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Abstract. Commercial satellites for Earth observation can integrate conventional positioning
and tracking systems for monitoring legal and illegal activities by sea, in order to effectively
detect and prevent events threatening human life and environment. This study describes
an object-oriented approach to detect vessels combining high- and medium-resolution optical
and radar images. Once detected, the algorithm estimates their position, length, and heading and
assigns a speed range. Tests are done using WorldView-2, QuickBird, GeoEye-1, Sentinel-2A,
COSMO-SkyMed, and Sentinel-1 data imaged in several test sites including China, Australia,
Italy, Hong Kong, and the western Mediterranean Sea. Validation of results with data from
the automatic identification system shows that the estimates for length and heading have
R2 ¼ 0.85 and R2 ¼ 0.92, respectively. Tests for evaluating speed from Sentinel-2 time-lag
image displacement show encouraging results, with 70% of estimates’ residuals within
�2 m∕s. Finally, our method is compared to the state-of-the-art search for unidentified maritime
object (SUMO), provided by the European Commission’s Joint Research Centre. Finally, our
method is compared to the state-of-the-art SUMO. Tests with Sentinel-1 data show similar
results in terms of correct detections. Nevertheless, our method returns a smaller number of
false alarms compared to SUMO. © 2019 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.13.014502]
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1 Introduction

1.1 Maritime Surveillance

Maritime activities over the world’s seas and oceans constitute a considerable portion of human
commercial trades. In addition to legal business, piracy, drug trafficking, illegal fishing, marine
pollution, and human smuggling have turned to be nowadays ordinary activities and need to be
controlled and limited. Therefore, efficient maritime surveillance and awareness are required to
timely detect and prevent events threatening human life and environment.1

Today, vessels’ monitoring is performed mainly through land radars, sea radars, or ship-to-
ship visual information exchange. Nevertheless, this approach has technical limitations that con-
strain the maximum acquisition range (about 100, 60, and 20 km, respectively) and practical
limitations related to territorial waters boundaries, daylight, or adverse weather conditions.

Satellites can easily extend visual and instrumental horizon limits, are not constrained by
national boundaries, and can operate even in adverse weather conditions, providing quick access
to global imagery with high-revisit time.2 Their improved performances in terms of spatial, spec-
tral, and temporal resolution have fostered their employment in monitoring and reconnaissance
tasks, particularly in dynamic contexts extended over wide areas as maritime environments.

Therefore, monitoring of ships routes from space, together with conventional positioning and
tracking methods (global positioning systems), land-based systems, and vessel information
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repositories [Automatic Identification System (AIS)], can rapidly intercept vessels travelling by
sea, thus broadening the surveillance information provided by navy, coast guards, or collabo-
rative ships.

1.2 Vessel Detection from Space

Vessel detection is a topic of interest since the beginning of the 19th century. Initially, the goal
was to avoid collisions between ships and nowadays this is a well-known application for
monitoring illegal activities.

Operational algorithms and existing applications mainly rely on the single use of optical or
radar data, and rarely foresee a combination of both the sources.

Nevertheless, the use of high- and medium-resolution optical and radar images allows for
a regular observation, unrestricted by lighting and atmospheric conditions, and complementarity
in terms of geographic coverage and geometric details. As an example, the areas to be analyzed
could be very large but at the same time it may be necessary to zoom to high spatial resolution to
get detailed information about specific small targets. Moreover, the need to detect vessels made
of different materials (e.g., wooden, rubber, or metallic) makes synergic the joint use of
multispectral and microwave technologies, as the use of a single technology may lead to missed
identification or misclassification.

Synthetic aperture radars (SARs) are able to operate in all-weather and lighting conditions.
In addition, thanks to their different imaging modes (i.e., stripmap, spotlight, or wide-swath),
according to application needs,3 SAR sensors can be programmed to collect higher resolution
images with a smaller swath (50-cm spatial resolution at 4-km coverage4), or lower resolution
images on a wider area (70-m spatial resolution at 500-km coverage4). However, on the sea, SAR
amplitude images usually have a high noise and are sensitive to sea roughness caused by winds
and waves, thus producing high clutter, which tends to obscure smaller vessels and create false
alarm.2,5 In addition to incidence angle, polarization and orientation of vessel respect to sensor
can influence the detection rates.6

A typical issue of radar images is the occurrence of azimuth ambiguity patterns. These are
image artefacts that appear as weaker repetitions (“ghosts”) of the targets shifted at fixed dis-
tances in azimuth. Although usually azimuth ambiguities generate lower reflections, for strong
targets and limited clutter conditions, they can be erroneously detected and mistaken for real
ships.4,7 In addition, bright targets on land or near the coast may produce azimuth ambiguities
on the sea (e.g., small islands or reefs outside land mask, off-shore constructions, and strong
scatterers as cities or harbours), but they can be classified as recurrent targets if repeat-pass
images are available, and, thus, be labelled as false alarms.4 All these factors make SAR images
visual interpretation difficult6,8 and limit the amount of information obtainable from SAR data to
geographic location, length, width, and heading.4

On the contrary, sunlight and absence of clouds are required to make observation with optical
sensor. In addition, sea surface is characterized by areas of higher reflectance, which compromise
accurate detection of bright targets. Consequently, high-reflective sea roughness and waves,
whose position is difficult to predict, could be easily misclassified for vessels.9 Nevertheless,
current spatial resolutions allow the detection of very small targets,8 granting a more accurate
features estimation.10 This makes possible to recognize and discriminate between many different
ships.11 However, while high-resolution multispectral images (e.g., 2-m spatial resolution at
20-km swath width) could be very useful for detailed studies over small areas, they are not
appropriate for monitoring activities over wide regions because too expensive in terms of col-
lection time, processing times, and costs. On the other hand, medium-resolution multispectral
images (e.g., 20-m spatial resolution at 290-km swath width12) could be a compromise for mon-
itoring tasks of wide areas. In addition, the high-revisit time of Sentinel-2 (with the addition
Landsat-8) makes possible a near real-time observation of large portions of the sea.

Vessel detection is not a new theme and there is plenty of bibliographic material available in
the literature on this topic, particularly on SAR images.6 The most popular category belongs to
adaptive thresholding [constant false alarm rate (CFAR)] detectors,13 proposed with various dis-
tributions of background statistics,4,14 due to their simple implementation and reliable statistical
approach. A method based on variational Bayesian inference for multitarget situation and very
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complex backgrounds is proposed in Ref. 15. Some more sophisticated methods rely on multi-
channel information, such as polarimetric detectors16 or along-track interferometry.17 These
approaches are less affected by inhomogeneities of sea surface,4 but less straightforward than
the CFAR.

Recently, vessel detection with multispectral imaging systems has attracted increasing
attention.2 Some works deal with ship detection in harbor areas, where, differently from
ship detection on open sea, similarity between ships and port structure could be an issue for
detection. Existing methods can be roughly grouped into three categories: (i) sea-state analysis
combined with threshold-based methods8,18,19 are fast algorithms, but illumination changes tan-
gle automatic thresholding;20,21 (ii) genetic algorithms and neural networks22,23 provide better
differentiation of ships respect to the background, with the drawback of high computational
complexity;24 and (iii) textural and geometrical descriptors25–29 convey quick results given
a high operator’s knowledge.20

In contrast to detection, classification of vessels is much more developed with optical
imagery30 as the analysis of multispectral information offers a valuable opportunity to discrimi-
nate ships.2

Thus the integration of optical and radar data within a ship detection system turns out to be
a significant task for an extensive maritime surveillance. To this aim, in this work, we describe
a parallel approach to identify moving vessels and estimate their movement properties (position,
length, heading, and speed) combining various data collected by existing satellites for Earth
observation in the optical and microwave domain.

2 Data

2.1 Satellite Data

In our research, we used satellite images, collected with different spatial resolution, with differ-
ent weather and sea conditions, in different locations and imaging vessels of different shape, size,
and speed (Table 1 shows a summary).

The multispectral data set include high spatial resolution images acquired by WorldView-2,
QuickBird, and GeoEye-1 and medium resolution images acquired by Sentinel-2. The SAR data
set include X-band stripmap images acquired by the COSMO-SkyMed in single-look complex
format and HH polarization31 and C-band stripmap ground range detected high-resolution
images acquired by Sentinel-1A in HVþ HH or VHþ VV dual polarizations.32

Table 1 Satellite imagery used in this study.

Satellite
Acquisition

date Location

Spatial resolution (pixel size) (m)

Multispectral
band

Panchromatic
band

WorldView-2 31/12/2010 Xiapu (China) 2.0 0.5

03/04/2011 Sydney (Australia)

QuickBird 16/05/2001 Venice (Italy) 2.4 0.6

GeoEye-1 12/02/2009 Venice (Italy) 1.6 0.4

Sentinel-2A Various Various 10.0 n.a.

COSMO-SkyMed 07/01/2012 Hong Kong area ∼3.0 n.a.

19/09/2012

Sentinel-1 Various Western Mediterranean Sea ∼23.0 n.a.

Notes: n.a., not available.

Aiello, Vezzoli, and Gianinetto: Object-based image analysis approach for vessel. . .

Journal of Applied Remote Sensing 014502-3 Jan–Mar 2019 • Vol. 13(1)



2.2 Automatic Identification System

Over the years, several shipping cooperative systems were introduced to guarantee maritime
safety, security, and sustainable use of natural resources. The AIS is part of this category
and is an automatic tracking system used on ships, which receives and transmits information
with other nearby ships (ship to ship) and with ground-based stations (ship to shore). The infor-
mation exchanged between AIS devices can be grouped in: (i) static data (ship name and type,
length, maritime mobile service identity and IMO numbers—which uniquely identify each ves-
sel—load and type of cargo, etc.) and (ii) dynamic data (ship position, speed, heading, estimated
time of arrival, departure harbour, next port of call, etc.) which are of particular interest to large-
area ocean surveillance. Duties for vessels in transmitting their AIS information are regulated by
legislation structured at international, European, and national levels. Restrictions are mainly
related to vessels size and tonnage; as an example, vessels smaller than 15 m or with a gross
tonnage lower than 300 ton are not obliged to transmit AIS data.

Since 2010, new satellite AIS data are available from the AISSat system, which allows over-
coming the constraints of VHF range and proves a global coverage. AISSat-1 was successfully
launched in 201033 and was then followed by AISSat-2 in 2014.

Fig. 1 Processing chain adopted for optical and radar images to identify and spatially characterize
vessels.
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AIS data are useful to retrieve known ship routes at the time of image acquisition, thus help-
ing in the identification of unknown possible illegal vessels by cross-checking estimates with
real data.34–36 Within this research, we used AIS data as ground truth for validation of results.

3 Methods

The ship detection and characterization method proposed within this work is based on sub-
sequent phases, which are essentially parallel for optical and radar images, except for some pre-
processing steps, which are distinctive for the specific nature of the optical and radar sensors.

Concerning preprocessing, a land masking phase has been applied on both optical and radar
data, in order to constrain the analysis to sea surface, so that biases resulting from misclassi-
fication of vessel-like objects outside water bodies could be avoided, and to reduce computing
time for image segmentations and classifications.

The core and novelty of the methodology focus on the object based image analysis (OBIA),
which has been applied through a dedicated software on both optical and radar data, in order to
combine them in the parallel approach. This phase is the actual detection of moving vessels (i.e.,
ships and their wakes).

A following spatial analysis is applied to detected targets in order to estimate their position,
length, heading, and a speed range. An approach for precise speed estimate based on multispec-
tral bands time-lag has been tested on vessels detected exclusively on optical data.

The whole workflow is represented in Fig. 1 and is deepened in the next sections.

3.1 Vessel Detection in Optical Remotely Sensed Images

Standard radiometric calibration and atmospheric corrections have been applied to all the optical
data. Radiometric calibrations have been performed by applying to each satellite data spectral
band its proper gain and offset values derived from metadata. Satellite data have been then cor-
rected for the atmospheric effect with the flat terrain module of ATCOR software.37 The aerosol
type has been chosen between maritime and urban types depending on the image location, land
cover (if present), and expected aerosol composition, whereas the choice of water vapor category
has been defined in relation with the image center latitude and the acquisition date (mid-latitude
summer, mid-latitude winter, and fall/spring).

Vessel-like objects have been distinctly detected on the multispectral bands, whereas wakes
are extracted from the panchromatic bands (a synthetic panchromatic band has been generated
for Sentinel-2 data). We used the minimum noise fraction (MNF) transform38 to select the most
suitable band for ship detection from the multispectral data cube. MNF consists of a principal
components analysis (PCA) rotation that decorrelates and rescales noise within the data through
the principal components of the noise covariance matrix (noise whitening), followed by a stan-
dard PCA of the noise-whitened data. This technique is frequently used for noise removal from
hyperspectral data. However, a side effect is the ordering of the set of decorrelated components
(the MNF components) according to image quality (the covariance structure of noise).
Consequently, MNF could also be used as a preprocessing technique when highlighting specific
features.

The selected MNF component and the panchromatic band have been applied as input data for
the OBIA processing used to extract ships and wakes, respectively. OBIA consists in a two-step
process: segmentation and classification. Through a region-growing algorithm, segmentation
groups adjacent image pixels into self-existent objects with spectral and geometric similarities,
so that textural and contextual/relational characteristics among objects are exploited.39 Identified
objects are then classified through a decision tree algorithm based on spectral and geometric
properties. An important requirement for the applicability of this methodology to various
data is simplicity and robustness. Thus a significant task has been to define not only a unique
set of parameters, but also a common variability range of their values for all the images. The
segmentation phase relies on scale, shape, and compactness properties of the image and of the
objects that are generated. For the classification phase, the choice of parameters has fallen on
amplitude, area, and length to width ratio (for ship objects) or border index (for wake objects),
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in order to guarantee a proper discrimination of targets from the background by exploiting their
spectral and geometrical peculiarities. Parameters’ values have been set through a trial and error
procedure and have been properly scaled according to input data spatial resolution if necessary.
With respect to segmentation, shape and compactness parameters have not been rescaled since
they are related to the fractured nature of image objects and not to their spatial detail. Concerning
classification length/width and border index did not change being ratios. Segmentation and clas-
sification parameters and their values are summarized in Tables 2 and 3, respectively. Example of
processing results over high- and medium-resolution optical images are represented in Fig. 2.

Processing on the optical component has been also optimized to reduce computational time
through a statistical index, as detailed in Ref. 40.

3.2 Vessel Detection in SAR Remotely Sensed Images

Potential targets detection has been performed over SAR images through the widely known
adaptive threshold CFAR algorithm,13 as its simple approach and satisfying results have
been retained crucial for the analysis of radar images acquired from various sources.

This algorithm searches on amplitude SAR images for pixels brighter than the background
through a 2-D moving window, supposing a ship can be distinguished from the background if its
radar reflection generates pixel values exceeding the mean background plus noise.4

The pixel (or group of pixels) under test, which is called the cell under test (CUT), is sur-
rounded by a guard area and by a background window [Fig. 3(a)]. The CFAR approach proposes
that all sea clutter pixels have values that follow the model probability density function (PDF)
that is fitted to the local background, as the level of sea clutter in the image is influenced by
variations in incidence angle, wind, and other meteorological and oceanographic effects.4 Thus
pixels belonging to the background window are only used to locally estimate background

Table 2 Segmentation parameters applied to the input layer for high- and medium-resolution
optical images.

High spatial resolution Medium spatial resolution

Input layers
PAN band

segmentation
MS selected

band segmentation
PAN band

segmentation
MS selected

band segmentation

PAN band Yes No Yes No

MNF component’s values No Yes No Yes

Scale 400 10 50 2

Shape 0.1 0.1 0.1 0.1

Compactness 0.5 0.5 0.5 0.5

Table 3 Features and values used for high- and medium-resolution optical images classification.

High spatial resolution Medium spatial resolution

Features
PAN band

classification
MS selected

band classification
PAN band

classification
MS selected

band classification

Reflectance 0.035 ÷ 0.650 — 0.030 ÷ 0.300 —

MNF component’s values — −23 ÷ 3 — −5 ÷ 150

Area (pixel) 1 ÷ 21000 1 ÷ 2300 1 ÷ 2000 1 ÷ 550

Length/width — 0.9 ÷ 8.9 — 0.9 ÷ 8.9

Border index 0 ÷ 7 — 0 ÷ 7 —
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statistics. The purpose of the guard window is to ensure that pixels belonging to the target do not
bias background statistics estimation. A reasonable rule is often to choose the dimension of the
guard window as large as the biggest target expected in the detection scenario. The windows are
usually square, not knowing a priori target orientation. The background window should be

Fig. 2 Example of vessel detection on high and medium spatial resolution optical images: (a) tile
of a QuickBird-2 image (spatial resolution 2.4 m) collected over Venice (Italy) showing a 20-m long
vessel; (b) detected ship object (dark pink) and wake object (green); (c) tile of a Sentinel-2 image
(spatial resolution 10 m) collected over the Mediterranean Sea, showing a 60-m long vessel; and
(d) detected ship object (dark pink) and wake object (green).

Fig. 3 CFAR detection rationale. A moving window is swept all-over the image. (a) The CUT, the
guard window, and the background window are represented in red, blue, and green, respectively.
(b) The result of the detection is postprocessed so as to eliminate spurious points and cluster
vessel points. The centroid of the detected vessel is computed and superposed over the detection
mask as a red circle indicating vessel position.
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chosen as large as possible in order to have sufficient pixels to accurately estimate sea statistics.
At the same time, the window should not be too large in order to not include nuisance pixels
(e.g., nearby vessels, which is, however, an unlikely case in an open waters detection scenario).
Within this work, guard and background windows have been set to 100 × 100 and
200 × 200 pixels, respectively, on the full resolution SAR images (Table 4).

A threshold is determined according to the estimated background statistics in order to ensure
a given probability of false alarm (PFA). This value strongly influences the number of false
alarms; low values helps in minimizing false alarms, but weak targets could be missed.
Oppositely, high values generate many false alarms, but weak targets can be detected.4

Within this work, the PFA has been set to 10−5, as it guaranteed a satisfying target detection
without false alarms predominance. The CUT is then tested against this threshold and detection
is assessed if CUT amplitude is greater than the threshold. The result of the CFAR is a binary
image of the detected targets [Fig. 3(b)].

In this work, a simple Gaussian modeling of the sea statistics has been chosen. This is not
the common approach for SAR data processing and standard PDFs used for CFAR are the
K-distribution or the F-distribution, because the Gaussian modeling is usually deemed not
to be the most faithful choice to model sea clutter statistics unless a sufficient averaging of pixels
is previously performed.13 Nevertheless, both K-distribution and F-distribution do not have
a strong theoretical background and are generally not valid.14,41 Further, the estimation of
the K-distribution involves nonlinear transcendental functions, which makes its computation
numerically challenging and time consuming.14 For all these reasons, when simulating real oper-
ations with full size COSMO-SkyMed images, we found that the Gaussian PDF was a good
trade-off between speed (much faster than the K-distribution PDF) and accuracy (not signifi-
cantly lower than using the K-distribution PDF). In addition, the CFAR algorithm with Gaussian
PDF proved to be an efficiently solution for integrating the CFAR detector in our OBIA work-
flow. The fast implementation is due to the closed form relation between the PFA and the testing
threshold,13 namely

EQ-TARGET;temp:intralink-;e001;116;150PFA ¼ 1

2
−
1

2
erf

�
tffiffiffi
2

p
�
½0; 1�; (1)

where t is the threshold and erf is the error function. The threshold t is then locally adapted on
the basis of local sea clutter statistics,13 according to the following equation:

Table 4 Guard and background windows dimensions set for the CFAR algorithm and features
and values used for the segmentation and classification steps for original resolution and
resampled SAR images.

CFAR

Guard window Background window

Original
resolution Factor 5 Factor 10 Factor 20

Original
resolution Factor 5 Factor 10 Factor 20

100 × 100 20 × 20 10 × 10 5 × 5 200 × 200 40 × 40 20 × 20 10 × 10

Features Segmentation Classification

Scale 50 20 10 5 — — — —

Shape 0.1 0.1 0.1 0.1 — — — —

Compactness 0.5 0.5 0.5 0.5 — — — —

Band value — — — — 1 1 1 1

Area (pixel) — — — — 0 ÷ 350 40 ÷ 300 15 ÷ 150 3 ÷ 75

Length/Width — — — — 0.9 ÷ 6 1 ÷ 5 1 ÷ 5 1 ÷ 5

Aiello, Vezzoli, and Gianinetto: Object-based image analysis approach for vessel. . .

Journal of Applied Remote Sensing 014502-8 Jan–Mar 2019 • Vol. 13(1)



EQ-TARGET;temp:intralink-;e002;116;735CUT>
< μb þ σbt; (2)

where μb and σb are local background mean and standard deviation, respectively.
The CFAR alone only provides indication of potential targets presence, but sea clutter con-

ditions and the typical noise of radar images produce several persisting isolated detections and
possible false alarms. Thus the choice of retaining a Gaussian clutter modeling is coupled with
ad hoc image postprocessing, in order to properly remove false alarms (e.g., spurious points).
A majority filter42 coupled with the application of the morphological operators of dilation and
erosion have been applied to the resulting binary images. Then OBIA has been applied to cluster
and extract ship objects as described for optical data. The same set of segmentation and clas-
sification parameters used for optical data have been retrieved also for SAR data, as they have
been retained representative to delineate ships objects. Parameters values selected for the optical
component have been tuned to work on SAR data, in order to properly discriminate false alarms
from real vessels (Table 4).

The processed SAR dataset mainly include big-size vessels (i.e., typically of length>100 m)
isolated from nearby ships. Smaller ships are available in port areas near the coast, where the
concentration of vessels and of land scatterers constitute adverse conditions for CFAR detection,
representing a difficult scenario for the detection with the previous methodology. Smaller iso-
lated vessels have been, thus, simulated starting from big-size vessels. Full resolution SAR data
have been low-pass filtered in order to generate three additional datasets, in which the resolution
is worsened by factors 5, 10, and 20 (Fig. 4). As an example, a ship of 150-m length is composed
by 50 pixels along the major axis at the full resolution SAR image; the same vessel is composed
by 10 pixels in the first additional dataset and 5 pixels in the second one, as a ship of 30- and
15-m length, respectively, at the full resolution. It is worth remarking here that this simulation
approach concerns only the geometric detection/estimation performance. The scattering proper-
ties of the simulated smaller vessels still remain those of big vessels imaged at a coarser
resolution. In lack of real data, the simulation of backscatter from smaller vessels would require
a complex electromagnetic modeling, which, however, is beyond the aim of this paper.

Fig. 4 (Left) Portion of a COSMO-SkyMed image acquired over Hong Kong at the: (a) full res-
olution and resampled by factors, (b) 5 (length/5), (c) 10 (length/10), and (d) 20 (length/20) and
(right) the respective vessel detections.
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The processing flow applied on full resolution SAR images has been applied to the simulated
dataset, properly scaling both CFAR and OBIA parameters (Tables 1 and 4).

3.3 Vessels’ Movement Parameters Estimate

Each detected target has been characterized by its movement parameters (position, length, head-
ing, and speed or speed range) by means of a spatial analysis performed in a Geographic
Information System environment. In order to remove false targets on optical images, only objects
pairs (ships and their wake) intersecting their own boundaries have been selected. Then each ship
object has been fitted with and ellipse and a rectangle to extract position and length. The ellipse
enclosing ship’s object on SAR data has also been used to retrieve its direction, while on optical
images, where the wake is visible, the ellipse encompassing the wake object has been used for
heading estimate. A more detailed description on route’s parameters extraction can be found
in Ref. 40.

Within this work, we propose a semiautomatic processing applied on multispectral data to
refine vessels speed estimate basing on interbands time lags. Some sensors are characterized by
asynchronous bands recording times; this time lag, which consists in a few hundreds of milli-
seconds, causes displacement of moving objects in the final scene.43 Once the displacement of
the object within the time lag has been determined, speed estimate for each moving object can be
easily derived. This approach has been proved to be efficient for fast moving objects, as cars.43–46

However, in case of slow moving objects, like vessels, the time lag between bands could be
insufficient to clearly detect the correspondent displacement of the object. Another issue is
the difficulty to isolate the two points clusters representing ship’s positions due to the presence
of wake and lather generated by ship’s movement.

Within this work, this approach has been tested on Sentinel-2A images, whose corresponding
AIS data were available for bands time lag calibration and estimated speed validation. Sentinel-2
bands B2 and B4 have been used to estimate the time lag, as the larger displacement between
ships’ positions has been observed among the available images. This is represented in Fig. 5(a) in
a false color composition of the two spectral bands. Available Sentinel-2 images have been
grouped into two samples, one for time lag calibration and one for speed estimate.

Vessels with a length comprised between 100 and 200 m (equivalent to 10- to 20-m vessels in
high spatial resolution images) have been selected and corresponding tiles have been extracted
from the first group of images, to make the computations completely independent between each
other. An image matching technique between positions occupied by each ship in the B2 image
and in the B4 image has been used to compute the time lag between the bands. Under the reliable
hypothesis that the transformation between the two images is a shift without rotations (i.e., the
ship is only translating), two tie points are enough to estimate the transformation parameters
(zero-order polynomial transformation) and to have redundancy. Thus tie points have been
manually placed at the bow and the stern of each ship and the total displacement is computed.
The final time lag, determined as the average of single-time lags computed for a sample of
28 vessels with known AIS speed, has been estimated in 350 ms, a value which is consistent

Fig. 5 (a) False color composition of a Sentinel-2 image to make evidence of the vessels displace-
ment and (b) estimated speed residuals respect to real AIS data speed values.
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with other studies made on different sensors.44,46 For all the analyzed cases, the displacement due
to bands time lag is higher than band-to-band co-registration error, which, for bands B2 and B4
has been estimated in 0.19 pixel.47

The same methodology has been used for speed estimate for the second group of Sentinel-2
images. At this time, time lag is known from previous calibration, displacement results from
image matching, and only speed has to be derived. AIS speed data have been used for validation.
Results are shown in Fig. 5(b). The average error, computed as the difference between estimated
and observed speed, is equal to 0.8 m∕s whereas standard deviation is 1.8 m∕s and almost 70%
of residuals are comprised between �2 m∕s.

A similar approach could be reliable also for radar data. Due to its coherent nature, SAR is
able to record information about the travel path of the radiation emitted, then scattered back and
received from the targets during the acquisition time (i.e., at each instant). This peculiarity of the
instrument allows to potentially measure also ship along-track velocity from ship displacement
through acquisition time history and temporal lag. The higher the acquisition time, the more
precise is the velocity measurement. Nevertheless, this approach has not been exploited within
this work and only predefined speed ranges based on size have been assigned to vessels detected
on SAR data.40

4 Results

We used AIS information as ground truth for evaluating the performances from multispectral
(Sentinel-2) and SAR (Sentinel-1 and COSMO-SkyMed) data processing. However, AIS data
were recorded in a 4-min window around satellite observations and could have a small temporal
shift with the image acquisition. Thus we supposed no speed and heading changes in this
time span and shifted the positional information of each vessel to the image acquisition time
(supposing a uniform rectilinear motion). In addition, we excluded all vessels known by
AIS to be anchored in harbors, as they were not the target of our research. We also excluded
from validation all the vessels having null values of length or heading in AIS data, being errors of
the reporting system.

For SAR images, only we corrected the AIS positional information to account for the
boat-off-the-wake distortion.13,48 According to the following equation: this effect displaces
vessels (Δx) from their wakes in the sensor along-track direction due to a velocity component
in the radar line-of-sight (LOS) direction (VLOS).

EQ-TARGET;temp:intralink-;e003;116;333Δx ≅ −
VLOS

Vs
R0; (3)

where Vs is the sensor velocity and R0 is the slant-range distance from the sensor to the vessel.
This correction was needed to match AIS data with the detected vessels.

Finally, AIS records were not available for times and locations corresponding to WorldView-
2, QuickBird, and GeoEye-1 surveys. In these cases, we made a manual check, retrieving ship’s
length, and heading through manual image measurement.

Results, summarized in Table 5, have been retrieved through a regression analysis between
estimated and AIS lengths and headings and are represented with confidence intervals for 95%
and 99% of the estimates.

In addition, the percentage of correctly classified (estimated length belongs to the same class
of the measured/AIS length), misclassified (estimated class is different from the measured/AIS
class), and not classified ships (missed detection by the algorithm) has been determined by
grouping available targets into three length classes (class 1: 0 to 15 m; class 2: 16 to 30 m;
class 3: >31 m).

Ship position estimate is strictly dependent on image geolocation accuracy, declared in the
data sheets of each single sensor (5 m for WorldView-2, 23 m for QuickBird-2, 5 m for GeoEye-
1, 20 m for Sentinel-2, and 25 m for COSMO-SkyMed).
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4.1 Optical Remotely Sensed Images

Despite the high detail and accuracy achievable with high-resolution images, some errors in the
estimate of ships’ length and heading can occur when using optical data. Fast moving vessels are
often followed by extremely bright wakes. Being similar in reflectivity to the vessels themselves,
wakes can be partially misclassified thus overestimating the ships’ length. On the other hand,
very slow moving vessels can be followed by weak wakes. Being sometimes hardly distinguish-
able from sea background, their misclassification could compromise an accurate estimate of
heading. In addition, small bright clouds, sea waves and crests usually occurring in open
sea could be misclassified as vessels, thus generating some false positive detections.

4.1.1 High spatial resolution images

Results for the detection in high spatial resolution images (WorldView-2, GeoEye-1, and
QuickBird-2), referred to a sample of 50 ships, have shown an accuracy (R2) of 0.87 for lengths
[Fig. 6(1a)]; estimates for ships smaller than 20 m are more dispersed than those for bigger ships,
which are almost all underestimated. Nevertheless, the approach is reliable to detect ships <10-m
long. Nearly 85% of estimates residuals respect to measured data is comprised between �5 m

[Fig. 6(1c)]. In addition, headings are estimated with a nearly perfect correlation with the mea-
sured ones (R2 ¼ 0.99) [Fig. 6(1b)], with almost 90% of estimates residuals respect to measured
data comprised between �10 deg [Fig. 6(1d)].

Approximately 80% of class 1 and class 2 vessels and 100% of the biggest vessels belonging
to class 3 have been correctly detected in high spatial resolution images. Less than 25% of class 1
and class 2 vessels has been misclassified; however, this information could be even important for
maritime surveillance purposes, as it can provide knowledge of an unknown vessels, regardless
its size. Dealing with very high-resolution data, no missed classifications for any of the con-
sidered class [Fig. 6(1e)] have been retrieved.

4.1.2 Medium spatial resolution images

Slightly worse results respect to high-resolution optical images were obtained for the medium
resolution (Sentinel-2), where vessels’ length estimate shows R2 ¼ 0.70 [Fig. 6(2a)], whereas

Table 5 Summary of results of the ship detection processing over high-resolution optical data,
medium-resolution optical data, and radar data.

MS HR MS MR SAR

Number of observations 50 337 16

Length Heading Length Heading Length Heading

R2 0.87 0.99 0.70 0.73 0.94 0.99

Class 1 Correctly classified (%) 76 3 27

Misclassified (%) 24 42 27

Not classified (%) 0 55 46

Class 2 Correctly classified (%) 78 22 67

Misclassified (%) 22 19 22

Not classified (%) 0 59 11

Class 3 Correctly classified (%) 100 81 87

Misclassified (%) 0 1 8

Not classified (%) 0 18 5
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Fig. 6 Scatterplots of measured and estimated ship’s (left) length and (right) heading for high
spatial resolution optical images (1a, 1b), medium resolution optical images (2a, 2b), and full spa-
tial resolution SAR images (3a, 3b). The gray areas represent upper and lower confidence bounds
for the regression line at 95% and 99%. Graphs on the lower side show residuals of estimated (left)
length and (right) headings respect to measured values for high spatial resolution optical images
(1c, 1d), medium resolution optical images (2c, 2d), and full spatial resolution SAR images (3c, 3d).
Histograms in Figs. 1(e)–3(e) show the percentages of correctly classified, misclassified, and not
classified vessels according to their length for three length classes (class 1: 0 to 15 m; class 2: 16
to 30 m; and class 3: >31 m), respectively, for high-resolution optical images, medium-resolution
optical images, and SAR images at the full spatial resolution and at the degraded resolution by
factor 5, 10, and 20.

Aiello, Vezzoli, and Gianinetto: Object-based image analysis approach for vessel. . .

Journal of Applied Remote Sensing 014502-13 Jan–Mar 2019 • Vol. 13(1)



heading estimate shows R2 ¼ 0.73 [Fig. 6(2b)]. Residual graphs on the lower side of Figs. 6(2c)
and 6(2d) show that nearly 85% and 80% of residuals are comprised between �50 m and
�45 deg for length and heading estimates, respectively.

These statistics have been computed from a larger sample of 337 vessels. The dataset avail-
able for the Sentinel-2 images comprises vessels of various size (from 10- to 400-m in length),
detected with a unique set of parameters, and worse results compared to high resolution are
probably due to the presence of outliers. In addition, among all the available data, only
Sentinel-2 image has been acquired in open waters (Mediterranean Sea), were the effects of
glint, wind, and waves are much more evident than in coastal areas, thus generating additional
false alarms.

Being represented by almost a single pixel in the image, class 1 vessels have been quite
completely undetected (55%) or misclassified (42%), but this can be a reliable information
anyway, as stated in Sec. 4.1.1. The percentage of not detected vessels remains similar (59%)
also for class 2 vessels, but in this case, the percentage of detected vessels increases to 22%, at
the expenses of misclassified vessels percentage, which decreases to 19%. The majority of the
vessels (81%) belonging to class 3 have been correctly classified and only 1% of the detected
vessels have been misclassified [Fig. 6(2e)]. The missed detection for class 3 vessels could be
due to areas of the image interested by high sea clutter, waves, or glint, but it is expected that
this mainly interests vessels having a length closer to the lower limit of the class (∼30 m) than
bigger vessels.

4.2 SAR Remotely Sensed Images

Results over SAR images at the original full spatial resolution are shown in Fig. 6 on a sample of
16 vessels. Both length and heading are estimated with very high accuracy, resulting in R2 val-
ues, respectively, of 0.94 [Fig. 6(3a)] and 0.99 [Fig. 6(3b)], exceeding those retrieved for optical
images. Good results are proved also by the residuals [Figs. 6(3c) and 6(3d)]; 94% of vessels
have been detected with residuals value comprised between �20 m and 100% of residuals for
the heading are comprised between �10 deg. However, the dataset available for SAR images
include all big ships, resulting in an easier detection than for optical images. Some errors of
vessel size and heading estimates can be due to the use of a Gaussian model of the sea statistics,
which is not suited to properly deal with sea clutter respect to other more traditional distributions
(i.e., K-distribution). As available full resolution SAR images include only very large vessels,
percentages of correctly classified, misclassified, and not classified vessels have been retrieved
considering the resampled images besides the full resolution images, in order to account also for
smaller vessels. As in optical images, the percentage of misclassified and not classified vessels
decreases while ship’s length increases [Fig. 6(3e)]. Almost 55% and 90% of class 1 and class 2
vessels, respectively, have been detected in available images, confirming that the present method
is valuable to detect small vessels (10 ÷ 40 m) on SAR images. Almost 95% of class 3 vessels
have been detected and the few missed detection could be due to the high clutter areas.

5 Discussion

5.1 Performances

The method proposed in this work relies on a parallel approach for object discrimination and
movement parameters extraction applied on both optical and radar images. The approach is
mainly based on OBIA, which has been extensively used for a wide number of application.
Nevertheless, it is rarely applied on both optical and radar data in marine environments.
On optical data, OBIA has been used to detect and classify vessels in Ref. 49 focusing on harbor
areas, which are characterized by much different sea-state conditions respect to open seas. On
SAR data, OBIA has never been applied in conjunction with CFAR, although the CFAR
approach is one of the most popular methods for ship detection.

Although some more work should be done to refine results (e.g., detected target number
balance for validation purposes, ship’s speed estimate refinement) and the proposed algorithm
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still has to be optimized to work automatically, only a few parameters are required in the seg-
mentation and classification phases, making the method prone to be potentially adopted within
maritime surveillance or emergency scenarios. In these contexts, primary limiting factors to
accurate detections are represented by sea surface and atmospheric conditions, which can easily
cause erroneous detections. Within this work, three strategies have been developed to reduce the
number of false alarms and raise detection accuracy: (i) the denoising phase applied on optical
images to separate targets from the background (i.e., sea and ships’ wakes); (ii) the object-based
analysis applied on SAR data, to remove a considerable number of spurious objects identified by
the CFAR detector; and (iii) the employment of a threshold-based rule-set founded on geometric
characteristics of common real ships to isolate only potential targets.

5.2 Comparison with the SUMO Software

Performances of the developed algorithm, called from here on out “Space Shepherd algorithm,”
and its applicability in extensive monitoring of maritime areas, have been compared with a
recently released software for ship detection. Search for unidentified maritime objects
(SUMO) is an experimental software package for semi or fully automatic ship detection in sat-
ellite SAR images, developed for experimental use at European Commission’s Joint Research
Centre (JRC) over the last 15 years. Maritime surveillance through satellite radar images is the
aim that this software has been developed to, granting a semiautomatic processing with reduced
human operator intervention, particularly in high sea surface inhomogeneity scenarios, which
raise the complexity of ship detection tasks on radar images. Thus the presence of a trained
operator is required to analyze results and to discard many of the false alarms deriving from
sea surface, either natural, such as small islands, reefs, breaking waves, or man-made, such
as piers or port-related constructions.4

The SUMO software works on images from most of the recent and contemporary SAR
satellites (Sentinel-1, Radarsat-2, TerraSAR-X, Cosmo-SkyMed, ALOS-2 PALSAR-2, ERS-1,
ERS-2, Radarsat-1, and ENVISAT ASAR). It receives as input one amplitude radar image and
its metadata and produces as main output a list of detections together with their attributes in
a XML file. A detailed description of the software is available in Ref. 4.

Alike the Space Shepherd algorithm, SUMO performs a CFAR detection on each polarimet-
ric channel independently. Thus pixels having values exceeding a threshold computed from the
local distribution are detected, and neighbor pixels are grouped in targets or ships.50 The Space
Shepherd algorithm and the SUMO software mainly differ for a methodological aspect; while the
former is based on a Gaussian distribution of sea statistics, the latter assumes that the sea clutter
conforms to a K-distribution.4 Other differences concerning the processing are primarily related
to input data and output target attributes.

SUMO is designed to work mainly with SAR data; tests have shown that it can perform with
optical images under favourable circumstances, but no results are presented.4 Output attributes
are related to targets’ position and geometric properties. In addition, basing on target’s attributes,
SUMO assigns a reliability level (very likely to be a false alarm, probably a false alarm, probably
a true ship, very likely to be a true ship). Detections deemed to be azimuth ambiguities are
automatically flagged and assigned the lowest reliability.4,50 Differently from SUMO, applying
the Space Shepherd algorithm could potentially provide a speed value for vessels identified on
optical images.

Finally, respect to SUMO software, which has a completely developed user interface, the
Space Shepherd algorithm misses of an implementation in a unique environment, as currently
different phases require the use of different software.

The main dissimilarities between the two approaches are summarized in Table 6.
A quantitative comparison has been performed by processing five Sentinel-1A data

(Table 7), whose main characteristics have been already described in Sec. 2, with both the
SUMO software and the Space Shepherd algorithm. Results have been validated through
AIS data (Table 7).

The SUMO software allows tuning the PFAs and the detection threshold adjustment param-
eters for the K-distribution. Values of the other parameters can remain the same for all SAR
sensors tested, radar bands (X, C, L), incidence angles, polarizations, wind speeds, sea states,
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geographic areas, and ship types.4 Within this comparison default, parameters defined by JRC
have been used, as, according to the authors, they have been determined to work best from
experience on a large set of images.4 Thus the PFA has been set to 10−7 and detection thresholds
for co-pol and cross-pol channels have been set to 1.2 and 1.5, respectively.

On the contrary, Space Shepherd algorithm parameters have been scaled for the Sentinel-1
images, starting from the previously defined parameters for full resolution COSMO-SkyMed.
The PFA has been set to 10−5, whereas the guard and the background windows have been set to
20 × 20 and 50 × 50 pixels, respectively. Parameters used for the OBIA processing over SAR
images are listed in Table 8.

Results of the comparison are hereby described in terms of: (i) number of detections, i.e., the
total number of detection resulting from processing; (ii) number of correct detections, i.e., the
number of correctly identified ships with respect to AIS data; (iii) number of false alarm, com-
puted as the difference between the number of detections and the number of correct detections;
(iv) number of missed detections, computed as the difference between the number of ground
truth data and the number of correct detections; (v) number of ground truth targets, correspond-
ing to available AIS data for each analyzed image; and (vi) probability of detection, defined as
the ratio between the number of correct detections and the number of ground truth targets.

Table 7 Sentinel-1 images used within this work for comparing results of the Space Shepherd
algorithm to those of the SUMO software. Results are validated with AIS data available for each
image.

Acquisition date

Polarizations

Number of available AIS dataCross pol Co-pol

03/12/2014 HV HH 16

04/12/2014 VH VV 18

29/12/2014 HV HH 24

10/12/2014 VH VV 27

11/12/2014 VH VV 5

Table 6 Summary of the main differences between the SUMO software and the Space Shepherd
algorithm in terms of input received data, target detection method, and extracted target attributes.

SUMO software Space Shepherd algorithm

Data SAR Optical and SAR

Algorithm CFAR CFAR + OBIA

Sea clutter distribution K -distribution Gaussian distribution

Land masking Yes Yes

Extraction of target attributes Row and pixel number Geographic location

Geographic location Length

Length Heading w.r.t. north

Heading w.r.t. range Speed

Number of detected pixels in the target signature

Maximum pixel value and detection significance

Developed user interface Yes No
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These statistics have been determined for each image in both polarizations merged, respec-
tively, for cross-polarization and co-polarization images and represented in the histograms
in Fig. 7.

Results have shown that, while correct detection is almost equal for all tests, images acquired
in cross polarization are characterized by a lower number of detections, with, consequently,
a lower number of false alarms. On the contrary, co-polarization images show a considerable
number of false alarms, particularly if processed with SUMO, reaching also one order of
magnitude more than results from the Space Shepherd algorithm. This disagreement could
be due to: (i) default parameters setting within SUMO and (ii) the application of OBIA
after CFAR application within the Space Shepherd algorithm, which helps in removing isolated
pixels and possible false alarms.

The average probability of detection is high for all images (Sentinel-1 and COSMO-
SkyMed); it reaches 0.89 and 0.80 for cross-polarization images and 0.83 and 0.79 in co-
polarization images, respectively, for the SUMO software and Space Shepherd algorithm.
Consequently, the percentage of missed detection is low and keeps below 20% averaged for
all tests.

In addition, AIS data have been used to validate results of the processing in terms of length
and heading estimates, following the same methodology described in Sec. 3 (Fig. 8). Results of
the tests on these specific Sentinel-1 images have not shown a tendency toward cross polarization
or co-polarization, as R2 values are almost comparable for all the cases. In the case of tests with
the Space Shepherd algorithm, results have shown a better estimate of heading respect to length,
in line with results obtained from processing of the other images, as described in the previous
sections. On the contrary, results obtained from the SUMO software have shown higher accu-
racies in length estimates respect to heading. This could derive from the corrections applied to
heading estimates respect to range, which have been converted in heading respect to north in

Fig. 7 Results of the comparison between the SUMO software and the Space Shepherd algo-
rithms in terms of total number of detections, number of correct detections, number of false alarms,
number of missed detections, and number of ground truth targets for (a) cross-polarization images
and (b) co-polarization images.

Table 8 Features and values used for the segmentation and classification steps.

Features Segmentation Classification

Scale 50 –

Shape 0.1 –

Compactness 0.5 –

Band value – 1

Area (pixel) – 0 ÷ 500

Length/width – 1 ÷ 5
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order to compare them with AIS data. An example of detection results of the Space Shepherd
algorithm and of the SUMO software applied over the Sentinel-1 images used for these tests is
represented in Fig. 9.

A more detailed analysis has been performed over false alarms for results on Sentinel-1
images of both the SUMO software and the Space Shepherd algorithm. The ratio between
the number of false alarms and the portion of the image occupied by sea (km2) is lower for
cross polarization (0.003, averaged on all tests) respect to co-polarization (0.110, averaged
on all tests), denoting that, within these experiments, cross polarization is less sensitive to
sea conditions or other causes of false alarms respect to co-polarization.

As AIS data could sometimes be characterized by poor quality or presence of technical
errors51,52 and smaller ships are not obliged to exchange AIS information, some of these
false alarms could instead imply the presence of small ships or a lack of received AIS data.
To better understand the distribution of false alarms in the images and to correlate them to poten-
tial small ships or sea clutter, the percentage of false alarms respect to the total number of false
alarms in the whole image has been determined within 10 km equally spaced distance zones from
the coast (Table 9). Results have shown that the on cross-polarization images the percentage of
false alarms decreases when leaving the coastline, while on co-polarization images false alarms
seems to be more equally distributed over all distance zones. The higher concentration of false
alarms nearby the coast could be addressed to the presence of small ships, which do not send AIS
data. On the other hand, false alarms found far from the coast could be due to: (i) small or big
ships, which do not send AIS data or are located in areas with poor AIS coverage; (ii) azimuth
ambiguities generated by the SAR acquisition system; and (iii) sea clutter generated by adverse
atmospheric and wind conditions.

Evidence from experiments has shown that targets with strong radar signal are detected in
both cross polarization and co-polarization. Consequently, the percentage of detections corre-
spondent for geographic position on both co- and cross-polarization images should represent

Fig. 8 Scatterplots of measured and estimated ship’s (a) and (b) length and (c) and (d) heading for
(left) cross-polarization images and (right) co-polarization images acquired by Sentinel-1. The gray
line represents the ideal perfect correspondence between real data and estimates (R2 ¼ 1).
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vessels, misinterpreted for false alarms. In particular, detections sited within 10 km from the
coast, could actually represent small vessels lacking of AIS data. Within these experiments,
the percentage of false alarms detected in co-polarization images and corresponding to false
alarms detected in cross-polarization images is equal on average to 1.6% and 29% of the
total number of false alarms detected in co-polarization images, for tests with SUMO and

Fig. 9 Detection results of the Space Shepherd algorithm (in orange) and of the SUMO software
(light blue) over a Sentinel-1 image (named E1EA) in both its (a) cross polarization and (b) co-
polarization. AIS data used for validation are represented in yellow dots.

Table 9 Results of false alarms analysis with respect to distance zones equally spaced of 10 km
from the coast, in terms of percentage of false alarms and detections average length. Results are
defined for both the tests with the SUMO software and the Space Shepherd algorithm (hereby
defined as SS) applied on cross-polarization and co-polarization images. Results are determined
as average for analysis on all Sentinel-1 images.

Distance from the coast (km)

Cross polarization Co-polarization

SUMO SS SUMO SS

10 0.61 0.36 0.11 0.22

20 0.05 0.11 0.16 0.07

30 0.01 0.03 0.15 0.07

40 0.10 0.12 0.12 0.15

50 0.10 0.26 0.14 0.33

60 0.08 0.08 0.11 0.12

70 0.03 0.01 0.11 0.03

80 0.01 0.03 0.07 0.00

90 0.00 0.00 0.06 0.00
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Space Shepherd algorithm, respectively. In addition, the average length of targets addressed as
false alarms in many cases is not negligible. This implies that if these detections represent ships
rather than false alarms, AIS data are not available for a consistent number of medium/big size
vessels, and supplementary monitoring systems could be required. Nevertheless, the subtraction
of potential vessels lacking of AIS data from the number of false alarms does not influence the
relative order of magnitude for co-polarization and cross polarization. Thus tests performed
within this work have shown that, if on one side cross polarization and co-polarization give
an equal contribution in terms of correct detection results, on the other side what changes
most between the two polarizations is the number of false alarms. Different authors4,51 have,
indeed, reported that cross polarization is better than co-polarization for ship surveillance,
as: (i) ship signatures are better defined; (ii) backscatter from the ocean is smaller; and
(iii) ship/sea contrast is higher for all incidence angles. The HV polarization, in particular, is
optimal for detecting ships when SAR incidence angles are below 45 deg,16 as those character-
izing the Sentinel-1A images employed within these tests.

In addition, a more detailed comparison of the two algorithms should include an assessment
of the SUMO performances with respect to parameters tuning, particularly on co-pol images,
which seem to be more sensitive to sea clutter respect to cross-pol images. As an example, to
have 1% of false alarms among the total number of detections within their tests, Santamaria
et al.50 set detection threshold adjustments to 10.0 and 2.0 for the co-pol and cross-pol channels,
respectively. This operation on our tests has actually led to a reduction of false alarms of about
20%, averaged on all cross-polarization images, and of about 65%, averaged on co-polarization
images. Nevertheless, also the number of correct detections has slightly decreased (nearly 12%
for cross-pol and 16% for co-pol), as a consequence of the lower number of detections.

5.3 Issues and Possible Improvements

Experiments developed within this work and literature have evidenced some issues in detecting
vessels on both optical and radar images. Spatial resolution limits the minimum detectable ship
size, despite the high detail and accuracy achievable with high-resolution optical images.
On SAR data, minimum detectable ship size is difficult to quantify, as it does not depend only
on the acquisition system, but it could also be influenced by target characteristics and environ-
mental conditions (i.e., large nonmetallic ships have a very small radar echo, while objects
smaller than image resolution fitted with strong radar reflectors could be easily detected).4

In addition, false alarms generated by natural environmental conditions (wind and waves) com-
bined with acquisition inherent factors related to the targets (ship size and material), the sensor
(resolution and polarization) and the imaging geometry (incidence angle and aspect angles),
particularly on radar images, are difficult to overcome. Thus results of ship detection algorithms
could be improved by false alarms (e.g., azimuth ambiguities, strong waves, unmasked islands,
or coastal infrastructures) removal realized by experienced human operators.4 Consequently,
detection and false alarm rates should be quantified as a function of all the above cited variables,
taking into account the complexity of the acquiring system and of boundary conditions.4

This work can be improved by refining ships speed estimate and by formalizing a completely
automatic processing. The image matching approach between the two single bands of the images
used to derive ships speed (Sec. 3.3) needs to be converted into an automatic processing, select-
ing a proper operator (e.g., Forstner or Moravec) capable of identifying tie points along object
borders through borders or gradient estimation. Once displacement is computed, speed can be
automatically derived. In addition, in maritime surveillance or emergency monitoring perspec-
tive, it should be fundamental to automatize the whole processing, from images download and
preprocessing, to vessels’ movement parameters estimate, in a unique system and to reduce
the time interval between data acquisition and results availability to end users.

6 Conclusion

In this paper, optical and radar data have been combined within the common framework of the
OBIA to detect vessels moving on open seas. The complete processing (i.e., vessel detection and
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movement properties extraction) is simple and robust and has been applied in parallel on optical
and radar images. OBIA has been selected as the core of the processing because of its adapt-
ability to different conditions (sensor, acquisition place and date, atmospheric conditions, and
sea surface roughness). In addition, OBIA helped in efficiently remove false alarms both on
optical and radar data as the classification phase is mainly based on geometric properties of
real vessels (area and length/width).

The proposed method allows identifying with a satisfying accuracy even small/medium size
vessels in complex sea environments and different environmental conditions. Length and head-
ing estimates, validated through manual measurements and available AIS data, have proved reli-
able accuracy of the method. Results have revealed R2 ¼ 0.78 and R2 ¼ 0.86 estimated on
optical data and R2 ¼ 0.94 and R2 ¼ 0.99 on SAR data, for length and heading, respectively.
Common feature to all the experiments is the better estimate of heading respect to length, even
for very small ships, as wakes are characterized with bigger objects respect to vessels objects.
Even though some missed detections have been identified in all images, the majority of imaged
vessels have been detected.

In addition, results have shown that detection accuracy can be influenced by image spatial
resolution and sea surface characteristics, which, in particular, are the main sources of false alarm
both on optical and radar data.

Although requiring different preprocessing operations and filtering techniques, optical and
radar data turn to be complementary for this and for similar applications. They could be properly
combined in order to assure a continuous and reliable vessel detection, thanks to their techno-
logical peculiarity and specific sensor characteristics. In addition, high- and medium-resolution
images can be conveniently adopted to reach high detail or to cover wide areas according to
specific needs.

Findings of this work confirm that an effective monitoring system of maritime area should
rely on a proper combination of optical and radar data, together with conventional tracking
systems.

Although some more work should be done to remove remaining false alarms and to automa-
tize the whole processing, in order to make it efficiently exploitable in different scenarios,
retrieved results, compared to existing operational systems, are encouraging. The proposed
method could have practical applications within programs, like the European Copernicus,
which aims at promoting effective actions toward water environments monitoring, maritime
security, surveillance, and humanitarian aid.
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