
given a small dataset with limited number of images such as 5000, 10,000, and 20,000, the
DL-SR network indeed improved the detection performance on SR images compared with LR.

Table 2 Traditional IQ metrics computed on the LR and SR images
in the MC cluster detection task.

Resolution Ensemble MSE PNSR SSIM
LR 0.1580 + 0.0104 50.1925 + 0.5390 0.9942 + 0.0006
SR 0.0486 + 0.0021 55.2895 + 0.3546 0.9973 + 0.0002
_____ o---—-—----2
e———— T TTETIIIIEEE
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Fig. 14 Performance of ResNet-based observers of different numbers of layers trained on HR, LR,
and SR datasets of size 50,000.
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Fig. 15 Performance of the optimal ResNet-based observer for a particular dataset size trained
on HR, LR, and SR images.

This demonstrates a situation in which the DL-SR operation aided the MC cluster detection
performance. For training dataset sizes of 50,000 and beyond, the ResNet-based observer
approached the ResNet-10, and its performance on the images resolved by the DL-SR networks
was no better than its performance on the LR images.

Both of the observations in Figs. 14 and 15 illustrate that, in the case of suboptimal neural-
network (NN)-based observers, such as those with limited capacity or those trained on limited data,
DL-SR networks may be employed to improve the detection performance compared with that
achieved on the LR images. However, if the NN-based observer approximates 10, preprocessing
the LR images using a DL-SR network will not improve the detection performance of the observer.

5 Discussion

Deep learning techniques have been adopted for a wide range of medical imaging applications,
including image restoration. Despite the different traditional IQ metrics having been computed to
assess the effect of these deep learning-based methods, a task-based evaluation of these
approaches has been largely lacking. A recent study conducted by Li et al.'> demonstrated that
deep neural network-based image denoising methods can result in a loss of task-relevant infor-
mation, despite an improvement in several traditional IQ metrics. In a similar vein, this work
studies the impact of DL-SR on binary signal detection tasks. It is important to reiterate that the
main goal of this work is to comprehensively study the impact of DL-SR on task performance for
known tasks under known statistical conditions. It is not to explore whether DL-SR can be
a viable practical solution to a particular real problem. Such a systematic and comprehensive
evaluation is not possible with common clinical datasets, which have several different and
unknown sources of variability that may act as confounding factors in our analysis. Therefore,
for the purposes of this work, the stylized setup presented is appropriate.

A Rayleigh detection task was employed to assess the impact of the design of the signal and
the depth of the DL-SR network, and an MC cluster detection task was employed to study how
DL-SR affects NN-based observers of different capacities. The numerical results for the SKE/
BKS Rayleigh detection task revealed that the loss of task-relevant information in LR images
cannot be recovered by the DL-SR operation, even though mild improvement of detection per-
formance was observed with suboptimal observers. Furthermore, it was observed that, while
increasing the depth of the DL-SR network improves the traditional IQ metrics, improved task
performance does not always follow. This suggests that the mantra “deeper is better” while
designing neural network architectures for image super-resolution is not necessarily applicable
when task performance is considered. As such, seeking to minimize a loss function solely related
to traditional IQ metrics may lead to a situation in which the image statistics important to the
defined task are degraded.

Furthermore, it is of interest to investigate conditions under which the DL-SR improves
the signal detection task performance. Using SRCNN as an example, an SKS/BKS MC cluster
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detection task was conducted to investigate the capacity of the NN-based observers on SR
images, as compared with that on LR and HR images. It was observed that DL-SR improved
the signal detection performance of suboptimal observers that do not accurately approximate IO0s
due to either a limited amount of training data or the limited complexity of the observer. Given
sufficient training data and an observer with sufficient complexity for the particular task con-
sidered, an IO can be approximated, and the benefit of DL-SR toward improving the task per-
formance is lost. This suggests that the impact of DL-SR on a binary signal detection task
depends on a combination of factors such as the DL-SR networks, the observers, and the defined
task. Thus a task-based evaluation of DL-SR methods is essential to accurately quantify the
benefit of DL-SR for clinical practice.

Some important topics remain to be investigated in the future. The binary signal detection
tasks considered in this study are simplistic compared with real-world clinical tasks. Future work
could investigate the performance of DL-SR methods as preprocessing blocks on tasks such as
multi-class classification, lesion segmentation, and image registration. Since the introduction of
SRCNN and SRGAN, several deep learning-based methods that improve the super-resolution
performance have been proposed. The task-based evaluation pipeline presented in this study can
readily be applied to the newer DL-SR methods in which different network architectures or loss
functions are employed. It is known that deep learning-based methods may lead to hallucina-
tions, especially when acting on data outside the training distribution.*’ Hence, an objective
assessment of the robustness of DL-SR methods for distribution shifts is also an important topic
for future investigation. Additionally, it will be important to conduct human reader studies to
assess the performance of DL-SR methods for specific clinical tasks. The results demonstrated in
our study will motivate the development of DL-SR methods in directions in which the loss of
task-specific information can be mitigated by incorporating such information in designing the
network architecture or the loss functions.™

6 Conclusion

In this paper, we presented a task-based evaluation to assess the impact of DL-SR methods on
binary signal detection. An SKE/BKS Rayleigh detection task and an SKS/BKS MC cluster
detection task were conducted on simulated image datasets with a CLB. Our results verify that
the performance of an IO cannot be improved via DL-SR methods, which is consistent with the
data processing inequality. Also an improvement in traditional IQ metrics induced by DL-SR
does not always correlate with the impact of DL-SR on observer performance. Despite this, the
numerical experiments presented indicate that DL-SR methods improved the signal detection
performance of suboptimal NOs in certain cases. The reported results emphasized the necessity
of a task-based evaluation of DL-SR methods and suggest future avenues for developing effec-
tive DL-SR algorithms.
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