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Abstract. A good understanding of age-dependent changes and modifications in brain networks is crucial for
fully exploring the effects of aging on the human brain. Few reports have been found in studies of functional brain
networks using functional near-infrared spectroscopy (fNIRS). Moreover, little is known about the feasibility of
using fNIRS to assess age-related changes in brain connectomes. This study applied whole brain fNIRS meas-
urement, combined with graph theory analysis, to assess the age-dependent changes in resting-state brain
networks. Five to eight minutes of resting-state brain hemodynamic signals were recorded from 48 participants
(18 young adults and 30 older adults) with 133 optical channels covering the majority of the cortical regions. Both
local and global graph metrics were computed to identify the age-related changes of topographical brain net-
works. Older adults showed an overall decline of both global and local efficiency compared to young adults, as
well as the decline of small-worldness. In addition, young adults showed the abundance of hubs in the prefrontal
cortex, whereas older adults revealed the hub shifts to the sensorimotor cortex. These obvious shifts of hubs
may potentially indicate decreases of the decision-making, memory, and other high-order functions as people
age. Our results showed consistent findings with published literature and also demonstrated the feasibility of
whole-head fNIRSmeasurements to assess age-dependent changes in resting-state brain networks.©TheAuthors.
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1 Introduction
The human brain is organized in a set of networks, with ana-
tomical brain regions involved in either individualized process-
ing or integration with other brain regions, to accomplish
different functions.1,2 Both anatomical and functional brain net-
works change in their properties as normal aging commences in
humans. Some research studies have shown that the decline of
gray matter in older individuals is most responsible for age-
related changes in brain anatomy.1,3 Early studies have reported
the preservation of small-world and economic brain character-
istics in older adults,1 with a decrease of efficiency mostly in
frontal and temporal cortical and subcortical regions.4 These
findings explain well that, as people age, there is a decrease
in their cognitive abilities, such as memory, attention, and
concentration, which are functions controlled by the prefrontal
cortex in humans. Recent studies have reported: (1) a decrease
of functional connectivity in default mode network (DMN)
and dorsal attention network;5 (2) an increase of functional
connectivity in somatosensory and subcortical networks;5

(3) age-related effects on brain network connectivity;6 and

(4) age-induced alterations in modularity and the number of
hubs of the brain network.7 Understanding age-related altera-
tions in human brain networks can help better understand the
cognitive declines, guide early diagnosis of geriatric diseases,
such as Alzheimer’s disease,8 Parkinson’s disease,9 and other
dementias in older patients, and provide insight into effective
treatments for these illnesses.

Such quantitative analyses, such as seed-based functional
connectivity, independent component analysis (ICA), and
graph theory analysis (GTA), have been proposed and utilized
to investigate functional brain networks.6,10 In comparison,
seed-based connectivity needs a predefined or prechosen seed
region, whereas ICA is limited by its statistical nature that
requires a large and low-noise data set with excellent neuro-
logical/neuroanatomical knowledge for correctly discriminating
multiple artifact-driven, independent components from true
functional networks.6 In the context of GTA, brain networks
can be depicted as a graph with different anatomical and/or
functional brain regions represented by nodes and with any
interaction represented by links between each pair of brain
regions.2 The nature of this graph-based approach allows us
to examine the network connectivity among all brain regions/
areas independently. In this way, both local and large-scale*Address all correspondence to: Hanli Liu, E-mail: hanli@uta.edu
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brain network features can be assessed efficiently by compre-
hending both temporal and spatial characteristics, with a rela-
tively simple method. In particular, GTA has been successfully
applied for the assessment of age-related changes in brain net-
works measured by structural and functional MRI,2,11 magneto-
encephalography (MEG) and electroencephalography (EEG),12,13

and positron emission tomography (PET).3 In this paper, we
chose GTA as our means to assess the age-related complex
brain networks based on our whole-cortex, 133-channel, func-
tional near-infrared spectroscopy (fNIRS) measurements.

It is well known that fNIRS is a noninvasive neuroimaging
modality.14 It has been recently combined with GTA to success-
fully reveal the topographical organization of resting-state func-
tional connectivity (RSFC) in the human brain.15,16 Zhang
et al.17 reported distinct small-world features in the frontal cort-
ical areas when the participants undertook deceptive actions
with respect to their wakeful rest. Li et al.18 utilized GTA to
reveal age-related changes in the anterior cortical regions.
However, all the reported fNIRS-based GTA studies had a
common deficiency: limited measurement channels (source–
detector pairs) resulted in partial coverage of the brain networks
on a human head. For example, 24 channels were used to inves-
tigate only the middle frontal and sensorimotor (SM) cortex,17

and 70 channels were able to cover only prefrontal, SM, and
part of frontal-parietal (FP) cortical regions.18 While a total of
46 channels were employed to cover the entire human cortex,
the placement or distribution of the channels was very sparse.15

Such a sparse-channel setup would fail to provide accurate or
comprehensive connectomic information, confound the results
because of lack of measurements from distal locations, and fur-
ther limit the exploration of topographical connectivity among
multiple cortical network systems.15

To overcome this obstacle and further extend the fNIRS brain
imaging method into the brain network science, the current
study utilized a 133-channel fNIRS system, which provided
us with the excellent ability to cover the whole-cortical regions

of the human brain, and to assess age-related changes in resting-
state graphical brain networks. We hypothesized that (1) both
young and older adults present distinct global network metrics
and small-world features in the functional brain connectivity and
(2) the reorganization of network hubs occurs in the older adults
with respect to the younger group. This study aimed to prove
our working hypotheses by performing 133-channel fNIRS
measurements, leading to quantitative characterization of age-
dependent changes in resting-state, whole-cortex graphical
networks.

2 Methods and Materials

2.1 Participants and Data Acquisition

A total of 48 participants participated in this study, including 18
young adults [mean� standard deviationðSDÞ ¼ 26.5� 2.5
years of age] and 30 older adults (mean� SD ¼ 73.3� 7.5
years of age). All participants were right-handed with normal
visual ability. No participants reported any known diseases,
such as musculoskeletal, neurological, visual, or cardio-respira-
tory dysfunctions. The age range of the young adults was at or
beyond the developmental/maturation phase of the prefrontal
cortex,19 and that of the older adult group was at or beyond
the documented declining phase of the gray matter density
(i.e., at the age of 65).20 Written consent forms were signed
by all participants before the experiment started. The study
protocol was approved by the Institutional Review Board of
the University of Texas at Arlington.

In this study, we employed a continuous wave, 133-channel,
high-performance, fNIRS system (LABNIRS, Shimadzu Corp.,
Kyoto, Japan), which consists of 40 sets of colocated NIR semi-
conductor lasers at three wavelengths (i.e., 780� 5, 805� 5,
and 830� 5 nm), and 40 photomultiplier tube detectors, to rec-
ord cortical hemodynamic activity from each young and older
adult. As shown in Fig. 1(a), an fNIRS cap can hold 40-source
optodes and 40-detector optodes, and cover each participant’s

Fig. 1 (a) A photo of the optode placement through a cap on a participant’s head. The optodes of 40
sources (red in the online version) and 40 detectors (blue in the online version) are marked and shown in
(b) front view, (c) left-side view, and (d) top view. The location/place between each source–detector pair
corresponds to a respective channel from 1 to 133, as labeled in (e). The (e) schematic illustration of
the fNIRS 40-source and 40-detector opotodes, which were coregistrated and projected on a human
brain template derived from the ICBM152 MNI space (see Sec. 2.2 for details).
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head completely and symmetrically. The nearest source–detec-
tor separation was set to be 3 cm. With this optode geometry,
a total of 133 channels (i.e., source–detector pairs) were formed
[see Figs. 1(b)–1(e)], and only 3-cm source–detector channels
were used. The fNIRS data were acquired at a sampling rate of
8.13 Hz.

After 40-source and 40-detector optodes were noninvasively
and securely attached on each human participant’s whole head
(see Fig. 1), she/he was instructed to sit comfortably in a quiet,
light-dimmed room with eyes closed at wakeful resting state.
All 133 channels simultaneously recorded fNIRS signals at
three wavelengths across the entire head, over a period of
5 to 8 min, while the participants kept the sitting position with
minimum body movements.

2.2 Optode Coregistration on a Human Brain
Template

A coregistration procedure was followed, using a three-dimen-
sional (3-D) digitizer that measured four cranial landmarks and
all optodes from four randomly selected participants to estimate
the fNIRS optode locations.21 Specifically, after placing the
fNIRS optodes over each participant’s head, the four reference
cranial landmarks (i.e., the nasion, left and right preauricular
points, and vertex), light sources and detectors were measured
using a 3-D motion tracking system (FASTRAK, Polhemus,
Vermont, USA). The positions of cranial landmarks served as
an affine transformation to convert the real-world stereotaxic
coordinates of the optical optodes to the Montreal Neurological
Institute (MNI) coordinates, which were used in a standard brain
MRI atlas, as demonstrated by previous fNIRS studies.22–24 The
space coordinates of 133 channels obtained by the 3-D digitizer
were further coregistered in the ICBM 152 template.25 Then
each of the brodmann areas (BA) probed by the fNIRS optodes
was identified using the statistical parametric mapping for near
infrared spectroscopy software package.26 A manual compari-
son of BA with an automated anatomical labeling atlas27 was
performed to further classify or assign the 133 channels into
five of the predefined large-scale parcellation network regions
[fronto-parietal, default, SM, occipital (OC), and regions not
included in any networks]. In particular, the coregistered posi-
tions (averaged over the four participants) of optodes were
marked on a brain template (i.e., ICBM 152)25 as shown in
Figs. 1(b)–1(d).

2.3 Data Processing

Time sequences of light intensity changes from 133 channels
were recorded for all participants during a resting-state period
(5 min for older adults and 8 min for young adults) at a sampling
frequency of 8.13 Hz. The reason that we designed 5-min rest-
ing-state measurements (instead of 8 min) for older adults was to
minimize the drossiness or sleepiness in the older population. It
was reported that the 5-min resting-state fNIRS measurements
were dynamically stable enough to give rise to reliable func-
tional connectivity.28 Actually, to confirm the consistency
between the RSFC derived from 5-min versus 8-min duration,
we performed the same analysis using both time durations for
the young participants. The results are presented in Appendix A.

All the raw data were visually inspected to reject motion arti-
facts and other large noise.22–24 A bandpass filter of 0.01 to
0.3 Hz was utilized to minimize the physiological noise gener-
ated by heartbeat and respiration.24 Moreover, to minimize

confounding effects of superficial layers (i.e., the human
scalp and skull) and overall global noise, a global autocorrela-
tion process was sequentially applied to the channel-wise fNIRS
data.29,30 Specifically, one global temporal profile GðtÞwas gen-
erated by averaging over 133-channel time sequences for each
participant. An autocorrelation approach was performed
between GðtÞ and the time series from each individual channel
by calculating Pearson’s correlation coefficient, R. Any channel
having a high correlation value of R with the global GðtÞ was
considered to result from physiological noise or artifacts and
was excluded for further data analysis. A threshold of
jRj > 0.2 was chosen to eliminate these channels based on pre-
vious suggestions.31

We calculated relative changes in concentrations of oxygen-
ated hemoglobin (ΔHbO) and deoxygenated hemoglobin
(ΔHbR) using the modified Beer–Lambert law.32,33 The sum
of ΔHbO and ΔHbR gave rise to changes in total hemoglobin
concentration (i.e., ΔHbT ¼ ΔHbOþ ΔHbR). In this study,
ΔHbO signals were chosen to perform comprehensive network
analysis and evaluate reproducibility of network metrics across
participants and over time. Because most of the ΔHbR signals
had relatively low intensities, we excluded them for further data
analysis, as done in many other previous studies.22,34–36

2.4 Construction of Functional Brain Networks

Two major steps, namely, graph formation and network param-
eter quantification, are suggested in GTA.6,10 In this study, each
channel represented one node in the brain network. Graph for-
mation was then obtained by analyzing channel-wise or nodal
ΔHbO signals and performing the cross correlation between
each pair of the nodes to form a cross-correlation matrix (or
adjacency matrix) [Fig. 2(a)]. The local and global graph param-
eters were then quantified from the cross-correlation matrix as
the brain network characteristics.10

Former studies using fNIRS-GTA to investigate brain net-
works suggest that the brain functional connectivity could be
represented by the correlations of brain hemodynamic changes
or fluctuations among different brain regions.15–17,38 The same
strategies were applied to nodal ΔHbO data during the
resting-state period to establish the adjacency matrix for each
participant. The cross correlation between each pair of nodal
ΔHbO was then performed for the given time series; respective
Pearson correlation coefficients (R) were computed to form
a 133 × 133 adjacency correlation matrix [see Fig. 2(a)]. Note
that the color (in the online version) in Fig. 2(a) denotes
the values of correlation coefficient. For example, blue color
indicates a correlation coefficient smaller than 0.5; orange color
represents a correlation coefficient larger than 0.5. The adja-
cency matrix was further converted into a binarized matrix
by setting a threshold. The correlation coefficient between
nodes i and j (i ¼ 1;2; : : : 133; j ¼ 1;2; : : : ; 133) was set to
1 if the correlation value was larger than the given threshold,
and 0 otherwise [see Fig. 1(b)]. The two nodes were defined
as connected if the binarized correlation value was equal to
1, and there was no functional connection between two
nodes if the binarized correlation value was equal to 0.

The connecting line (or edge) between two connected nodes
was used to graphically mark functional connectivity across
the whole human brain/cortex. In principle, different selections
of thresholds on cross-correlation coefficient will result in
a different binarized matrix. In this study, we applied different
thresholds to the adjacency matrix to obtain a sequence of binary
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matrixes. Specifically, the sparsity-based approach was utilized
as suggested by Niu et al.15 The sparsity (S) for a fixed graph is
defined as the number of current existing edges in this graph,
divided by the maximum possible number of edges in the
current graph. In this study, the range from 0.05 to 0.5 (i.e.,
0.05 < S < 0.5, interval ¼ 0.01) was chosen to be the standard
threshold sequence as reported in a previous study.3 Then the
threshold sequence was applied to the adjacency matrix to gen-
erate a total of 45 binarized network matrices for each partici-
pant. Figure 2(b) shows an example from one participant’s data,
revealing a spatial representation of nodes and edges from one
binary matrix with a given/fixed threshold (S ¼ 0.30). To illus-
trate 3-D representation of the binary matrix, left-side, top, and
front views of the brain network were obtained using BrainNet
Viewer software37 together with the ICBM152 brain template
[Fig. 2(c)]. Red dots (in the online version) represent the
nodes, whereas gray/black lines between two nodes represent
respective network edges or connections.

2.5 Graph Theory Analysis

Based on the adjacency matrices, we further quantified the rest-
ing-state brain network parameters using GTA. In general,
graphical metrics for functional brain networks are calculated
based on global and local network characteristics.10 The global
network metrics include such “small-world” properties as:
(1) clustering coefficient (Cp); (2) characteristic path length (Lp);
(3) normalized clustering coefficient (γ ¼ Creal

p ∕Crandom
p );

(4) normalized characteristic path length (λ ¼ Lreal
p ∕Lrandom

p );

and (5) small worldness (σ ¼ γ∕λ). Briefly, Creal
p is the average

of clustering coefficients over all nodes in a network, quantify-
ing the extent of local group of a network.39,40 Lreal

p is defined
as the average of the shortest path lengths between any
pair of nodes in the network, quantifying the capability of
parallel information propagation within a network.41 Also,
Crandom
p and Lrandom

p are the mean clustering coefficient and
characteristic path length of matched random networks that
preserve the same number of nodes, edges, and degree distribu-
tion as the real network.42 A real network would be considered
small-world if γ > 1 and λ ≈ 1. Another global metric we
studied6 was global efficiency (Eg). Furthermore, for the local
graphical metrics, we focused on the hub information such
as: (1) nodal degree (Ni); (2) nodal efficiency (Enod); and
(3) betweenness centrality (Nbc). Detailed descriptions of these
graph metrics are included in Appendix B.

2.6 Statistical Analysis

Statistical analysis was performed to quantify interregional
correlations for bilateral nodal regions in both young and older
adult groups. Totally, 133 pairs of brain nodal regions were
compared by the z-values (Z) that were obtained after Z trans-
formation of the Pearson correlation coefficients (R) in order to
meet the statistical normality requirement. To further test
the hypothesis of between-group differences in the graphical
metrics, pairwise t-tests were performed to compare the young
and older adults in Eg, Lp, Cp, γ, λ, and σ. A criterion of
p < 0.05 was selected.

Fig. 2 Construction of functional brain networks from fNIRS measurements. (a) A sample of adjacency
matrix computed by cross correlation of resting-state cortical hemodynamic responses from one partici-
pant. (b) The corresponding binary matrix at the threshold of sparsity 0.3. (c) 3-D views (i.e., left-side, top,
and front view) of the brain network derived from (b) at the sparsity of 0.3. Images were obtained using
BrainNet Viewer software.37
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3 Results

3.1 Global Network Characteristics and
Small-Worldness

3.1.1 Global features in young and older adults

We quantified and compared the global network and/or small-
world features of the brain networks between young and older
adults. The respective values of Cp, Lp, and Eg of both groups,
are shown in Figs. 3(a)–3(c). Two-sample t-tests for each of the
global brain network parameters were performed at each spar-
sity value from 0.05 to 0.5, as suggested by a previous study.3

Note that global features of the brain networks from the young
group were plotted together with those from the older adults for
easy comparison.

The group-level age-related changes in Cp, Lp, and Eg were
observed. Overall results illustrated that, compared to young
adults, older adults showed higher Cp and Lp, but lower Eg.
Since we considered the data at each sparsity (or threshold)
to be independent, there was no need to run ANOVA tests.
We chose the two-sample t-test with unequal sample size and
two-tailed analysis, having a criterion of p < 0.05 selected.
Specifically, older adults revealed a significantly larger Cp value
within the sparsity range between 0.17 to 0.45 [see Fig. 3(a)].
Meanwhile, older adults exhibited a significantly larger Lp
value than young adults within the lower sparsity range between
0.05 to 0.29 [see Fig. 3(b)]. There was no significant difference
between two groups when S > 0.3. Young adults, on the other
hand, had a significantly larger global efficiency Eg, than
older adults within the lower sparsity range of 0.05 to 0.30
[see Fig. 3(c)]. Both groups shared the similar Eg in the higher
sparsity range (S ¼ 0.31 to 0.50) and indicated the trend of con-
vergent to 1 as the sparsity increased. Our findings are consistent
with a previous study,3 which investigated resting-state brain
networks in 115 young adults (average age ¼ 35) and 110 older
adults (average age ¼ 54) using PET. Both their results and
ours clearly demonstrated a decline of global efficiency with an
increase in clustering coefficient in older adults.3

3.1.2 Small-world features in young and older adults

Functional networks of the human brain have small-world
characteristics;10,43 a real network would be considered small-

world if γð¼ Creal
p ∕Crandom

p Þ > 1 and λð¼ Lreal
p ∕Lrandom

p Þ ≈ 1.
It means that, compared to random networks, a true human
brain network has a larger clustering coefficient and an approx-
imately identical shortest path length between any of two nodes
in the network. Figures 4(a)–4(c) show the normalized charac-
teristic path length λ, normalized clustering coefficient γ, and
small worldness σ, taken from the two age groups, respectively.
It is clear that λ values in the two groups were approaching 1,
with sparsity 0.05 < S < 0.5 [Fig. 4(a)], and so did γ within
0.3 < S < 0.5 [Fig. 4(b)]. At a wide range of sparsity, both
groups had σ > 1 [Fig. 4(c)], which implies prominent small-
world properties. Regarding age effects, the results demon-
strated that the young adults had significantly better normalized
clustering ability and small-worldness of the brain networks than
the older group, based on larger values of γð0.05 < S < 0.22Þ
and σð0.05 < S < 0.34Þ.

3.2 Local Graphical Parameters

We quantified such local graphical parameters in this study as
nodal degree (Ni), nodal efficiency (Enod), and betweenness
centrality (Nbc). These three nodal metrics are well-accepted
parameters with distinct emphasis to reflect local network hub
properties. The nodal degree is a simple measure of the number
of connections at each node. The nodal efficiency represents the
cost of information transfer through that node. The betweenness
centrality is a measure of centrality in a graph based on shortest
paths. The nodal metrics were constructed at a sparsity threshold
of 0.15, as suggested by a previous study3 in order to ensure that
the networks of both young and older adult groups had the same
number of nodes and edges. Then network hubs were selected
for each of the three nodal parameters (i.e., Ni, Enod, and Nbc),
with respective values larger than 1 SD of the corresponding
average values over all nodes.15,16 Figure 6 demonstrates left-
side, right-side, and front views of the hubs determined from
the young adults and older adults for all three nodal metrics
[i.e., betweenness centrality (Nbc), degree (Ni), and efficiency
(Enod)]. As indicated by Niu et al.,15 the betweenness centrality
is considered as the major reference for the hub measurements.
In addition, we also manually partitioned the 133 channels into
five network regions, as shown in Fig. 5, based on the guidance
of BA atlas as mentioned in Sec. 2.2. These five networks are:
(i) DMN (red); (ii) FP network (blue); (iii) SM network (green);

Fig. 3 Global characteristics of resting-state brain networks derived from GTA. (a)–(c) The sparsity-de-
pendent clustering coefficient (Cp), shortest path length (Lp), and global efficiency (Eg ) values quantified
from young adults (blue in the online version) and older adults (red in the online version). The black dots
on the bottom of each panel mark the sparsity ranges where significant differences in respective network
parameters exist between two groups. Specifically, older adults have a larger Cp at the lower sparsity
range (0.18 to 0.46) and a larger Lp in the lower sparsity range (0.05 to 0.29), whereas young adults
reveal a larger Eg in the sparsity range (0.05 to 0.30).
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(iv) OC (azure); and (v) channels not involved (NI) in any
network (purple).

The number of hubs corresponding to the network locations
in both age groups was summarized in Table 1, with correspond-
ing illustrations in Fig. 6. In the older adult group, a total of
18, 26, and 19 hubs were identified under betweenness, nodal
degree, nodal efficiency, respectively. In contrast, a total of
33, 40, and 30 hubs were correspondingly identified in the
young adult group. These results revealed an overall decline
of the total hub number from 103 to 63 (∼39% reduction), in
the older adult group. Correspondingly, Fig. 6 shows three
types of hubs for both age groups [i.e., betweenness centrality
(Nbc) nodal degree (Ni), and nodal efficiency (Enod)], in five
brain networks. The size of the dots represents the strength of
three parameters.

Because nodal betweenness quantifies how important a node
is within a network, we paid special attention to this metric.
With close inspection of Fig. 6, we observed that 10-11 hubs
(with all colors) appeared in the middle and dorsolateral frontal
regions in the young adult group (see the dashed box in the left-
most column of Fig. 6, with the notation of “betweenness”);
only 4 hubs showed up, relatively unilaterally, within the similar
region in the older adult group (see the dashed box in the middle

of Fig. 6, also with the notation of “betweenness”). Furthermore,
the hubs in the SM region seemed unilateral in the older adults
(see an arrow near the dashed box in Fig. 6), in contrast to
a bilateral pattern presented in the young adult group (see
another arrow near the dashed box in the left-most column of
Fig. 6).

Fig. 4 Small-worldness features in young and older adults. (a)–(c) The normalized characteristic path
lengths (λ), normalized clustering coefficient (γ), and small-worldness (σ) quantified from young adults
(blue in the online version) and older adults (red in the online version), respectively. The black dots on
the bottom of each panel indicate significant differences of each parameter between the two groups
within the given sparsity range for λð0.05 < S < 0.07Þ, γð0.05 < S < 0.22Þ, and σð0.05 < S < 0.34Þ.

Fig. 5 Illustration of 133 optodes or nodes that were identified into five predefined networks to match
predefined functional brain networks. The color-coded networks (only seen in the online version) are:
DMN (red, n ¼ 23), FP network (blue, n ¼ 25), SM network (green, n ¼ 45), OC network (azure, n ¼ 22),
and region NI in any network (purple, n ¼ 18). All the networks are manually defined with careful
guidance by BA atlas.

Table 1 Hubs in young and older adults.

Young adults Older adults

Btw R (%) Degree Efficiency Btw R (%) Degree Efficiency

DMN 7 21 10 10 2 11 11 10

FP 7 21 12 10 4 22 5 3

SM 13 40 8 4 8 44 9 5

OC 3 9 5 3 1 6 0 0

NI 3 9 5 3 3 17 1 1

Total 33 40 30 18 26 19
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Next, still focusing on nodal betweenness, we noted that the
number of hubs shown in Table 1 seemed to shift from DMN to
other networks in the older adults. To be more quantitative, we
defined a ratio (Rk), between the number of hubs in the specific
network (k) and the total number of hubs (only for nodal betwe-
enness), where k represents DMN, FP, SM, OC, and NI, respec-
tively. All respective values of Rk were calculated and are listed
in Table 1 for both groups. One clear and predominant distinc-
tion between the two groups is that the RDMN ratio of the older
adults reduced by ∼50% (from a ratio of 21% to 11%), as com-
pared to the younger group, meaning that the number of nodal
betweenness hubs in DMN was reduced, or significantly shifted
to other brain networks, when people age.

4 Discussion

4.1 Whole-Head fNIRS Measurements

Our study, for the first time, applied a whole-head fNIRS
approach to assess age-related changes of RSFC in the
human brain or cortex. The GTAwas chosen as the assessment
tool for the quantification of functional brain networks. Both
global and local graphical metrics were computed; comprehen-
sive comparisons between young and older adults were also con-
ducted. With 80 optodes (40 for sources and 40 for detectors),
we were able to cover most of the cortical regions of each human
participant. This whole-head coverage ensured the cerebral
hemodynamic measurements with both abundant distal and
local connectomic information. Our findings for age-related
RSFC changes were consistent with what have been reported
by MEG and fMRI. Specifically, this study successfully
observed that: (1) the functional networks in both age groups
held well small-world (i.e., σ > 1) characteristics, efficiently
providing high-information processing with low connection
cost; (2) older adults decreased small-world features [Fig. 4(c)]
and global efficiency [Fig. 3(c)], with increased global cluster-
ing coefficient and shortest path length [Figs. 3(a) and 3(b)],
revealing gradual progression of brain network/connectivity
changes along aging; (3) normal aging resulted in much decline
(∼40%) in functional connectivity hubs over the whole-cortical
regions, and also led to a decrease in the hub symmetry;
and (4) an approximate 50% decrease of nodal betweenness

hubs in the DMN was observed in the older adult group. (This
significant decrease of frontal connectivity could be associated
with the decline of short-time memory and of integration of
information.)

One advantage of whole-head fNIRS shown in this study was
the ability to identify specific brain networks based on the
hemodynamic fNIRS measurements. Specifically, we were able
to identify five different brain networks (see Fig. 5) by the
whole-head optode setup with 23, 25, 45, 22, and 18 nodes
in each predefined network, respectively. This classification
enabled us to assess the brain networks through cortical topog-
raphy, with both enough distal measurements and detailed local
records. Previously, while the feasibility of using fNIRS to
assess graphical brain networks with good reproducibility
was demonstrated, most of those studies were not able to asso-
ciate functional brain connectivity with specific/known brain
networks.15,16 This problem stemmed from sparse placement
of the optodes on the participant’s head, so the coverage was
limited to partial regions of the brain, such as prefrontal
cortex18 and prefrontal-motor cortex.17 While this study demon-
strated consistent findings on global network properties with
those reported in Refs. 15 and 18 using either sparse optodes
or partial coverage of the head, the whole-cortical measurements
would provide us with more accurate and comprehensive nodal
information and local network parameters than the other two
studies. The latter cases may cause misleading conclusions on
local network metrics due to a lack of distal network features.

4.2 Age-Effect on Global Topographical Metrics

Another innovative aspect of this study was that it has clearly
revealed age-related changes in the resting-state brain networks
at the whole-cortex level. While the age effect of the human
brain networks has been observed and demonstrated by both
fMRI and PET,3,44 there is little work on this topic by optical
methods. In this current study, we found and investigated the
DMN; FP network; SM network; OC network; and other regions
in both young adults (24 to 28 years of age) and older adults (65
to 82 years of age). Different from previous fNIRS studies, we
utilized the whole-head opotode setup to be able to cover and
investigate the entire cortical networks instead of having only
partial coverages, such as only interrogating the prefrontal

Fig. 6 Hubs compared between young and older adults. For all three of betweenness centrality (Nbc),
nodal degree (Ni ), and nodal efficiency (Enod), (i) red dots represent the hubs within the DMN, (ii) blue
dots represent the hubs within the FP network, (iii) green dots represent hubs within the SM network,
(iv) azure represent hubs within the OC network, and (v) purple dots represent hubs that is NI in any
network. The size of the dots represents the strength of three parameters.
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cortex.18 Our findings are consistent with previous studies.3,45,46

First, we showed higher global efficiency in young adults than in
older adults. It is believed that the anatomical alterations during
aging play a role for these network changes, especially after
age of 65.47

Second, our results also revealed a difference in clustering
coefficients between the two age groups. Similar findings
from previous reports3,4 have suggested that a possible reorgani-
zation of the frontal network occurs as people age. It is also sug-
gested that the information processes are less economical in
older adults, especially in the frontal and temporal cortical
and subcortical regions.4 One of the current findings different
from our previous report18 is that we found an increase of char-
acteristic path length, instead of no change, with an increase in
age. This difference could possibly result from the benefit of
covering the whole head of each human participant with 133
channels that interrogated not only local brain regions (i.e., pre-
frontal in our previous study), but also long-distant functional
associations. The agreement between our current findings and
those using fMRI and PET3,4,48 strongly supports the observa-
tion/conclusion that normal aging leads to the loss of long-
distance connections and interconnected hubs that decrease
the network economics.

Finally, we also observed a significant decrease in small-
worldness in older adults, which was in good agreement with
previous studies.2,3,44 One fMRI study4 with the measurement
of 11 older adults (age = 66.5 years) in a resting state reported
that normal aging impaired economic performance of small-
world brain networks. Similar findings were also suggested
by a PET study3 with 113 young (age = 36.5 years old) and
110 older (age = 56.3) adults. In addition to these consistent
findings, we observed that the small-worldness in older adults
were still significantly higher than the random network in the
sparsity ranges given [Figs. 4(a) and 4(b)], revealing that an
older brain still preserved economical performance of the net-
work, although it was lower than the younger group.

4.3 Age-Effect on Local Topographical Metrics:
Reduction and Reorganization of Hubs

One noticeable observation for the local hubs was the reduction
of the total number from 33 in young adults, to 18 in older adults
(quantified by betweenness centrality), and this mostly hap-
pened in the default mode (7 versus 2), and was relatively
obvious in the FP (7 versus 4) networks. Specifically, the
nodal betweenness in the default mode regions (such as middle
frontal and superior frontal regions) was diminished in the older
adults. Because the hubs play the central role of integrative proc-
esses and communication,17 the overall decline of number of
hubs suggests the loss of information-processing centers in
the aged brain. The long-distance connections, especially the
between-network connections, such as frontal-SM and fron-
tal-OC, are expected to decrease, as shown in our age group
data. A recent fMRI study, with 24 older (59 to 74 years of
age) and 21 young (18 to 26) adults, also suggests similar find-
ings that DMN and FP control network in older adults have
fewer common hubs compared with younger brains.6 We can
speculate that the long-distant connections are more vulnerable
with aging.6 Unfortunately, we could not find any optical data at
the present time to substantiate these findings.

In addition, although the total number of hubs had signifi-
cantly decreased in the older group, the ratio of FP hubs
over the total hubs was kept the same, and the ratios of SM,

OC, and undefined hubs were slightly increased in the older
group. This interesting finding indicates that the older brain
is trying to preserve certain numbers of hubs in primary process-
ing centers, such as SM and OC areas. In sum, the reduction of
hubs and changes of symmetrical characteristics should lead to
a behavioral shift in the older brain. The abundancy of the
network hubs in the primary information-processing region
(such as SM networks) and the reduction of hubs within
networks supporting higher-level cognitive functions (such as
default and FP networks) coincide with the phenomenon that
older adults often show the decline of cognitive functions.6,7

4.4 Further Discussion on Resting-State Brain
Network and Connectivity

Resting state of the human brain is an uncontrolled condition,
and it can be studied according to temporal or frequency
features of the brain,49,50 or according to hemodynamic or
electrophysiological characteristics of the brain.49–51 A large
amount of studies in all four aspects have been reported,
with a handful of literature only on fNIRS-derived resting-state
connectivity.15,18,38,52,53 Different resting-state networks were
obtained when different analysis methods were used. In this
paper, we utilized the GTA to analyze HbO-derived brain net-
works and then determine differences in whole-cortical brain
networks at wakeful rest between young and older adults.
Note that the network properties reported in this paper could
be different if other age-related neurophysiological conditions
are considered, such as effect of neurovascular coupling.
However, a few recent studies reported that normal aging does
not cause significant changes in neurovascular coupling derived
from blood-oxygen-level-dependent signals.54,55 If one wishes
to include/study electrophysiology-related brain networks at
rest, dual-mode (fNIRS-EEG or fMRI-EEG) brain imaging
measurements and corresponding data analysis would be
necessary.

4.5 Limitations of the Study and Future Work

In any study of this type, there are often a few limitations that
should be noted. First, it is known that the NIR light can pen-
etrate through the human scalp, skull, and a portion of gray mat-
ter, but the light could not go deeper than 3 cm below the human
scalp.56 The fNIRS measurements taken from the scalp surface
gather a majority of the information from the gray matter in the
cortical regions; thus this study reveals global and local graphi-
cal metrics for only cortical connectivity and networks. Deeper
layers of the human brain, such as those in subcortical areas, are
“out of reach” by the fNIRS optical measurements, regardless of
whole-head or partial brain measurements.

Second, there is a trade-off between covering a larger portion
of the head versus the time-cost of the experimental setup. A
whole-head optode setup can provide an abundancy of collected
data from the whole head, but it increases a significant amount
of time for placing the optodes and adds much more weight to
the participant’s head, which is more likely to cause the partici-
pant too uncomfortable, motion artifacts, and even more physio-
logical noises. To overcome these drawbacks, future work can
include development of: (1) quicker or more efficient ways to
place optodes through hair; (2) a light-weight helmet with a thin-
ner and more flexible layer; (3) a fiber-supporting frame/stand to
reduce the setup time and the weight on the participant’s head.
Nevertheless, this study demonstrated the feasibility of using
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fNIRS to assess resting-state functional cortical networks and
their age-related changes.

Third, a potential confounding factor to the findings resulted
from the possibility that the participants, especially the older
adults, could go to non-rapid-eye-movement (NREM) sleep dur-
ing the measurements, which could give rise to certain spatial
changes of the resting-state network during the transition from
wakefulness to light NREM sleep, as reported by Refs. 57–59.
Thus inclusion of several key EEG channels characteristic for
identifying sleep states is suggested for future studies.

Finally, in this study, we did not record the ethnicity infor-
mation in the demographic data. The young adult participants
were recruited from graduate students on campus of the
University of Texas at Arlington. The older adults were recruited
from local community of senior centers, with majority being
Caucasian population. To avoid potential bias on the results
caused by ethnic difference, we will collect ethnicity informa-
tion and consider the corresponding effect in future studies.

5 Conclusion
In this present investigation, we introduced/combined graphical
theory analysis with the whole-head fNIRS measurements to
assess age-related changes in the resting-state functional brain
networks. We successfully proved two working hypotheses,
namely, we quantified and identified distinct global and local
graphical metrics of the cortical brain networks between young
and older adults, and revealed reorganization of network hubs in
the older adults compared to the younger group. A decrease in
global efficiency and increases in the clustering coefficient and
shortest path length were observed as characteristic features of
older participants, which reflected brain network changes due to
aging. In addition, we observed the age-related decline of major
functional connectivity hubs in the default mode network, which
might underlie the decline of short-time memory and integration
of information. Our present findings are also consistent with
the literature. All of these strongly demonstrated the feasibility
of whole-head fNIRS measurements to assess age-dependent
changes in resting-state brain networks, which could have a vari-
ety of clinical applications in the near future.

Appendix A: Effects of 5-min Versus 8-min
Duration on Functional Connectivity
To confirm the consistency between the resting-state functional
connectivity derived from 5-min versus 8-min duration, we

performed a group-level network-based statistical analysis
within the young adult group. The time series data were sepa-
rated into two groups: (a) within the first 5 min and (b) whole
period of 8 min. Panels (a) and (b) in Fig. 7 show the group-
averaged adjacency matrices derived from 5-min and 8-min
duration across the young adult group. The third panel (c) indi-
cates the functional connectivity pairs that are significantly
(marked by dots) and nonsignificantly different (marked by
background color) between the two time-duration cases.
The statistical analysis used a criterion of p < 0.05 with false
discovery rate correction. We observed a total of 20 pairs
(dots) that were significantly different versus a total of
17;556ð¼ 133 × 132Þ pairs within the adjacency matrix. These
results illustrated or confirmed that effects of 5-min versus
8-min duration of data acquisition were minimal on quantifica-
tion of functional connectivity since only 0.11%ð¼ 20∕17;556Þ
of total optode pairs were statistically affected by these two
different time durations.

Appendix B: Brain Network Metrics
For a defined network or graphN, there are n nodes and k edges;
the global and local network metrics are the output of the GTA.2

Using the GRETNA program, we computed the following graph
metrics in our study.10,37

The following parameters are global network metrics:

1. Global efficiency (Eglob):

EQ-TARGET;temp:intralink-;x2;326;446Eglob ¼
1

nðn − 1Þ
X

i≠j∈N

1

dði; jÞ :

This is the average inverse shortest path length dði; jÞ
between two nodes i and j. n is the number of nodes in
the network N.

2. Clustering coefficient CP:

EQ-TARGET;temp:intralink-;x2;326;347Cp ¼
Xn

i¼1

2Ni

cnodðiÞ½cnodðiÞ − 1� :

This is the sum of number of existing connections of
the node’s neighbors divided by the number of all
their possible connections. Ni denotes the number of
existing connections among the neighbors of node i,

Fig. 7 Adjacency matrices derived from (a) 5-min, (b) 8-min duration, and (c) their comparison across
the young adult group.
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and cnod represents the number of edges that are
connected to node i.

3. Characteristic path length (Lp):

EQ-TARGET;temp:intralink-;x2;63;712Lp ¼ 1

nðn − 1Þ
X

i≠j∈G
dði; jÞ:

This is the minimum number of edges that link any two
nodes of the network. dði; jÞ is the shortest path length
between node i and node j.

4. Normalized clustering coefficient (γ):

EQ-TARGET;temp:intralink-;x2;63;612γ ¼ Creal
p ∕Crand

p :

This is the mean of all clustering coefficients over all
nodes in a network. Creal

p and Crand
p are the clustering

coefficient in a real network and random networks.

5. Normalized path length (λ):

EQ-TARGET;temp:intralink-;x2;63;528λ ¼ Lreal
p ∕Lrand

p :

This is the average of the shortest path lengths between
any nodes of the network. Lreal

p and Lrand
p are the char-

acteristic path length in a real network and random
networks. Not that current study averaged 100 random
networks in the calculation.

6. Small-worldness (σ):

EQ-TARGET;temp:intralink-;x2;63;420σ ¼ γ∕λ

The normalized characteristic clustering coefficient
divided by the normalized characteristic path length.
A network is considered small-world if σ > 1.

7. Nodal degree (Ni):

EQ-TARGET;temp:intralink-;x2;63;337Ni ¼
X

j≠i∈G
aij:

This is the number of edges linked directly to a particu-
lar node. aij is the i’th row and j’th column element in
the adjacency matrix.

8. Nodal efficiency (Enod):

EQ-TARGET;temp:intralink-;x2;63;244Enod ¼
1

n − 1

X

j≠i∈G

1

dði; jÞ :

It is defined as the inverse of the harmonic mean of the
minimum path length between a particular node and
all other nodes in the network. dði; jÞ is the shortest
path length between node i and node j.

9. Nodal betweenness centrality (Nbc):

EQ-TARGET;temp:intralink-;x2;63;132Nbc ¼
X

m≠i≠n∈G

δmnðiÞ
δmn

;

This is the number of shortest paths between any two
nodes that run through a particular node (i). δmn is

the total number of shortest paths from node m to
node n and δmnðiÞ is the number of shortest paths
from node m to node n that pass through node i.
A high Nbc denotes large impacts of this node on
the information flow over the whole network.
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