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Abstract. Previously introduced bundles of hundreds or thousands of microfibers have the potential to extend
optical access to deep brain regions, sampling fluorescence activity throughout a three-dimensional volume.
Each fiber has a small diameter (8 μm) and follows a path of least resistance, splaying during insertion.
By superimposing the fiber sensitivity profile for each fiber, we model the interface properties for a simulated
neural population. Our modeling results suggest that for small (<200) bundles of fibers, each fiber will collect
fluorescence from a small number of nonoverlapping neurons near the fiber apertures. As the number of fibers
increases, the bundle delivers more uniform excitation power to the region, moving to a regime where fibers
collect fluorescence from more neurons and there is greater overlap between neighboring fibers. Under
these conditions, it becomes feasible to apply source separation to extract individual neural contributions.
In addition, we demonstrate a source separation technique particularly suited to the interface. Our modeling
helps establish performance expectations for this interface and provides a framework for estimating neural
contributions under a range of conditions. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.NPh.5.4.045009]
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1 Introduction
Rapid advances in genetic probes1 and optical techniques for
recording and manipulating neural activity2 are central to break-
throughs in systems neuroscience, providing tools for interrog-
ation of precisely targeted population and circuit dynamics. Yet
such techniques are inherently limited by the light scattering of
tissue. To gain access to more deep brain regions, researchers
remove superficial tissue3 or employ implantable optics, such
as gradient index (GRIN) lenses and prisms.4–6 Such implants
can damage or obliterate more superficial tissue and, given
dense local connectivity, may jeopardize local network dynam-
ics in the tissue surrounding the implant.7–9

A similar method, fiber photometry, permits access to deep
brain regions for recording bulk fluorescence via an implanted
fiber-optic probe.10–13 The technique enables high-sensitivity
recording of calcium or other fluorescent indicators expressed
either in a target population or in long range axonal projections
but is often limited to a single channel and requires an implant
on a scale of hundreds of microns, similar to a GRIN lens.
Subsequent variations have expanded the technique to record
simultaneously from up to a dozen probes and/or from multiple
regions.14 We are working to further extend the capabilities of
fiber photometry, substantially increasing the number of simul-
taneous recording channels while decreasing the core diameter
and hence the cross section of each fiber. By implanting bundles
of hundreds or thousands of small diameter (<8 μm) optical
microfibers, each fiber collects bulk fluorescence from a small
region of tissue surrounding the aperture of the fiber while

displacing substantially less tissue.15 During insertion, each
fiber follows a path of least resistance, splaying through the
target brain region. These bundles have the potential to provide
a minimally invasive way to sample fluorescence activity
throughout a target, nonsuperficial region of the brain.

With the capacity to record many more channels and to
record more precisely localized fluorescence, we move from a
paradigm of interrogating bulk activity toward one of measuring
circuit-level neural encoding. Like single-photon imaging or
multiunit electrophysiological recordings, it may not be possible
to distinguish or limit recordings to a single neuron. But much as
spike sorting enables separating individual neural activity, it is
possible to incorporate knowledge of the target neural popula-
tion and the sensitivity profile of the fibers to gain a more
comprehensive understanding of the individual neural dynamics
that will contribute to the recorded fluorescence signal.

When using a low density of fibers to interface with a low-
density cell population (a small number of neurons expressing
the fluorescent indicator), the sensitivity profile of each fiber
will be dominated by one or two neurons. Limited overlap
between the sensitivity profiles of neighboring fibers will
preclude source separation, as there will not be sufficient corre-
lations between the fluorescence signals. Alternatively, when
using a higher density of fibers, the sensitivity profiles will have
greater overlap, creating the opportunity to reverse the linear
mixing of nearby neuronal signals. Under such conditions, the
recorded signal is amenable to source separation techniques to
extract individual neural traces.

In this paper, we model bundles of hundreds or thousands of
optical microfibers distributed throughout a target brain region
as an optical interface for collecting fluorescence activity.*Address all correspondence to L. Nathan Perkins, E-mail: lnp@bu.edu

Neurophotonics 045009-1 Oct–Dec 2018 • Vol. 5(4)

Neurophotonics 5(4), 045009 (Oct–Dec 2018)

https://doi.org/10.1117/1.NPh.5.4.045009
https://doi.org/10.1117/1.NPh.5.4.045009
https://doi.org/10.1117/1.NPh.5.4.045009
https://doi.org/10.1117/1.NPh.5.4.045009
https://doi.org/10.1117/1.NPh.5.4.045009
https://doi.org/10.1117/1.NPh.5.4.045009
mailto:lnp@bu.edu
mailto:lnp@bu.edu


Our model allows us to evaluate the interface properties of the
bundle and how variables like the distribution of fibers and
neurons effects the interface performance. Our model results
indicate that with a low density of fibers, each fiber will collect
the optical equivalent of a local field potential, measuring bulk
fluorescence from a small number of neurons in close proximity
to the fiber tip; as the density of the fibers increases, overlap
between the fiber sensitivity profiles will enable collecting
sufficient information to separate individual neural activity.

2 Methods

2.1 Interface Simulation

We calculate the fluorescence sensitivity profile for a single fiber
inserted into the tissue using Monte Carlo simulations of
10,000,000 photon packets launched from the fiber as described
in Refs. 15 and 16. The tissue is modeled as a 1-mm3 volume
broken into isotropic 5-μm voxels, with the tip of the fiber posi-
tioned in the center of the volume. Photon packets are emitted
from the fiber with an angle determined by a Gaussian distribu-
tion reflecting the numerical aperture of the fiber (0.377). The
packet is modeled moving through voxels and at each step
can be either scattered or fractionally absorbed. Absorption is
dominated by hemoglobin in the blood, and as a result we
calculate the absorption coefficient based on a 3% blood volume
fraction17 with a 15-g/DL hemoglobin concentration18 and a
70% oxygenation fraction. Given the extinction coefficient of
hemoglobin,19 our absorption coefficients are μa ¼ 0.337 mm−1

for 490-nm light, μa ¼ 0.343 mm−1 for 512-nm light. Scattering
is described well in the literature, and we use a scattering
coefficient of μs ¼ 20 mm−1 with anisotropy g ¼ 0.9.20,21 By
averaging the paths of all photon packets, we construct a 3-D
photon distribution throughout the tissue.

The sensitivity profile for a bundle of fibers is obtained by
taking the linear superposition of the profile for a single fiber.
Based on our prior histology documenting the distribution of
bundles of hundreds to thousands of fibers,15 we estimate the
distribution of fibers in the tissue as a bivariate normal distribu-
tion in xy space. To explore the interface properties under
various conditions, we vary the fiber density by changing the
number of fibers for a fixed standard deviation of the spatial
distribution of the fibers. Unless otherwise noted, we use a stan-
dard deviation of σ ¼ 150 μm for xy splay, consistent with the
observed distribution of fibers at a depth of 2 mm. The fiber
depth distribution will vary based on how the fibers are cut
prior to insertion; for our simulations, we model this variability
as a normal distribution of depths with a standard deviation of
σ ¼ 15 μm. The angle of each fiber is assumed to be uniform
and parallel to the z axis.

By superimposing the sensitivity profile on the tip of each
fiber in the bundle based on the splay distribution,22,23 we
can evaluate the interface properties of the full bundle. The bun-
dle’s ability to deliver excitation light to a given neuron is equal
to the sum of all superimposed sensitivity profiles, whereas the
bundle’s ability to collect fluorescent emissions from a given
neuron is measured in terms of the few fibers that receive the
majority of the emitted light from that neuron. The combination
of the excitation and emission forms a mixing matrix

EQ-TARGET;temp:intralink-;e001;63;111Mi;j ¼ hi;j
Xn

k¼1

gj;k; (1)

where hi;j is the emission from neuron j collected by fiber i
and gj;k is the excitation from fiber k that reaches neuron j.
For the analysis presented here, we assume that excitation is
static—that gj;k does not change over time.

2.2 Neural Population Simulation

Equipped with this model of the optical interface properties for
a bundle of microfibers, we can now evaluate the ability to
measure signals from a simulated neural population. We simu-
late a three-dimensional (3-D) volume of tissue, of sufficient
size to ensure that it includes all regions of non-negligible fluo-
rescence sensitivity (usually around 1.2 mm3), with a uniform
distribution of neurons. We vary the density of neurons to
understand the impact of signal density, but use densities that
are consistent with relevant subpopulations of interest.24,25

Unless explicitly stated, simulations use a density of 250,000
neurons per mm3. We assume all neurons express the relevant
genetic probe.

Neural activity is simulated as independent spike events
(Bernoulli processes).26 The spike probability at each time
step is calculated based on the spiking frequency, which unless
otherwise stated is 0.4 Hz. Spikes are then convolved with a
GCaMP6 waveform; unless otherwise stated, simulations use
the GCaMP6f waveform with a rise time (tpeak ¼ 0.14 s) and
an exponential decay (t1

2
¼ 0.32 s).27 Fluorescence was modeled

at 100 time steps per second, and then downsampled based on
the simulated frame rate for the recording setup.

The fluorescence traces for each neuron are then combined
via the mixing matrix described in the previous section to
produce fluorescence traces for each fiber. The fluorescence
collected by a fiber can be written

EQ-TARGET;temp:intralink-;e002;326;403yi ¼
Xn

j¼1

Mi;jxj; (2)

where xj is the fluorescence for neuron j and yi is the fluores-
cence signal collected by fiber i.

2.3 Source Separation

Given the linear mixing process inherent in the fluorescence
signal collected by each fiber, the data are well suited to blind
source separation techniques to estimate the underlying neural
fluorescence signals. To improve the performance of the source
separation, we developed an approach that incorporates our
knowledge of the mixing process and associated fluorescent
indicator dynamics. Similar to existing techniques that use
deconvolution to estimate precise spike timing,28 we initially
inverse filter the recorded signal to remove the fluorescent indi-
cator dynamics. This step requires an estimate of the exponential
decay associated with the calcium response and indicator time
constant and can be omitted for indicators where these dynamics
are not known or are not stereotyped

EQ-TARGET;temp:intralink-;e003;326;159Y ¼ MX; where ~xi ¼ ~w � ~si; (3)

EQ-TARGET;temp:intralink-;e004;326;127Z ¼ MS; where ~zi ¼ ~w−1 � ~yi; (4)

where Y is the recorded fiber output,M is the mixing matrix, and
X is the fluorescence signal produced by convolving the under-
lying signal ~si of neuron i with the indicator waveform ~w.

Neurophotonics 045009-2 Oct–Dec 2018 • Vol. 5(4)

Perkins et al.: Extracting individual neural activity recorded through splayed optical microfibers



By applying an inverse filter (~w−1), we produce matrix Z that is
equal to applying the mixing directly to the underlying signals.

Next, we apply the non-negative-independent component
analysis algorithm29 to perform blind source separation under
the constraints of non-negativity. The algorithm first whitens
the data, and then applies a series of orthonormal rotations to
reduce the error between Z and the reconstruction of Z from
the rectified (non-negative) components of S.

Having separated the independent signals, we can then apply
the waveform filter (~w) to produce fluorescence traces that
correspond with the identified independent components.

As there are many more neurons than fibers, separating all
neural activity is an underdetermined problem. This technique is
limited to extracting as many neural traces as there are fibers.

2.4 Evaluating Source Separation

The evaluation of the source separation must consider both that
the output of the source separation is a small subset of the under-
lying neural signals and the underdetermined nature of the blind
source separation. To this end, we calculate the correlation coef-

ficients of each separated signal (~̂xi) with each true, simulated
fluorescence trace (~xi). The quality of the separation is then
evaluated based on how many of the separated signals have
a sufficiently high correlation with a true trace. In Sec. 3, we
evaluate threshold choices and how they impact the number of
extracted “true” signals.

To understand the source separation in the context of an
experimental question, we further evaluate the separated signals
on a spike detection task. Using the approach of detecting
threshold crossings as a proxy for neural spikes, we can compare
threshold crossing events in the separated signal with those in
the matched underlying neural trace. This forms a binary
classification task that can be measured in terms of a receiver
operating characteristic plot and the accompanying area under
the curve (AUC).30 The AUC represents how well threshold
crossings on the separated signal can be used to approximate
threshold crossings on the true neural fluorescence; an AUC of
0.5 indicates poor performance (unable to separate), whereas
a value of 1 indicates perfect performance.

As a control, we compare correlations between the separated
signals with a set of randomly generated traces.

2.5 Code

The code to generate the fiber sensitivity profile and to run all
described models are publicly available at https://codeocean
.com/2018/11/12/fiber-source-separation/code. The MATLAB
modeling and source separation implementation is available
on Github https://github.com/nathanntg/fiber-source-separation.

3 Results

3.1 Relevant Experimental Technique

The relevant experimental technique being modeled, including
the optical interface, implant methods, and motivating histology,
is fully described in Ref. 15. In brief, we use commercially
available flexible endoscopes (Schott 1534180), which are
manufactured by dissolving an acid soluble glass between the
individual fibers in coherent imaging bundles. This produces
an endoscope with thousands of dissociated fibers that come
together in polished imaging surfaces at both ends [Fig. 1(b)];

each fiber has a core (diameter: 5.1 μm), a cladding (thickness:
1 μm), and the remnants of the acid soluble glass (thickness:
0.4 μm). By cutting the bundle in half, the dissociated fibers
are exposed [Fig. 1(c)].

After cutting away a fraction of the fibers in the bundle
(based on the desired implant count), the remaining fibers
are anchored together 4 to 5 mm from the tip using a bead
of light-cured acrylic (Flow-It ALC, Pentron Clinical). The
bead is secured to a digital manipulator in a stereotaxic rig.
An anesthetized animal is mounted in the rig, and a craniotomy
and durotonomy are opened above the target brain region.
The fibers can then be slowly lowered into the tissue; the fibers
have enough rigidity to enter the tissue without bending.
Histology from implants shows that each fiber follows a path
of least resistance, spreading through the target brain region
[Fig. 1(d)].

The other end of the fiber (a ferrule and polished imaging
surface) can be mounted below an objective in either a tradi-
tional fluorescence microscope or a purpose built optical
configuration to provide excitation light and collect emission
light via a CMOS sensor [Fig. 1(a)].

3.2 Fiber Profile Model

In Fig. 2, we show a two-dimensional (2-D) slice of this 3-D
photon distribution and compare it with a similarly generated
profile of fluence in water (i.e., without negligible absorption
and scattering31). The profile in water and tissue is similar,
reflecting the fact that the relevant length scales are below
the mean free path of light in brain tissue. That is, even in
the tissue, photons undergo negligible scattering on the length
scales relevant to the interface. In addition, we compare the two
computationally generated profiles with an image of a single
fiber in a fluorescein solution. Blue light is shone through the
fiber, and the illuminated fluorescein is imaged through a 500-
to 550-nm emission filter, revealing a distribution consistent
with the model.

3.3 Interface Model

Calculating the fluorescence sensitivity profiles for various dis-
tributions of optical microfibers, consistent with prior histology,
we are able to model and evaluate the number and relative
brightness of neurons contributing to the detected fluorescence
signal. Figure 3 shows the modeled distribution of fibers and the
relative brightness of individual neurons under different sets of
conditions: two fiber densities (varying the number of fibers
with the same standard deviation of splay) and two neural den-
sities (reflecting different potential subpopulations). As the neu-
ral population is assumed to be uniformly distributed, increasing
the density of neurons results in an increase in the number of
neural traces being collected by the implant. Increasing the num-
ber of fibers has a more pronounced effect, as it increases the
magnitude and uniformity of the excitation power delivered to
the region and achieves a more dense sampling of fluorescence
from the target neural population.

This relationship between the number of fibers and the number
of neurons contributing fluorescence is explored further in Fig. 4,
with each point based on the average of five randomly generated
distributions of fibers. As the number of fibers increases, we ini-
tially observe a rapid increase in the number of neurons whose
fluorescence contribution to a given fiber is above illustrative
thresholds, due both to the increased sampling and to the
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more uniformly distributed excitation power. These effects even-
tually saturate as the distribution of fibers is kept fixed and all
neurons within the field-of-view of the fixed distribution of
fibers are contributing fluorescence signals.

These results demonstrate that the number of neurons contrib-
uting to the fluorescence signal increases more rapidly than the
number of fibers. Under low densities of fibers, each fiber collects
from a distinct set of neurons and the low-excitation power means
that the signal will be limited to the 2 to 3 neurons closest to the
fiber aperture. But as the fiber density increases, the paradigm
shifts to one where many neurons are contributing fluorescence
to multiple nearby fibers [(Fig. 4(b)]. As multiple neural traces are
present in the signal from a single fiber, it becomes beneficial to
be able to apply source separation techniques.

For source separation to be effective, there needs to be an
overlap in the sensitivity profiles of fibers and, as a result,

neurons contributing fluorescence to multiple fibers. The dashed
lines in Fig. 4 show how many neurons contribute fluorescence
to two or more fibers. As the number of fibers increases, this
value also increases, suggesting that source separation becomes
more feasible.

The breakdown of the fluorescence signals recording by
an average fiber is shown in Fig. 5, depicting the relative con-
tribution of the neurons that most strongly interface with the
fiber. Each fiber collects the fluorescence from many neurons.
Figure 5 shows that the brightest cell is on average 50% to 100%
brighter than the next brightest cell contributing fluorescence to
a given fiber. As the density of fibers increases (and, as a result,
increases the uniformity of the excitation power), the drop
off in brightness from subsequent neurons in the sorted list
of neurons becomes less pronounced. We can look at this
same breakdown from the other perspective: how many fibers

Fig. 1 Illustration of the described method, using a bundle of optical microfibers as a multichannel, deep
brain recording interface. (a) A standard fluorescent imaging configuration is used to interface with the fiber
bundle. The polished imaging surface is mounted below an objective. Excitation light from an LED or other
light source passes through a filter cube and is coupled into the fiber bundle; fluorescent emissions return
through the objective, pass through the emission arm of the filter cube and are recorded by a camera. The
fiber bundle consists of dissociated fibers, each with a diameter of 8 μm. The individual fibers are implanted
into the target brain region and secured to the skull. (b) The polished imaging surface as seen by
the camera. (c) A bundle of 18,000 fibers prior to implant with gray silicone sheathing cut away.
(d) Histology at the tip of a bundle implanted to 2.95 mm in a zebra finch, showing 530 optical microfibers
(annotated in green). The fibers displace substantially less tissue (orange circle is cross section of
displaced tissue) than existing optical techniques for recording from such a large volume of tissue.
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capture the fluorescence from one neuron, as shown in Fig. 6.
With a low number of fibers, the overwhelming majority of
fluorescence from a neuron reaches a single fiber. As the density
of fibers increases though, this shifts such that multiple fibers
capture the fluorescence from a single neuron, permitting the
application of source separation approaches.

3.4 Source Separation

Given a higher density of fibers, we can apply the blind
source separation technique described in Sec. 2 to approximate
individual neural components that may be contributing to
the recorded fluorescence. Figure 7 shows a toy model, created
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Fig. 3 The neural population we expect to interface with through a bundle of splayed optical microfibers.
The spatial distribution of fibers (small pink dots) is based on the bivariate normal distribution seen in
histology slices,15 and is shown in relation to the neurons (large circles) that are contributing fluorescence
to the collected signal above a 1% threshold. Neurons are colored based on their fluorescence signal
contribution to the fiber normalized by the maximum fluorescence signal that would be recorded when
a cell is immediately under a fiber. Columns show two distinct fiber counts (with same splay parameter,
σ ¼ 150 μm); rows show two distinct cell densities.

Fig. 2 (a) A single-fiber tip in a fluorescein solution with blue light (446 to 486 nm) emitted from the fiber.
Due to the near total internal reflection, the light exits the tip of the fiber. The image, captured by a fluo-
rescence microscope with a GFP filter, reveals the fluence excitation profile for the cut fiber. Grayscale
image recolored to match modeled fluorescent profiles. (b) The linear fluence excitation profile of a single
fiber, calculated via a Monte Carlo simulation of photon packets propagating through water. (c) The linear
fluence excitation profile from a single fiber, calculated via a Monte Carlo simulation of photon packets
propagating through the tissue. At each step, a photon packet may scatter or be absorbed based on
tissue properties estimated for 490-nm light. Note that incorporating tissue scattering properties does
not dramatically alter the profile, as the scale is below the mean free path of light in the brain. The dotted
contours show the region that will receive 2.5 mW∕mm2 or greater excitation, given coupling 1.25, 2.5, or
5 μW of light into the fiber.
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to be illustrative of the linear mixing of hypothetical neural
traces (based on a Bernoulli spiking process convolved with
the GCaMP6f waveform) and the subsequent results of the
source separation technique.

In order to assess the performance of the source separation,
the separated signals must be compared to all underlying neural
activity to see if the extracted signals correspond with specific
neural traces. We match extracted signals with underlying neural
traces based on correlations; extracted signals having a suffi-
ciently high correlation to the fluorescence of an underlying
neuron (r2 ≥ 0.6) are considered an accurate match. Figure 8
shows the percentage of extracted traces that are accurate
matches with and without source separation, under a number
of different model parameters (fiber counts and neural firing
rate). Bundles with a larger number of fibers have a larger num-
ber of accurate matches, but calculating the percentage accuracy
(normalizing by the number of fibers) better enables comparing
performance across fiber counts. First, we assess accurate
matches between the signals recorded via the fibers (without
any source separation) and the underlying neural traces; as sug-
gested by the earlier modeling, many fibers are dominated by
1 or 2 neurons and produce accurate matches without additional
processing. By applying non-negative-independent component
analysis, the number of accurate matches increases across all
parameters. The increase is significant in all cases (paired t-test,
p ≤0.01). The benefit of source separation becomes more
pronounced with an increasing number of fibers, consistent

with our expectations given the greater overlap between neigh-
boring fibers resulting from both the number of fibers and
the increased uniformity of excitation power. As a control, we
compare the fiber signals with newly-generated neural traces to
confirm that the identified accurate matches are not simply
a probabilistic result of the large neural population being
modeled; with the newly-generated data, none of the traces
accurately match (not pictured), indicating that matches are not
false positives.

Because this sort of evaluation may be sensitive to the r2

threshold, we also evaluated the utility of the matched traces
for different thresholds. A receiver operating characteristic curve
(Fig. 9) evaluates the performance of using accurately matched,
separated signals to detect action potentials (via threshold cross-
ing) for a range of r2 thresholds. As the r2 accuracy threshold
increases, the matched separated signals provide a more useful
input for threshold detection, at the expense of reducing
the number of separated signals. These results motivated the
selected threshold of 0.6. As a control, the same threshold cross-
ing detection was repeated comparing the separated signals to
unrelated random traces. The AUC was between 0.5 to 0.51 for
all r2 thresholds (not pictured), consistent with the lack of
a relationship between the ground truth and separated signals.

4 Discussion
Bundles of splaying optical microfibers present a versatile
extension to existing fiber photometry methods, enabling the
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Fig. 4 By increasing the number of fibers, while holding the splay diameter constant (σ ¼ 150 μm), the
bundle can interface with more neurons. The visibility of a neuron is calculated based on their fluorescent
contribution to a fiber normalized by the maximum fluorescence signal that would be recorded when a cell
is immediately under a fiber. Each point is the average of five randomly generated fiber implant distri-
butions. (a) The solid lines plot how many neurons are clearly visible (given different thresholds, repre-
sented as different color lines) to at least one fiber in the bundle. The dotted lines plot how many neurons
are clearly visible to two or more fibers. (b) How many neurons are visible to a single fiber in the bundle.
As the number of fibers increases, the excitation power increases and more neurons become visible.
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Fig. 5 The contribution of individual neurons to the signal recorded through a single fiber. Values are
normalized to the first (brightest) neuron visible to the fiber. Increasing the number of fibers does not
substantially change the distribution, but delivers more light, which increases the brightness of the neu-
rons further from the tip of the fiber. Each fiber captures fluorescence from a number of neurons, with an
exponential drop off in the relative contribution of neurons. Each plot represents the average distribution
of neural contributions for each fiber, averaged across fibers, and across five randomly sampled
distributions of fibers. The four subfigures show increasing numbers of fibers, with a constant amount
of splay (σ ¼ 150 μm).
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Fig. 6 Each neuron primarily contributes fluorescence to a single fiber. Each box represents the strength
of the interface between a given neuron and a fiber (round trip fluorescence), sorted in descending order
of signal contributed to each fiber and normalized so that the strongest interface (the first fiber) is 100%.
Plots are based on 5 sampled distributions of fibers, evaluating the 50 brightest neurons (most visible to
a single fiber, in terms of round trip fluence). (a)–(d) show increasing number of fibers in a bundle, with
a constant amount of splay (σ ¼ 150 μm).
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sampling of fluorescence from hundreds or thousands of points
throughout a target brain region while displacing less tissue than
traditional, large diameter photometry ferrules or GRIN lenses.

When using a small number of fibers, the method achieves
a high-channel count variation of fiber photometry,14 collecting
fluorescence activity from a small region of tissue at the tip of
each fiber. As shown in Fig. 4, with a sparse target population or
with sparse expression of the fluorescent indicator, this signal
may correspond with just one or two cells.

As the number of implanted fibers increases or as the density
of the implanted fibers increases, the recording paradigm shifts.
More fibers result in greater excitation power distributed over
a larger volume of tissue (and, as a result, more fluorescent
signal from more neurons), and higher fiber density results in
increased overlap between the sensitivity profiles of neighboring
fibers. With this shift, the fluorescent signal from a single cell is
more likely to contribute to multiple fibers (Fig. 5). These cor-
relations enable application of source separation techniques to
estimate individual neural activity.

Blind source separation techniques are widely used in neuro-
science for decoding of neural signals,32 for identification
of functional and anatomical connectivity,33 and for analyzing
electroencephalography signals,32 as well as for applications
more akin to the one described here. Source separation—
specifically, independent component analysis34—has been
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Fig. 7 Simplified model used to exemplify the source separation process. (a) A simple 2-D configuration
of fibers and neurons to demonstrate the source separation technique. Three fibers are shown in gray,
each with contours representing their sensitivity profile. Three neurons (blue, red, and yellow) are posi-
tioned near the fibers while many neurons are distributed further from the fibers (creating background
fluorescence). (b) Traces for the three neurons of interest generated as a random Bernoulli process con-
volved with a GCaMP6f waveform. (c) The signals recorded from the three fibers, representing a linear
mixing of all the neurons based on the relative sensitivity. (d) The three outputs of the source separation
process, sorted to most closely match the original neural traces.

Fig. 8 Percentage of extracted signals that accurately match an
underlying neuron, based on a correlation of r 2 ≥ 0.6. The first column
(blue) shows the accuracy of the raw fiber intensity values; as some
fibers are dominated by 1 to 2 neurons, there is a high percentage of
traces that closely match underlying neurons. The second column
(red) demonstrates the benefit of blind source separation, increasing
the number of accurately extracted signals. These results are consis-
tent and robust across variousmodel parameters, including number of
fibers and neural firing rates. In all cases, the source separation pro-
duces a significant increase in number of accurately matched traces
(paired t -test, p ≤0.01). Error bar shows std. dev. over 5 iterations.
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applied in processing single- and multiphoton microscopy to
identify and extract individual cellular contributions akin to
spike sorting in electrophysiology.35–38

These existing blind source separation techniques can be
applied directly, as the overlapping sensitivity profiles associ-
ated with each fiber act as a linear mixing of fluorescence activ-
ity from the surrounding tissue. Yet the physical distribution
of the splayed optical microfibers and the mechanics of the
fluorescent indicator provide useful constraints that can further
inform the source separation process. Specifically, we adopt
an approach that incorporates the dynamics of the fluorescent
indicators and the non-negativity of the mixing process. First,
we use an inverse filter to remove the fluorescence waveform.
Our approach assumes consistent and known waveform dynam-
ics, which enables the inverse filtering; should this assumption
not apply, source separation techniques designed for convolutive
mixtures become relevant and enable estimating both the mixing
and convolution steps.39,40 We then use a non-negative-indepen-
dent component analysis algorithm to estimate an unmixing
matrix to separate the recorded signals into independent compo-
nents. This achieves a linear unmixing that is consistent with the
constraints of the recording mechanism, where the individual
neural sources additively contribute to the recorded signals.

Similar techniques and model constraints are frequently
used in traditional calcium imaging, using non-negative matrix
factorization and deconvolution to extract neural activity and
estimate underlying spiking.28 Another approach that may
be applicable is Bayesian source separation, which seeks to

estimate the mixing matrix and source signals by maximizing
the probability of both the underlying source signals, and the
resulting mixing of these source signals.41 Our observations
about the sparseness of the mixing process, as well as any
existing knowledge regarding the target population activity,
can be incorporated into the prior.

In exploring source separation techniques, we also looked
at what factors impact the source separation performance.
Unsurprisingly, increased recording duration improves the
performance. More relevantly though, source separation perfor-
mance is best with sparse signals (low-spiking frequency and
fast time-course fluorescent indicators, such as GCaMP6f).
Such sparse signals provide discrete, differentiable events that
are conducive to estimating the underlying mixing process.

To evaluate the performance of the source separation for
a realistic analysis task, we compared spike detection analysis
on the separated signals and on the true, underlying neural
traces. Separated signals are first matched with the underlying
neural traces based on correlations; the majority of the separated
signals have a strong correlation (r2 ≥ 0.6) with one of the true
neural traces and, as a result, achieves a high level of accuracy in
the threshold crossing task. Of course, analysis of real-world
data would not have the benefit of being able to identify the
extracted signals that match the underlying neural activity, but
these results suggest that the hundreds or thousands of channels
of data collected through the fiber bundle have the potential to
reveal neuron-level dynamics of interest.

Further work can look at incorporating additional informa-
tion into the source separation process. For example, it may
be possible to estimate the initial mixing matrix through empiri-
cal measurement of correlations between fibers. Specifically, by
shining light down a single fiber and looking at light collected
by the other fibers, it may be possible to estimate the relative
spatial configuration of the fibers and, as a result, the correla-
tions that we would expect in the linear mixing process.

More broadly, our work here has laid a modeling framework
for evaluating high-channel count fiber photometry as a means
of interfacing with deep brain regions. By estimating the overlap
of neighboring sensitivity profiles and hypothetical neural pop-
ulation dynamics, we can describe both the likely composition
of the signals collected by individual fibers and the larger mix-
ing process that occurs. One limitation of our study, although
likely minor, is that we simulated neural signals as arising
from point sources. Further work is needed to explore the full
impact of the fluorescent signals arising from large and complex
neurons, which may alter both the mixing process and the
feasibility of source separation.
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