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Abstract. We perform a rigorous, diffraction-based two-dimensional analysis to develop an ana-
lytical expression for the point spread function (PSF) of the multiple Bracewell interferometric
(in-line, even-numbered multi-aperture) configurations proposed for extrasolar planet detection.
The number of apertures, total length of interferometer array, and the diameter and shape of
individual apertures control the PSF. We show that there are theoretically just a few points
where the PSF is zero for monochromatic radiation. These zero-irradiance points disappear
due to the spectral width of the source spectrum. When including, also, the finite spatial extend
of the source, it is impossible to detect an image of a planet with just a two-aperture interfer-
ometer. This analysis further demonstrates that the so-called nulling interferometric techniques
decrease the amount of detected radiation originating at the bright star by the same factor as that
emitted by the planet. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
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1 Interferometry for Star-Light Nulling

Approximately 35 years ago, a number of prominent scientists participated at a conference to
discuss the detection of planets outside our solar system to set out the long-range plans for future
planetary research. This scientific gathering resulted in a note in Nature, proposing the detection
of nonsolar planets by free-spinning infrared (IR) two-aperture interferometer.1 A new term,
nulling, was coined to indicate that by a clever choice of interferometer parameters, its compo-
nents, and configuration, the radiation emitted by the star could be cancelled (made to go away)
at specific extended regions in the detection plane, in which the existence of a faint planet could
thus be confirmed.2

We develop the analytical expression for the monochromatic incidence distribution in the
observation plane arising from an IR point source at infinity, collected by a set of inline apertures
with finite diameter, the monochromatic point spread function (PSF).3 In previous analysis, only
point apertures have been considered.2 We extend the discussion to include finite-diameter aper-
tures to allow also collection of radiative power. This formal treatment represents a continuation
of earlier analysis based on the Huygens’ principle.4

We find that the aperture separation, L, in an interferometric layout approximately replaces
the aperture diameter D to identify the equivalent resolution angle, 0.75λ∕L, for the original
Bracewell configuration. The separation between the outermost apertures, L, replaces the aper-
ture diameter, in the case of the multiple Bracewell configurations. The resolution along the
perpendicular direction, corresponding to a single aperture, is 1.22λ∕D, with symbol λ denoting
wavelength.5

The objective of this work is to present theoretical development in support of the hypothesis
that a simple, two-aperture interferometric system does not null the star light; but, rather, that
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both the star and the planet form an interferometric pattern each over the finite spatial region in
the far plane.

2 Optical Transfer Function and the Point Spread Function

PSF or the impulse response function is the response of the optical system to the point input. It is
a general system-level description of the performance of an optical instrument that includes
the effects of diffraction. The PSF, given as a function of spatial coordinates in the image
plane, is the image of the point object. When the point source is at infinity, as in the case
of stars, the image is formed in the focal plane at a distance f behind the aperture plane.
The Fourier transform of the PSF is, in general, a complex function referred to as the optical
transfer function (OTF). The Fourier transform of the image may then be found by multiplying
the Fourier transform of the object by the OTF. In the spatial domain, the image may be obtained
as a two-dimensional (2-D) convolution (denoted as **) of the object function with the PSF,
involving a set of mathematical operations in complex domain.

2.1 Aperture Function

We begin the theoretical development by defining the generalized pupil function. A general pupil
may consist of N subapertures, centered at Pnðpn; qnÞ,

PðrÞ ¼
XN
n¼1

WDðr − PnÞ: (1)

Here, we use the vector notation as a shortcut for writing out the components, i.e., r ¼ ðx; yÞ,
and r ¼ jrj is the magnitude of the radial coordinate in the aperture plane. The single circular
aperture function of diameterD, centered at the origin,WDðrÞ, may be represented as a one-zero
radial step function:

WDðrÞ ¼ circ

� jrj
D∕2

�
¼

�
1 when jrj∕D ≤ 1∕2
0 when jrj∕D > 1∕2 : (2)

The aperture function in Eq. (1) may be rewritten as follows, upon the substitution of Eq. (2):

PðrÞ ¼ circ

� jrj
D∕2

�
� �

XN
n¼1

δðr − PnÞ: (3)

This pupil function is illustrated in Fig. 1. The aperture distribution breaks the circular
symmetry of the problem, making the use of the Cartesian coordinates more convenient for
a multiple aperture system. The amplitude impulse response PðUÞ of a coherent optical system
is the 2-D Fourier transform, Ffg, of the aperture distribution function, given in Eq. (3),

D

Pn(pn,qn)

x 

y 

Pm(pm,qm)

Fig. 1 Geometrical parameters for a two-dimensional (2-D) layout of circular apertures.
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FfPðrÞg. The Fourier transform of a function of spatial coordinates ðrÞ ¼ ðx; yÞ is given in
ðUÞ ¼ ðU;VÞ coordinates.

The PSF, hðUÞ, of an incoherent system, such as the ones considered here that employ
the IR radiation to carry the information, is a square of the response of the coherent one.

hðUÞ ¼ jFfPðrÞgj2 ¼ ½FfPðrÞg�½FfPðrÞg��: (4)

The symbol * denotes the complex conjugate. The (in)coherent PSF may also be given in
terms of the spatial coordinates in the image plane, ðxi; yiÞ, when the spatial frequency domain
coordinates U are replaced by πriD∕λf. Subscript i denotes image quantities. The distance
between the aperture plane and the image plane is f, often the focal distance of an imaging
instrument. The OTF is the 2-D Fourier transform of the PSF:

OTFðfxÞ ¼ FfhðUÞg ¼ FfjFfPðrÞgj2g ¼ Ffj½FfPðrÞg�½FfPðrÞg��g: (5)

The Fourier transform of the product of two Fourier-transformed (pupil) functions is also the
convolution of the pupil functions, expressed as a function of the Fourier space coordinates
(inverse distances, in this case). When the pupil function is a simple zero-one function (a par-
ticularly simple case of a real function), it is also its own complex conjugate.

OTFðfxÞ ¼ Ff½FfPðrÞg�g � �Ff½FfPðrÞg��g ¼ PðfxÞ � �PðfxÞ: (6)

Here, fx denotes the spatial frequency coordinates, or more specifically, the coordinates in
the Fourier space. In the special case that the PSF arises solely upon diffraction at a (set of) clear
aperture(s), the OTFðfxÞmay easily be found as a convolution of the aperture transmission func-
tion with itself. The general aperture distribution of Fig. 1 is one such case when the convolution
may be performed appropriately.

We may formulate the PSF in the image space, denoted hðxi;yiÞ, starting from the aperture
function. First, we find the amplitude PSF (APSF), denoting it ηðxi;yiÞ, the not yet normalized
PSF. Taking the Fourier transform of Eq. (3), we recall that the Fourier transform of a convo-
lution of two functions is a product of the Fourier transform of individual functions:

ηðxi;yiÞ ¼ J
�
circ

� jrj
D∕2

��
J
�XN

n¼1

δðx − pn; y − qnÞ
�����U ¼ ðπxiD∕λfÞ

V ¼ ðπyiD∕λfÞ : (7)

The right side of Eq. (7) may be further simplified upon finding the Fourier transform of each
function in the product. The APSF, ηðxi; yiÞ, then becomes

ηðxi; yiÞ ¼
�
2J1½ðU2 þ V2Þ1∕2�
ðU2 þ V2Þ1∕2

��XN
n¼1

exp½−i2ðUpn þ VqnÞ∕D�
�����U ¼ ðπxiD∕λfÞ

V ¼ ðπyiD∕λfÞ : (8)

The Fourier transform of the aperture function for the pupil of diameter D is equal to twice
the Bessel function of the first order, divided by its argument. In astronomy, it is customary to
replace the distances in the plane of detection ðxi; yiÞ with the angular coordinates ðU;VÞ.
The phase in each exponential function, Φnðpn; qnÞ, is the optical path (delay) between
a wave originating at the center of the n’th aperture at ðpn; qnÞ relative to the one at the origin.5

Φnðpn; qnÞ ¼ −2ðUpn þ VqnÞ∕D ¼ −2πðxipn þ yiqnÞ∕λf: (9)

The phase difference of the radiation, collected by the Pnðpn; qnÞ’th and Pmðpm; qmÞ’th aper-
tures, diffracted there, and observed in the image plane at the point ðxi; yiÞ in this expression, is
determined primarily by the aperture location. The specific position on each aperture impacts it
secondarily, although it contributes to the shape of the PSF.
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2.2 Equidistant Apertures in a Line

Equation (8) may be evaluated in a closed form for the case of a redundant, linear array of N
equally spaced apertures, when N is even (see Fig. 2, a double Bracewell configuration).
The term redundancy refers to the fact that more than one subaperture pair samples a particular
spatial frequency. The center-to-center separation of adjacent apertures is γD, with γ > 1 to pre-
vent the aperture overlap. We propose to refer to γ as one-dimensional dilution factor

γ ¼ L∕½DðN − 1Þ�: (10)

The subaperture centers are located on x-axis, at positions pn ¼ �γD∕2;�3γD∕2; : : : ;
�ð2N − 1ÞγD∕2 measured from the array center. The total distance spanned by the array of
N apertures is ½ðN − 1ÞγDþD�. The distance L ¼ ðN − 1ÞγD is the center-to-center separation
of the extreme apertures. The finite sum in the second factor in Eq. (8) may be evaluated for the
inline apertures, yielding a real-valued (rather than complex) analytical result:

XN
n¼1

exp½−i2ðUpn þ VqnÞ∕D� ¼ 2
XN∕2

n¼1

cos½ð2n − 1ÞγU� ¼ sinðNγUÞ
sinðγUÞ ¼ sin½NðγπxiDÞ∕ðλfÞ�

sin½ðγπxiDÞ∕ðλfÞ� :

(11)

After substituting the expression in the third equality of Eq. (11) into Eq. (8), the APSF of
a linear array of equidistant apertures is found:

ηðxi; yiÞ ¼
�
2J1½ðU2 þ V2Þ1∕2�
ðU2 þ V2Þ1∕2

��
sinðNγUÞ
sinðγUÞ

�����U ¼ ðπxiD∕λfÞ
V ¼ ðπyiD∕λfÞ : (12)

This expression may be written out as follows, after the variables for the spatial frequency
coordinates have been substituted:

ηðxi; yiÞ ¼
�
2J1½ðx2i þ y2i Þ1∕2ðπD∕λfÞ�
ðx2i þ y2i Þ1∕2ðπD∕λfÞ

��
sin½NðγπDxiÞ∕ðλfÞ�
sin½ðγπDxiÞ∕ðλfÞ�

�
: (13)

The PSF of the incoherent optical system, hðxi; yiÞ, is the square of the APSF normalized to 1
at the origin. Using the L’Hôpital rule, we may find its value at the origin to be equal to N.
We first square the right side of Eq. (12), and then normalize it by its value at the origin,
N2. Physically, this means that N apertures collect N times the radiative power of a single
aperture.

hðU;VÞ ¼ 1

N2

�
2J1ðU2 þ V2Þ1∕2
ðU2 þ V2Þ1∕2

�
2
�
sinðNγUÞ
sinðγUÞ

�
2
����U ¼ ðπxiD∕λfÞ
V ¼ ðπyiD∕λfÞ : (14)

Both functions in this expression are decreasing with the increasing argument, up to the first
zero of the Bessel and sine-square functions, respectively. The zeros of the Bessel function along
the U-axis occur for values, U0B ¼ 1.220π; 2.233π; 3.238π; : : : The primary maxima of the
multiple-beam interference function take place at angles, UIM.

D 

D

L 

2 D 

xi 

yi

Fig. 2 The simplest case of multiple Bracewell interferometric configurations: a linear array
with four apertures of diameter D. The center-to-center separation of adjacent apertures is γD;
the center-to-center separation between extreme apertures is L.
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UIM ¼ m½λ∕ðDγÞ� ¼ m½ðN − 1Þðλ∕LÞ� for integers m ¼ 1; 2; 3; 4; : : : (15)

The zeros, U0I , are present for all values of integer n, except where the maximum occurs.

U0I ¼ n½λ∕ðDNγÞ� ¼ nf½ðN − 1Þ∕N�ðλ∕LÞg for integers

n ¼ 1; 2; 3; 5; 6; 7; 9; 10; 11; 13: : : :
(16)

The zeros of the sine function occur for smaller values of U than those of the Bessel function
of the first order, as a consequence of the physical necessity that the interferometer linear dis-
tance L be larger than the aperture diameter D. Therefore, the PSF, Eq. (14), may be interpreted
as the second term (square of the sine function), modulating the first factor (square of the Bessel
function). The primary effect of interference is rapid signal attenuation for off-axis image coor-
dinates. The signal attenuation is also a physical consequence of the finite total aperture area
that determines the amount of collected light.

We may substitute the actual values for U and V, or use Eq. (13), to express this result for
the PSF in terms of the spatial coordinates in the interference plane:

hðxi; yiÞ ¼
1

N2

�
2J1½ðx2i þ y2i Þ1∕2ðπD∕λfÞ�
½ðx2i þ y2i Þ1∕2ðπD∕λfÞ�

�
2
�
sin½NðγπDxi∕λfÞ�
sin½ðγπDxi∕λfÞ�

�
2

: (17)

Thus, we have derived an analytical expression for the PSF of a set of N apertures, with N
even, and aperture diameter D, either in terms of ðU;VÞ angular coordinates [Eq. (14)] or spatial
coordinates in the image plane, xi, yi, [Eq. (17)].

3 First Zero of the Point Spread Function

We next examine the resolution of arrays with finite aperture diameter, considering that the res-
olution (distance) corresponds to the distance from the coordinate origin to the first zero of
the PSF. We keep in mind that high resolution corresponds to short distance.

The following parameters were chosen for the simulation study. The separation of centers of
two edge apertures, L, is 10 m; there are four apertures (N ¼ 4), and the aperture diameter, D, is
1 m. These values uniquely specify the normalized aperture separation in terms of the aperture
diameter, γ, (10∕3). Figure 3 shows the PSF of the linear configuration as a function of the
normalized angle U coordinate, U∕π, for V ¼ 0. Furthermore, this variable may be replaced
by πxiD∕λf, hence the PSF or the normalized incidence for a point input may also be given
as a function of the spatial coordinates in the image detection plane.

The PSF graph illustrates that the first two side lobes have small amplitude, similar to the case
of a single aperture. However, the third and the sixth side lobes are somewhat pronounced. The
two small side lobes surrounding the central peak enhance it and delineate its narrow spatial
extent along the U-coordinate. Along the perpendicular V direction, the PSF is equal to that
of a single aperture (see Ref. 5).

Both factors on the right side of Eq. (14) decrease as a function of their argument, up to their
respective first zero. However, the multiple-beam interference function attains zero value for
the lower values of the focal plane coordinates (0.75λ∕L) than the Bessel function of the
first order (1.22λ∕D), the Rayleigh single-aperture angular resolution. The interferometer array
length, L, and the aperture diameter, D, determine this angle, for the same wavelength of
observation.

4 First Zero of a Single-Aperture System

The Rayleigh resolution of a single aperture of diameter D is equal to one-half the width of the
Airy disk, ri0 ¼ 1.22λf∕D. Its value is found when the Bessel function of the first order is equal
to zero for the smallest value of its argument. The angular resolution of a single aperture of
diameter D, αr, is the Rayleigh resolution distance divided by the focal length f
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αr ¼ ri0∕f ¼ 1.22λ∕D: (18)

4.1 First Zero of a Multiple, Even-Numbered Aperture System

Wemay define the angular resolution of an interferometric array in a manner analogous to that of
the Rayleigh resolution limit. It is the smallest absolute value of the angular coordinate U for
which the incidence drops to zero, divided by the focal distance. Dealing with the position coor-
dinate in Eq. (17), the zero value of incidence is found when the argument of the sine function in
the numerator, U ¼ ðNγπxiDÞ∕ðλfÞ, is equal to π

xi0 ¼ ðλfÞ∕ðNγDÞ ¼ ½ðN − 1Þ∕N�ðλf∕LÞ: (19)

After substituting for γ, we find the equivalent resolution along the line of apertures.
Interestingly, the resolution is improved for a given number and diameter of apertures when
their separation is increased. The angular resolution of N equidistant apertures along line L,
αi0, is the spatial resolution, divided by the focal length f

αxi ¼ xi0∕f ¼ ðλÞ∕ðDNγÞ ¼ ½ðN − 1Þ∕N�ðλ∕LÞ: (20)

The first factor in the third equality increases from 0.5ð¼ 1∕2Þ to 3∕4; 5∕6; 7∕8; : : :
approaching asymptotically to 1 when number of apertures, N, increases. The aperture diameter
of the Rayleigh resolution is approximately replaced by DNγ. The maximum value for the angu-
lar resolution for two apertures in contact is 0.5λ∕Dð¼ 0.5λ∕LÞ. With increasing number of
apertures N in contact, the asymptotic maximum value for the resolution αr max becomes
λ∕ðNDÞ, approximately N times better (smaller) than that of a single aperture with the same
diameter. However, it decreases as the aperture separation increases. We keep in mind the lin-
guistic difficulty involved with the concept of resolution: it is better or higher when its numerical
value is smaller.

Examining the second equality in Eq. (20), we note that the resolution of a multiple-aperture
system is actually independent of the aperture diameter. The length of the inline equidistant
aperture array approximately replaces the aperture diameter in the equivalent resolution
expression.

Fig. 3 Point spread function as a function of angle U∕π for the double Bracewell configuration
(four equidistant circular apertures, in a line). The following parameters were used to generate
the graph: baseline L is 10 m, aperture diameter D is 1 m, and the aperture separation in
units of aperture diameter, γ, is equal to 10∕3. The angle subtended between the central peak and
the first minimum is 0.75 (λ∕L).
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4.2 First Zero of the Bracewell Configuration (Two-Aperture System)

We evaluate the location of the first zero of a two-aperture interferometric system by setting N to
2. Dealing with the position coordinate in Eq. (17), the zero value of incidence is found when
the argument of the sine function in the numerator, ð2γπxiDÞ∕ðλfÞ, is equal to π. From Eq. (19)
we find

xi0 ¼ ðλfÞ∕ðNγDÞ ¼ ð1∕2Þðλf∕LÞ: (21)

The angular resolution of two equidistant apertures along line L, αi0, is the spatial resolution,
divided by the focal length f

αxi ¼ xi0∕f ¼ ðλÞ∕ð2γDÞ ¼ ð1∕2Þðλ∕LÞ: (22)

The value for resolution αxi becomes λ∕ð2LÞ, approximately one-half that of a single aperture
when apertures are in contact. It also improves with an increasing interaperture separation.

5 Conclusions

We developed theory in support of the hypothesis that simple, two-aperture interferometric
system does not “null” the star light and, furthermore, that both star and planet form an inter-
ferometric pattern in a finite spatial region in the far plane.

The length of the inline two apertures layout effectively replaces the aperture diameter in the
equivalent resolution expression, for the double Bracewell configuration. The resolution along
the perpendicular direction is that of a single aperture.

The number of points in which the incidence due to a point source at infinity is zero for
a four-aperture light-collection system is small, less than 10, within the field of view of the
collector system. The incidence distribution due to a spectral star, an extended body emitting
radiation within a spectral interval, located in infinity includes no points of zero incidence within
the field of view of the instrument. Likewise, the incidence distribution in the observation plane
due to a planet has a similar finite extend, covering about the same region of space as that origi-
nating at the star. This makes it impossible to plan for the planet image location at a preselected
point in the image plane.

According to this theoretical analysis, there are no points in the far-field plane of the multiple-
aperture array where the star radiation might be nulled. Thus, a more sophisticated instrument
may need to be devised to enhance planetary attributes in the presence of its high-brightness
star.6,7
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