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Abstract. With extreme ultraviolet lithography (EUVL) emerging as one of
the top contenders to succeed from optical lithography for the production
of next generation semiconductor devices, the search for suitable resists
that combine high resolution, low line edge roughness (LER) and commer-
cially viable sensitivity for high volume production is still ongoing. One
promising approach to achieve these goals has been the development
of molecular resists. Here we report our investigations into the EUV litho-
graphic performance of a molecular fullerene resist showing resolution
down to 20-nm half-pitch with interference lithography with a LER of
>5 nm and sensitivity of about 20 mJ∕cm2. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JMM.12.3.033010]
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1 Introduction
With the advancement in next generation lithography (NGL)
technology continuing, the progress in patterning capability
is increasingly being limited by the lithographic performance
of the photoresist. Current lithographic nodes already require
line width roughness that is smaller than the radius of gyra-
tion of typical resist polymers.1 Further progress in the devel-
opment of new resists is needed to enable the commercial
production of semiconductors at the sizes mapped for the
future. Low molecular weight resists, such as fullerenes,2,3

triphenylenes,4,5 molecular glasses,6,7 and inorganic resists,8,9

have been a focus of interest for NGL because their small
size promises high resolution and small line edge roughness.
But so far, no resist candidate has emerged that fulfills all the
industry’s criteria.

We have previously reported on the performance of a ful-
lerene derivative based three-component negative tone

chemically amplified resist for e-beam lithography with low
line edge roughness (LER) and high resolution capability,10,11

and on a positive tone variant of the fullerene resist.12 E-beam
resists have often been shown to work in extreme ultraviolet
lithography (EUVL) as well because of similarities in the
exposure mechanisms in the resist. Therefore, we believe
that this resist platform has a great potential for EUVL. Here
we present recent results of our investigation into the EUVL
performance of a fullerene derivative based resist system.13

2 Experimental Methods
Fullerene derivatives for the resist were supplied by
Irresistible Materials Ltd., United Kingdom Figure 1(a)
shows the tert-butoxycarbonyl (tBOC) protected methyl
phenolic malonate C60 derivative (IM-MFPT-12-21), and
the tBOC protected propyl phenolic malonate C60 deriva-
tive (IM-MFPT-12-8, -12-19, -13-32, -13-33). An epoxy
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crosslinker (Araldite ECN 1299; Huntsman Advanced
Materials, The Woodlands, Texas) [Fig. 1(c)] and triphenyl-
sulfonium hexafluoroantimonate PAG (TPS-103; Midori
Kagaku Co., Japan) [Fig. 1(d)] were added.

Synthesis of the derivatives was achieved via the modified
Bingel14,15 cyclopropanation reaction of a bismalonate
ester, with the C60, to afford the methanofullerenes and is
described in depth elsewhere (Yang et al., unpublished).

2.1 IM-MFPT-12-8

In a round bottom flask, [60]fullerene (1 equivalent), 9,
10-dimethylancethracene (22 equivalent) and toluene were
added. The resulting solution was stirred for 1 h to com-
pletely dissolve the fullerene. Carbon tetrabromide (22
equivalent) and 3-(4-t-butoxycarbonyl)phenyl-1-propyl mal-
onate (22 equivalents) were added to the solution. 1,8-
Diazabicyclo[5.4.0]undec-7-ene (DBU) (108 equivalents)
was added dropwise and the resulting mixture was stirred
at room temperature overnight and the initial purple solution
had become a dark red color. The crude mixture was poured
through a silica plug in a sintered glass funnel and rinsed
with toluene (4 L) to remove unreacted [60]fullerene and
then rinsed with dichloromethane: ethyl acetate:methanol
(2∶2∶1) to remove the red/brown band containing the crude
products. The solvents were evaporated and the resulting
residue [3-(4-t-butoxycarbonyl)phenyl-1-propyl malonate]-
methano-[60]fullerene (dark red/brown oil) was obtained.
1H NMR (300 MHz, CDCl3): δ ¼ 6.90 to 7.70 (m), 0.9
to 4.1 (m), 1.55 (s). The product was characterized by
matrix-assisted laser desorption/ionization mass spectrom-
etry (MALDI MS). Major components were multiadduct
fullerenes with n ¼ 4 to 6.

2.2 IM-MFPT-12-19

IM-MFPT-12-19 was synthesized and purified as for IM-
MFPT-12-8. The crude mixture was redissolved in methyl-
ene chloride at a concentration of 65 g∕L and processed by
size exclusion chromatography (Phenogel SEC 300 × 7.8 mm,

5 μm particle size, eluent: methylene chloride, 4 mL∕min).
The material corresponding to 1000 to 3000 atomic mass
unit (AMU) was collected and the solvent was evaporated
to obtain a red oil. This material was characterized by
MALDI MS.

2.3 IM-MFPT12-21

In an 1-L round bottom flask, [60]fullerene (0.85 g,
1.2 mmol), 9,10-dimethylancethracene (2.62 g, 13 mmol,
11 equivalents) and toluene (500 mL) were added. The
resulting solution was stirred for 1 h to completely dissolve
the fullerene. Carbon tetrabromide (4.78 g, 13 mmol, 11
equivalents) and t-butoxycarbonyl malonate (6.6 g, 13 mmol,
11 equivalents) were added to the solution. DBU (8.3 mL,
53.2 mmol) was added dropwise and the resulting mixture
was stirred at room temperature overnight and the initial pur-
ple solution had become a dark red color. The crude mixture
was poured though a silica gel plug in a sintered glass funnel
and rinsed with toluene to remove unreacted [60]fullerene.
After that, the plug was rinsed with dichloromethane:ethyl
acetate:methanol (2∶2∶1) to remove the red/brown band con-
taining the crude products. The filtrate was evaporated and
the resulting residue was purified via flash column chroma-
tography with dichloromethane:ethyl acetate:methanol as
eluent. (t-butoxycarbonyl malonate)-methano-[60]Fullerene
(1.8 g, dark red/brown oil) was obtained. The oil was dis-
solved in methylene chloride at a concentration of 65 g∕L
and processed by semi-preparative size exclusion chroma-
tography (Phenogel SEC 300 × 7.8 mm, 5 μm particle
size, eluent: methylene chloride, 4 mL∕min). The material
corresponding to 1000 to 3000 AMU was collected and
the solvent was evaporated to obtain a red oil. This material
was characterized by MALDI MS.

2.4 IM-MFPT-13-32 and IM-MFPT-13-33

They were synthesized for IM-MFPT-12-8. Reaction crude
mixture was poured through flash column chromatography
using silica gel and washed with toluene to remove unreacted

Fig. 1 (a) a tert-butoxycarbonyl (tBOC) protected methyl phenolic malonate C60, (b) a tBOC protected propyl phenolic malonate C60, (c) epoxy
crosslinker, and (d) triphenylsulfonium hexafluoroantimonate photoacid generator.
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[60]fullerene and then two bands were obtained with differ-
ent eluents: dichloromethane: ethyl acetate (1∶1) and
dichloromethane:ethyl acetate:methanol (2∶2∶1). The sol-
vents were evaporated and the resulting two residues
(IM-MFPT-13-32 and IM-MFPT-13-33, dark red/brown oil)
were obtained. 1H nuclear magnetic resonance (NMR)
(IM-MFPT-13-32, 300 MHz, CDCl3): δ ¼ 6.90 to
7.70 (m), 0.9 to 4.1 (m), 1.55 (s). 1H NMR (IM-MFPT-
13-33, 300 MHz, CDCl3): δ ¼ 10.8 ðsÞ, 6.90 to 8.70 (m),
0.9 to 4.1 (m), 1.55 (s). The products were also characterized
by MALDI MS.

Silicon substrates of 18 × 18 mm2 were prepared by dic-
ing a 100-mm n-type, h100i-silicon wafer (Rockwood
Electronic Materials, France) using a Disco DAD 321
wafer dicer. The substrates were cleaned using semiconduc-
tor grade chemicals (Puranal, Sigma Aldrich). After dicing,
the substrates were immersed in isopropyl alcohol (IPA) and
placed in an ultrasonic bath for 10 min. The samples were
then rinsed in flowing deionized (DI) water for 1 min (Purite
Neptune, 18.2 MΩcm) before being immersed in freshly
prepared H2SO4 (95% to 98%): H2O2 (30%) [1∶1] for
10 min. After another 1-min rinse in flowing DI water, the
substrates were dipped for 3 min in a weak aqueous solution
of hydrofluoric acid (0.1% to 1%) to form a hydrophobic
surface, and finally a further 1-min rinse in flowing DI water.
They were then dried with nitrogen and immediately coated
with a fullerene containing underlayer, based on a thinned
version of our previously reported spin-on-carbon,16,17 to
provide a suitable surface for subsequent resist spinning.
Substrates were then packaged in chip holders (Entegris
H20) and shipped to the EUV testing facility within 3 days.

EUV exposures were performed using the interference
lithography tool at the Paul Scherrer Institute (PSI),
Switzerland.18 Solutions of resist were formulated at PSI
by mixing the fullerene derivative with the crosslinker and
photo acid generator at various ratios and concentrations,
typically 1 part fullerene to 2 parts crosslinker and 1 part
photoacid generator (PAG) by weight, in ethyl lactate or

propylene glycol monomethyl ether. No other components
(quencher etc.) were added. Resist was spun onto the sub-
strates at 1000 to 2000 rpm for 60 s and received a postap-
plication bake of 75°C for 5 min. After the exposure, the
samples were baked at 90°C for 3 min before being devel-
oped in monochlorobenzene (MCB):IPA [1∶1] for 20 s
followed by rinsing in IPA. Alternative developers, cyclo-
hexanone and 2-heptanone, have also been used success-
fully, as discussed below.

Exposed samples were analyzed with a FEI XL30 SFEG
scanning electron microscope (SEM) in top–down view.
Critical dimension (CD) and LER were calculated from the
SEM images with the commercial software package SuMMIT.
Dose at the wafer was calibrated for each exposure run by
using a reference resist as detailed elsewhere.16

3 Results and Discussions
The exposure of numerous variants of the resist formulation
showed that it is capable of high resolution. Examples of
resist patterns with half-pitches down to 20 nm are shown
in Fig. 2. The corresponding resist metrics are summarized
in Table 1. The images suffer somewhat from low contrast,
which is due to the necessary thinness of the resist film. We
found that for aspect ratios significantly greater than ∼1∶1,
the resist is prone to pattern collapse at half-pitches >25 nm.
Nevertheless, there is a significant potential for improvement
in the process of optimizing the synthesis of the fullerene
material towards improvement of mechanical stability to
allow for higher aspect ratios.

We observed that adopting thinner films seemed to intro-
duce further roughening in the line edge, as would be antici-
pated from previous results.19,20 Figure 3 shows two resist
films patterned at 30-nm half-pitch. Figure 3(a) shows vari-
ant IM-MFPT12-19, spin coated from a 6.67 g∕L propylene
glycol methyl ether (PGME) solution at 1000 rpm to give a
film thickness of 20 nm, given a postapplication bake of
75°C for 5 min, exposed to EUVat 20 mJ∕cm2, given a post-
exposure bake of 90°C for 3 min and developed in MCB:IPA

Fig. 2 Exposed fullerene resists at (a) 30-nm hp, (b) 25-nm hp, (c) 22-nm hp and (d) 20-nm hp.
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[1∶1]. Figure 3(b) shows a very similar variant, IM-
MFPT12-8, which is known to be marginally less sensitive
to EUV than IM-MFPT12-19. In this case, the film concen-
tration was 10 g∕L to give a film thickness of 40 nm, and the
exposure dose was 30 mJ∕cm2, but conditions were other-
wise the same. It can be seen that the LER is substantially
higher in Fig. 3(a) than in Fig. 3(b). Therefore, increasing the
resist thickness through improvement in the mechanical sta-
bility of the resist or pattern collapse mitigation should lead
to improvement in LER at lower half-pitches.

The CD versus dose and LER versus dose behavior for a
∼20-nm film of variant IM-MTFP12-21, exposed under the
same conditions as IM-MFTP12-19 above are shown in
Fig. 4(a) and 4(b), respectively. It can be seen that the LER
is not significantly increased as the dose goes from 20
to 30 mJ∕cm2.

Sensitivity curves for two of the resist variants were also
obtained by using an open frame with a square aperture
rather than the metal gratings for exposure. From the curves
shown in Fig. 5, it can be seen that depending on the syn-
thesis conditions, the material shows a range of variation in
sensitivity. Also illustrated is the effect on sensitivity when
the two resist materials are used in combination by mixing
them together. By adding together the low and high sensitiv-
ity materials, a resist with intermediate sensitivity is created.

Different developers were tested, as our traditional devel-
oper MCB is not acceptable in industrial usage. The exposed
material was found to develop as well in 2-heptanone, or in

Table 1 Resist characteristics at different half-pitch sizes.

Half-
pitch 30 nm 25 nm 22 nm 20 nm

CD 31.2 nm 26.0 nm 22.6 nm 20.2 nm

LER 5.45 nm 4.68 nm 4.79 nm 5.65 nm

Dose 20.5 mJ∕cm2 23.0 mJ∕cm2 25.2 mJ∕cm2 20.3 mJ∕cm2

Fig. 3 Comparison of line edge roughness (LER) for (a) 20 nm (LER ¼ 7.76 nm) and (b) 40 nm (LER ¼ 2.05 nm) thick films.

Fig. 4 (a) CD versus dose at two half-pitches, and (b) LER versus dose, for the IM-MFTP12-21 variant.

Fig. 5 Fitted sensitivity curves for materials IM-MFTP13-32 and IM-
MFTP13-33.
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cyclohexanone, two known negative tone developers. A
comparison of the developers is shown in Fig. 6 and the resist
data are summarized in Table 2. From the table, it can be seen
that the 2-heptanone produces smoother lines with a smaller
LER but at the cost of a decreased sensitivity. Cyclohexanone
shows the reverse characteristics with increased sensitivity at
the expense of LER. This seems to suggest that 2-heptanone
is a less aggressive developer with reduced solubility of the
exposed resist material. The MCB lies on the middle ground
in terms of resist performance with both sensitivity and LER
lying in the range between the other two chemicals.

4 Conclusion
We have presented first results of the EUV exposure of a
novel negative tone chemically amplified molecular fuller-
ene resist. The use of fullerenes as resist material is attractive
as they have a small molecule size that potentially helps to
reduce LER. Furthermore, they have been shown to have a
high etch resistance in plasma etching,21 an important factor
as progress in lithography has made it necessary to reduce
resist thickness. While it was initially surprising to see a
tBOC protected phenol used in combination with an epoxy
as a good negative tone resist, we have confirmed a signifi-
cantly better performance than for the unprotected phenol
variant of the phenolic fullerene. If the crosslinking compo-
nent is removed, the negative tone behavior of the tBOC
protected phenol is no longer observed, indicating that
this is not a simple polarity switch. The mechanism of action
is currently being elucidated using a model resist, but we
speculate that the acid labile tBOC group is removed by
the PAG-generated acid, with the epoxy reaction cationically
catalyzed. Analysis of the lithographic performance of the
fullerene resist has shown that it possesses resolution, and
sensitivity within or close to the target values of the Inter-
national Technology Roadmap for Semiconductors22 for
2016, but further work is ongoing to reduce LER in the
thin films required for high resolution.
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