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Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) uses surface-placed light sources
and detectors to record underlying changes in the brain due to fluctuations in hemoglobin levels
and oxygenation. Since these measurements are recorded from the surface of the scalp, the map-
ping from underlying regions-of-interest (ROIs) in the brain space to the fNIRS channel space
measurements depends on the registration of the sensors, the anatomy of the head/brain, and the
sensitivity of these diffuse measurements through the tissue. However, small displacements
in the probe position can change the distribution of recorded brain activity across the fNIRS
measurements.

Aim: We propose an approach using either individual or atlas-based brain-space anatomical
information to define ROI-based statistical hypotheses to test the null involvement of specific
regions, which allows us to test the analogous ROI across subjects while adjusting for fNIRS
probe placement and sensitivity differences due to head size variations without a localizer task.

Approach: We use the optical forward model to project the underlying brain-space ROI into a
tapered contrast vector, which defines the relative weighting of the fNIRS channels contributing
to the ROI and allows us to test the null hypothesis of no brain activity in this region during
a functional task. We demonstrate this method through simulation and compare the sensitivity-
specificity of this approach to other conventional methods.

Results:We examine the performance of this method in the scenario where head size and probe
registration are both an accurately known parameters and where this is subject to unknown
experimental errors. This method is compared with the performance of the conventional method
using 364 different simulation parameter combinations.

Conclusion: The proposed method is always recommended in ROI-based analysis, since it sig-
nificantly improves the analysis performance without a localizer task, wherever the fNIRS probe
registration is known or unknown.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that
uses low levels of red to near-infrared light to measure changes in the optical absorption due
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to hemoglobin in the brain. Typically, light is sent into the tissue from source positions on the
scalp. This light diffuses through the tissue, and a small fraction of the light is detected at a
discrete set of optical detector positions placed several centimeters from the originating source
position. These channel-space measurements are sensitive to changes in the optical properties of
the tissue along this diffuse volume between the light source and detector. During an evoked
functional task, the changes in blood flow and oxygenation in the brain result in fluctuations in
optical absorption due to hemoglobin in this local region, and this gives rise to changes in the
fNIRS measurements in the source–detector pairs (channels) crossing this region. Using a grid of
these optical source and detector positions embedded in a head probe, functional brain activity
can be recorded from regions of the surface of the brain’s cortex. Over the last three decades,
fNIRS has been used in a variety of different brain imaging studies and populations (reviewed in
Refs. 1–4). In particular, the ability to noninvasively record brain activity without participant
immobilization or a specialized dedicated scanner environment (cf. magnetic resonance imaging;
MRI) makes this technique well suited for studies in pediatric populations (reviewed in
Refs. 1 and 5–7).

A challenge of fNIRS measurements, however, is group-level registration of these signal
changes from these sparse surface-based measurements. Small displacements in the probe
position relative to the underlying brain region can change the distribution of recorded brain
activity across the fNIRS measurements. This is particularly problematic in cross-sectional
or longitudinal studies of child development, where the head size varies between sessions.
Moreover, these measurements are also sensitive to intersubject differences in head anatomy,
such as skull thickness and depth of the brain relative to the skin’s surface. Thus, this uncertainty
increases variance across measurement sessions and reduces statistical effects sizes. This also
makes studies of brain activation changes with child age and development difficult.

An alternative approach to this would be to use an individual’s response to a “localizer”
functional task to define consistent underlying brain regions across participants. While this
data-driven approach makes fewer assumptions than atlas-based models (as will be detailed
in this work) to define regions-of-interest (ROIs), this method requires the ability to robustly
measure a specific localizer task response for a given brain region in each subject. This is not
always possible since not all brain regions can be specifically and uniquely defined by localizer
tasks, which may involve multiple regions of the brain. In addition, single-subject statistics are
often not reliable enough to define individualized regions for many tasks or subject populations.
Thus, while the use of a localizer task is recommended when possible, more generalizable
solutions are also needed.

Methods for the spatial registration of the fNIRS head cap and measurement channels with
respect to the brain have been described in previous work.8–11 Although not always possible or
practical, fNIRS investigators often record this information with either a three-dimensional (3-D)
camera and registration system (e.g., Ref. 12) or simply using a tape measure to record head-size
and potentially the location of the fNIRS sensors relative to the international 10-20 system.
However, although this registration information is recorded as part of fNIRS experimental best
practices by many labs, there has been very little development of quantitative methods to actually
quantitatively use this information within fNIRS analysis.

In this work, we propose a new approach to quantitatively incorporate head- size, probe
registration, and/or individual anatomical information to define ROIs for fNIRS analysis. In this
proposed method, we make use of the optical “forward model,”which describes the sensitivity of
a particular fNIRS source–detector pair to the underlying brain regions based on the diffusion/
transport of light in the tissue. The optical forward model is used to create a testable null hypoth-
esis about the involvement of a particular region of the brain using a weighted average of the
measurement channels. For example, based on the registration of the fNIRS probe, brain activity
from a particular Brodmann area13 region would be expected to be highest on a specific fNIRS
channel with tapered responses to nearby channels. Using this tapered spatial distribution of
expected signal changes allows us to create a statistical model of what the fNIRS data would
be expected to look like if this region was active in the task. Likewise, this creates a testable null
hypothesis — if this signal change in this region was not different from zero then a spatially
weighted average over this particular set of channels would also be not differ from zero.
If the weighted average over these channels was nonzero, then we can reject this null hypothesis.
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The rejection of this null hypothesis means that we cannot rule out that this region was active
during the task, but does not actually imply that the signal definitely came from this region as
opposed to a nearby or smaller region of the brain, which was also sampled by this set of chan-
nels. Nonetheless, the interpretation of such a result would be that the recorded brain signals are
consistent with that particular region’s involvement in the task.

Since this method utilizes the optical forward model, it provides means to adjust the null
hypothesis based on head size, probe registration, and/or individual anatomy. For example, the
expected projection of a region such as dorsal-lateral prefrontal cortex might be higher on more
lateral fNIRS channels in a subject with a smaller head size compared to a subject with a larger
head using the same fNIRS probe and spacings. In most cases, particularly in studies of children,
knowledge of individual brain anatomy (e.g., via MRI) is not practical, but measurements of
head size, placement of the probe relative to 10-20 locations, or 3-D positioning cameras are
often recorded and can be used in this proposed method. In addition, this approach does not
require a separate localizer task condition to define the ROI. While the activation maps from
a separate localizer task provide an objective way to define an ROI on an individual subject basis,
this approach is not always practical. In addition, if the localizer task is not exceptionally strong/
statistical, there will be uncertainty in the region definitions.

In this paper, we describe the theory behind our approach to use individualized tapered
weights to define the statistical contrast for ROIs and compare the use of tapered and uniform
weighted models. We also examine the effect of small errors in the probe registration on the
model performance to examine the method under realistic conditions.

2 Theory

2.1 Analysis of fNIRS Data

Functional NIRS data are recorded as changes in the light from a source position incident on a
detector position (e.g., transmitted between a source–detector pair) as a function of time. These
signals are first converted to changes in optical density (optical absorption) over time as given as

EQ-TARGET;temp:intralink-;e001;116;381ΔODðtÞ ¼ − log

�
IðtÞ
I0

�
; (1)

where IðtÞ is the intensity of the signal recorded and I0 is the reference signal intensity at
baseline (usually taken as the mean of the signal over the scan). The optical density changes
at wavelength λ are then transformed into estimates of oxy- and deoxyhemoglobin (HbO/HbR)
changes using the modified Beer–Lambert law14

EQ-TARGET;temp:intralink-;e002;116;288ODλ ¼ l · DPFλ½ελHbOðΔ½HbO�Þ þ ελHbRðΔ½HbR�Þ�; (2)

where l is the source–detector distance and DPF is the differential pathlength. Δ½HbX� is the
change in molar concentration and εHbX is the molar extinction coefficient, where HbX repre-
sents either HbO or HbR for oxy- and deoxyhemoglobin, respectively.

In most evoked fNIRS studies, a task(s) is repeatedly preformed while recording the fNIRS
signals. A first-level statistical model (subject-level statistics) is then used to examine changes in
the fNIRS signals during the task.15–17 More formally, the linear regression model is described by
the equation

EQ-TARGET;temp:intralink-;e003;116;171Y ¼ Xβþ ε; (3)

where X is the design matrix of the modeled hemodynamic response encoding the timing of
stimulus events and β is the coefficient (weight) of that stimulus condition for that source–
detector channel. This statistical model can be either a block average, deconvolution, or
canonical hemodynamic response method (see Ref. 17), which results in an estimated statistical
parameter (typically and herein termed β) and its uncertainty across the spatial channels (herein
termed covβ). Specifically, in the case of block averaging or deconvolution, β would be the
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parameter of interest (mean over a time window, maximum, etc.) computed from the estimated
response. In the case of a canonical linear model (or something similar), then β would be the
estimated coefficient for the regression model. In general, βi, the i’th element of β, is just a
statistical parameter associated with the i’th spatial fNIRS measurement channel upon which
we are basing the hypothesis test (e.g., βi differs from zero). The spatial covariance of this
parameter is denoted as covβ.

Based on the estimate of the parameters and their uncertainties over the multiple channels in
a fNIRS probe, the calculation of a Students t-statistic for an ROI is given as

EQ-TARGET;temp:intralink-;e004;116;639t ¼ c · βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT · covβ · c

q : (4)

The contrast vector (c) denotes the weights given to channels being averaged. In this expres-
sion, β is a vector denoting the statistical parameter for each spatial channel of the fNIRS probe.
Note, this formalism allows for multiple task conditions for each channel, but for simplicity of
explanation, we will assume there is only one task-associated parameter (βi) per measurement
channel. In the case of multiple task conditions, the contrast vector is the Kronecker product (⊗)
of the spatial contrast vector and the per-task-condition contrast vector and the β and covβ terms
contain all tasks and spatial channels.

The statistic defined by Eq. (4) can be used to test the following null hypothesis:

EQ-TARGET;temp:intralink-;e005;116;489H0∶
XN
i¼1

ci · βi ¼ c · β ¼ 0; (5)

where N is the total number of channels. For example, c ¼ ½1
3
; 1
3
; 1
3
; 0; 0; 0�T would be used to

average the values of the first three (of six) spatial channels with uniform weights. This contrast
vector (c) encodes the null hypothesis being tested, which, in this example, is that the mean of the
first three channels is not different from zero. This is the same expression as used to compute
contrast between tasks for a single spatial channel (e.g., task A verses task B) where the covari-
ance is described between the conditions (e.g., from linear regression analysis) (see Ref. 18).

2.2 Proposed Method

A statistically significant βi (different from 0) that represents the signal in the i’th channel has a
strong relationship with the modeled hemodynamic response and consequently indicates the area
of the cortex efficiently covered by this channel is not inactive. The statistical significance of a
linear combination of βs implies the activity of the area covered by the corresponding channels,
and the coefficients (weights) of the linear combination can determine the shape of the area.
In the previously (Sec. 2.1) shown example, the entire test area consists of the regions covered
by the first three channels with equal weights. However, the ROI in an experiment is rarely a
combination of areas equally covered by several channels, especially the predefined anatomical
areas, e.g., Brodmann areas,13 since the sensitivity to a given area is maximized in the nearest
channel and decreases with the distancing from the channel. Thus, we propose that the contrast
vector (c) in Eq. (4) can be used to test the null hypothesis of the noninvolvement of specific
underlying regions of the brain. Specifically, instead of using uniform weights to sum over a
specific set of channels as used in the previous example, we propose to use a tapered contrast
vector that peaks on the spatial channel most expected to be active in the hypothesis and lowers
based on the relative sensitivity of other channels to this same region. Examining Eq. (4), we note
that the numerator in this expression is the inner product of the c and β vectors. This inner
product is maximized when the two vectors point in the same direction, which implies that the
t-statistic will be largest when the spatial distribution of the c vector matches the expected spatial
distribution of the brain activity. Ergo, if the brain activity came from a particular region such as
BA-46 defined by the Brodmann areas,13 then the t-statistic will be maximized when the contrast
vector has the tapered spatial distribution consistent with the fNIRS probe placement relative to
this region. Comparing to the conventionally used uniform weights, the tapered weights increase
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the contribution of the expected region and decrease that of the noise from other areas. Thus, this
is the most conservative test of the null hypothesis. This approach allows us to first pose specific
null hypothesis tests about underlying regions of the brain. For example, if BA-46 were not
active in the task, then the specific spatial weighing of channels would not differ from zero.
While the rejection of this null hypothesis (e.g., finding that the value of the ROI average differs
from zero) implies that we cannot rule out that (e.g.,) BA-46 was involved in the task, this how-
ever, does not mean that BA-46 specifically was involved rather than some other nearby region.
Second, this formalism allows us to statistically test the involvement of different regions. For
example, using two separate contrast vectors we can test if the brain activity was more consistent
with (e.g.,) BA-46 or BA-4513 by statistically comparing those two t-statistics.

We propose that this tapered spatial weighting of channels is based on the optical forward
model, the registration of the fNIRS probe, and the underlying regional parcellations of the cor-
tex. The optical forward model [Eq. (2)] defines the sensitivity of the measurements in channel
space to underlying changes in the brain space. This model is calculated by estimation or sim-
ulation of the diffusion of light through the tissue (e.g., Refs. 19 and 20). The optical forward
model provides an estimate of the expected signal changes for the fNIRS measurement geometry
given by the expression

EQ-TARGET;temp:intralink-;e006;116;532Y ¼ Lμvolume; (6)

where Y is the measurement for a specific fNIRS probe, L is the forward model relating that
probe layout and registration to the underlying head/brain, and μvolume is the underlying change
in optical absorption in the volume. Based on the registration of the fNIRS probe to an
anatomical atlas or individual anatomy (if available), the expected relative sensitivity of each
fNIRS source-to-detector channel can be estimated from the location and depth of anatomically
defined regions through the optical forward model.

To test for statistical activity from specific anatomically based ROI, we can use the optical
forward model and Eq. (6) to define the hypothesis of what the activity pattern in channel-space
should look like based on the location in volume (brain) space. In other words, to form the null
hypothesis testing for activity in a specific ROI, the contrast vector is given as

EQ-TARGET;temp:intralink-;e007;116;381cROI ¼ L · MaskROIðrÞ; (7)

where the mask vector for a specific ROI is defined by Eq. (8), in which r represents each point
of cerebral cortex

EQ-TARGET;temp:intralink-;e008;116;326MaskROIðrÞ ¼
�

1

0

if r ∈ ROI

otherwise
: (8)

To generalize this method for multiple conditions comparison, the contrast vector used in
Eq. (4) can be replaced as

EQ-TARGET;temp:intralink-;e009;116;256c ¼ cROI ⊗ cCOND: (9)

Here, cCOND is the contrast vector for the pooling of conditions. Then, a t-test can be per-
formed using the statistic defined by Eq. (4) with the proposed contrast vector given by Eq. (9).

2.3 Example

In this section, we demonstrate the process of contrast vector calculation for a specific ROI and
the analysis with the contras vector. Suppose we are interested in whether BA-45 left or BA-46
left is involved in an experiment. In this example, we would also like to test the difference
between the activities of the two ROIs. Figure 1 shows the two regions in Colin27 atlas21 and
an example probe registered to the 10-20 system. See Sec. 3.1.1 and Fig. 2 for the details of
the probe.

Based on the registration of this probe and the labeled parcellations of the brain (in this case
the Taliarach-deamon22 parcellation of the Colin27 atlas21), we can construct a spatially tapered
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contrast vector using Eqs. (6)–(8). Table 1 shows the weights of each channel in the contrast
vector. The first two columns are the weights for the two ROIs—BA-45 L and BA-46 L, respec-
tively, and the third column contains the weights to test the difference between them, which are
obtained by simply subtracting the second from the first column. As a comparison, the conven-
tionally used uniform weights are also listed in the table, which are obtained by assigning equal
weights to the nearest four channels to each region.

3 Methods

In this paper, we compare the proposed tapered contrast vector method to the conventional analy-
sis methods using simulation data. We compare two different approaches to computing the ROI
contrast: (1) in the uniform weighting scheme, the four channels closest to the underlying ROI

(a)

(b) (c)
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Channel Detector Source

Fig. 2 The topology of the low-density probe used in the simulation: (a) The 2-D layout, (b) the
registered probe with the 10-20 International System, and (c) the registered 3-D probe geometry. A
head with a 420-mm circumference is used in (b) and (c).
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Fig. 1 The position of the two ROIs: BA-45 L and BA-46 L in Colin27 atlas with a head circum-
ference of 420 mm. The color map represents the depth from each node in the ROI to the head
surface. Yellow area indicates a depth greater than 40 mm, which is unreachable by the light.
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are selected, and these channels are given a uniform weighting in the contrast vector; (2) in the
tapered weighting scheme, the forward model is used to compute the relative contribution of
the region to each channel based on head size and probe registration. For the both weighting
schemes, we additionally examined the case in which this registration information is known
accurately and where it is subject to experimental measurement errors, which is described in
Sec. 3.1.3. Here, the weights are calculated based on the head size and probe registration of
each subject. The unknown condition was examined to mimic the realistic case of experimental
error in the registration in which the weights are calculated based on the average head size
regardless of probe registration error and individual head-size differences. In each iteration
of the simulation, we generate a group set of fNIRS data containing five subjects with the same
stimulus within the region of the brain and perform group-level channel-space analyses using
contrast vectors containing weights of different channels using both the proposed tapered
weights for all channels and uniform weights for the nearest channels with both assumptions
that the probe registration is known and unknown. In total, there are four analysis conditions,
tapered known, tapered unknown, uniform known, and uniform unknown, in each simulation
iteration. The analysis results of the two methods are investigated via receiver operating char-
acteristic (ROC) and compared to each other.

3.1 Probe Configurations

In this work, two types of probe configuration: low-density and high-density probes, are used for
simulations. While the low-density style of probe configuration is much more frequently used in
fNIRS studies due to practical reasons, this style of probe has “blind-spots” due to regions of
low sensitivity to underlying brain activity.23 Thus, low-density probes are more sensitive to
displacements in the registration of the fNIRS probe and/or variations in subject head size.
In contrast, high-density fNIRS probes (e.g., Ref. 23) have more uniform spatial sensitivity and
fewer blind spots, but are more complex to record from and are only supported by a few instru-
ment manufacturers.

Table 1 Each row of the table contains the weights of the channels for the two ROIs and the
difference between them. The weights are calculating using Eqs. (6)–(8). It can be seen that a
nearer channel has a larger weight. S and D represent source and detector, respectively, whose
indices can be found in Fig. 2. Both the proposed tapered and conventional uniform weights are
listed. Note that the remaining channels are omitted from visualization in this table because of
their small weights.

fNIRS channel

Weights of channels for ROI

BA-45 L BA-46 L fBA-45 Lg − fBA-46 Lg

Proposed Uniform Proposed Uniform Proposed Uniform

S 1 : D 1 0.193 0.25 0.027 0 0.166 0.25

S 2 : D 1 0.209 0.25 0.121 0 0.089 0.25

S 2 : D 2 0.314 0.25 0.224 0.25 0.09 0

S 3 : D 2 0.213 0.25 0.23 0.25 −0.017 0

S 3 : D 3 0.053 0 0.137 0.25 −0.084 −0.25

S 4 : D 3 0.014 0 0.13 0.25 −0.116 −0.25

S 4 : D 4 0.003 0 0.095 0 −0.092 0

S 5 : D 4 0.001 0 0.026 0 −0.026 0

S 5 : D 5 0 0 0.007 0 −0.007 0
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3.1.1 Low-density probe

The low-density probe contains nine light sources and eight detectors. The distance between
source and detector alignments is 25 mm. The optical density is only measured between the
nearest source–detector pairs. Hence, there are 16 × 2 (two wavelengths, 16 channels for HbO,
and the other 16 for HbR) channels defined in the low-density probe. An equal weight, ¼, is
assigned to each of the nearest four channels to construct the uniform contrast. Figure 2(a) shows
the two-dimensional (2-D) layout of the probe.

The registration of the probe is defined by an anchor and three attractor positions on the
probe. Similar to the use of these terms in the AtlasViewer program,8 anchors and attractor posi-
tions help to register the fNIRS probe onto the 10-20 coordinate system. In the Brain AnalyzIR
toolbox,18 an anchor forcibly fixes a point of the probe layout [Fig. 2(a)] on the 10-20 system
placement. In this case, the origin of the probe (0, 0) in the 2-D layout is anchored to the 10-20
site Fpz. An attractor provides directional information to the probe. Here, three attractors are
placed at positions (�200, 0) and (0, 100) in the 2-D layout and are attached to T7, T8, and
Cz, respectively, which define three forces pulling the probe along negative/positive X axis and
positive Y axis pointing to T7, T8, and Cz. The registration algorithm uses an iterative least-
squares minimization algorithm based on the optimal source–detector pair spacings and the loca-
tion of the anchor/attractor points. Attractor points are used to construct unit vectors to provide
direction, which are updated with every iteration of the algorithm. The registered probe used in
this example is shown in Figs. 2(b) and 2(c) using 10-20 (Mercator) projection and 3-D geometry
on an example head with 420-mm circumference.

3.1.2 High-density probe

The high-density probe used in this work is suggested by Zeff et al.23 Measurements are made
between the first-, second-, third-, and fourth-nearest neighboring source–detector pairs, the sep-
arations of which are 13, 30, 40, and 48 mm,23 respectively. The distance between two neigh-
boring sources or detectors can be consequently calculated as 13

ffiffiffi
2

p ¼ 18.385mm. Instead of the
24 sources and 28 detectors used in the previous study,23 we added six sources and detectors for
covering a similar length of area with the low-density probe used in Sec. 3.1.1. Thus, our high-
density probe contains 30 sources and 36 detectors, which form 460 × 2 channels in total. To be
comparable with the low-density probe, a quarter of the channels (115/460) are used to calculate
the uniform contrast vector with equal weights. The 2-D layout of the high-density is shown
in Fig. 3(a).

The anchor and attractors used in the high-density probe registration are same as those for the
low-density probe defined in Sec. 3.1.1. Figures 3(b) and 3(c) present the high-density probe
registration in the 10-20 system and 3-D geometry on a head with 420-mm circumference.

3.1.3 Probe registration with head size and displacement consideration

In this work, in addition to examining the ideal case in which the fNIRS probe registration and
head/brain size are perfectly known, we also examined the realistic case in which these param-
eters had unknown errors associated with them. In particular, it is conceivable that using error-
prone prior (mis-)registration information could actually hurt the accuracy of the analysis
methods and we wished to examine the sensitivity of the method to these errors. Figures 2(b)
and 3(b) show the ideal situation of the probe registration in which the head size is known, and
the anchor and attractors are placed without any errors. However, in most practical fNIRS experi-
ments, the subjects’ head circumferences are not recorded, and placement errors are unavoidable.
We use random head sizes and probe registration errors in this study. In our simulation, the head
circumferences are generated from a normal distribution with a mean of 420 mm and a standard
deviation of 50 mm. The lower and upper 2.5% quantiles of this distribution are 318.08 and
521.92 mm. This was chosen such that the simulated head circumference falls into the
head-size range of 0 to 36 months infants24 with a 95% probability. To simulate the registration
error, the anchor and attractors are placed at a position that deviates from the original position by
a random distance. The displacements along X and Y axes are both randomly generated from
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a normal distribution with a zero mean and a standard deviation of 10 mm. Since the upper 2.5%
quantile of this distribution is 19.60 mm, Fpz falls into a square with a center at (0, 0) of the probe
layout and an edge of 39.20 mm with a probability of 1 − 5% × 5% ¼ 99.75%. Similarly, in
95% cases, the X and Y axes of the probe are pulled to T7/T8 and Cz with angle errors in the
ranges of �5.60 deg [arctanð19.60∕200Þ] and �11.01 deg [arctanð19.60∕100Þ], respectively.

Figure 4 is an example of probe registration with a larger head circumference (485 mm) and
random error. Comparing to Fig. 2(b), the middle light source of the probe is not placed exactly
on the anchor point, which is caused by the placement error. It can also be seen that there is
an angle between the two centerlines in a range of �11.01 deg. The left and right parts of
the probe may independently rotate around the centerline of the rotated probe by an angle
within �5.60 deg. Therefore, even in the worst case, each of the left and right parts is unlikely
to deviate from the ideal position more than 16.61 deg (the probability exceeding this value is
5% × 2.5% ¼ 0.125%).

Fig. 4 An example of probe registration with displacement error. Compared to Fig. 2(b), the reg-
istered probe is asymmetric. The red dashed line is the centerline of the probe, which does not
coincide with the brain centerline (the vertical black dashed line). As explained above, the middle
light source, S5 at (0, 0), deviates from the anchor point Fpz, and the angle between the
two centerlines is in the range of (−11.01 deg, 11.01 deg). The left and right parts of the probe
may independently rotate around the probe centerline (red dashed line) by an angle between
−5.60 deg and 5.60 deg.
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Fig. 3 The topology of the high-density probe used in the simulation: (a) the 2-D layout, (b) the
registered probe with the 10-20 International System, and (c) the registered 3-D probe geometry.
A head with a 420-mm circumference is used in (b) and (c).
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3.2 Region-of-Interest Selection

As mentioned in Sec. 2.2, two types of analysis are performed in this work—the involvement of
a specific ROI and the difference between the activities of two ROIs, which can be described as
two statistical tests: (1) test if the hemodynamic response within a specific ROI is significantly
different from zero and (2) test if there is a statistically significant difference between the hemo-
dynamic responses in two nearby ROIs. For the single ROI analysis, the size of the region is
considered as a factor in the simulation. In addition, the distance between the two nearby ROIs is
taken into account as another factor in the ROI difference analysis. The selection of ROIs for
these two types of analyses is described in the following two sections.

3.2.1 Single ROI analysis

The ROI used in this work is created using a spherical surface with a center at a node (brain
coordinate) from Colin27 atlas21 and a specified radius. All nodes included within the sphere
define the ROI. Because of the symmetry in the cerebral cortex, we only select ROIs and gen-
erate stimulation in the left cerebral hemisphere while the mirrored ROIs in the right hemisphere
are used as the null regions (containing noise only) to evaluate the false positive rate (FPR) of
the analysis. Figure 5 is an example of ROI selection.

Note that the distance between the center node of each ROI and the nearest optode must
not exceed the specified radius of the ROI so that the ROI can be reasonably covered by the
probe. Another consideration for ROI selection is the head size. To perform a reasonable
group-level analysis, the relative size of each ROI to the entire cerebral cortex must be com-
parable between subjects. In this study, the nodes included in an ROI are selected using the
standard Colin27 atlas, then the coordinates of the nodes are scaled according to the head
circumference ratio.

3.2.2 Statistical testing between two ROIs

The selection process for ROI difference analysis is similar to that for single ROI analysis but
involves the distance between two ROIs as a new factor. Figure 6 is an example of ROI selection
for difference analysis. For the same reason, which is described in Sec. 3.2.1, we only generate
stimulation within one of the two ROIs in the left hemisphere and calculate the difference.
The two mirrored ROIs in the right hemisphere are considered as null region, the difference of
which is used to evaluate the FPR.

One more factor, the distance between the two ROIs, is taken into consideration in addition to
head size and ROI radius. We first select an ROI using the method described in Sec. 3.2.1 and
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Fig. 5 An example of ROI selection. The color map represents the depth from each node in the
ROI to the head surface. The yellow area indicates a depth greater than 40 mm, which is unreach-
able by the light. The stimulation is generated within the ROI in the left hemisphere while the right
one is used as the null region.
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generate stimulation within it, then find out all nodes that deviate the center of the ROI by a
specified distance, from which the second ROI used to calculate the hemodynamic difference is
randomly selected.

3.3 Stimulus Generation

The fNIRS data are simulated by adding stimulation on autoregressive noise. The time difference
between two neighboring stimuli is exponentially distributed. The hemodynamic response to the
stimulus is simulated using the canonical hemodynamic response function. In brief, simulated
“brain” activity within the ROI (true positive) is computed and projected to fNIRS channel/
measurement space via the optical forward model. The contralateral ROI is used to define the
true negative region for ROC analysis. Additive autoregressive noise is added to all channels at
an SNR level of 1. The details are described in Ref. 18.

3.4 ROC Analysis

With the p-value reported from the t-test [Eq. (4)], we calculate the FPR and true positive rate
using (1 − p-value) as the threshold, since smaller p-value indicates more significant HbO and
HbR changes. The ROC curve can then be constructed, and the area under the curve (AUC) is
the probability that the hemodynamic responses within the stimulus-containing ROIs are more
significant (with a smaller p-value) than that in the null ROIs. Thus, AUC is utilized as the
indicator for analysis performance evaluation. To determine whether a method is significantly
better than another, the null hypothesis that their AUCs are equal is tested. The z-statistic is
defined as

EQ-TARGET;temp:intralink-;sec3.4;116;219z ¼ jAUC1 − AUC2j
seðAUC1 − AUC2Þ

;

where seðÞ is the standard error. The standard error of the AUC difference is estimated using
DeLong’s method.25 The p-value for the abovementioned null hypothesis can finally be
reported.

An appropriate statistical model should give evenly distributed p-values when the null
hypothesis is true, i.e., p-values smaller than a threshold (commonly called type-I error control,
α) will be considered as false positives, and the FPR is the empirical type-I error rate. Thus, we
check the relationship between the empirical FPR and the model-reported p-value. In an ideal
situation, they are equal and the plot of FPR versus p-value is the diagonal of the plotting square.
Otherwise, the type-I error rate is over- or underestimated.
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Fig. 6 An example of ROI selection for region difference analysis. The legend is same as that in
Fig. 5. Note that it looks like the ROIs in the left and right hemispheres overlap each other, but they
do not actually because of the existence of a cerebral fissure.
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3.5 Summary of Simulation

The probe registration, noise and stimulus generation, and data analysis are implemented using
Brain AnalyzIR toolbox.18 A total of 20 individual ROIs were selected. For each ROI, the radius
of the region was examined from 10 to 36 mm by 2-mm steps (14 values in total). This yielded a
total of 280 regions, which were used to generate simulated activity for the five subjects for the
group analysis with randomly selected head sizes. In the case of simulations with additional
registration error, uncertainty was added between the probe registration and forward model used
to generate the data and the one used in the analysis. Each group simulation for each ROI was
repeated 100 times, for a total of 28,000 simulations. For examining the statistical test between
two ROIs, a second ROI of the same radius was added at a distance between 20 and 80 mm at
5-mm steps (13 values in total) for each of the simulations (364,000 total simulations for each of
the two probe types). For each simulation parameter combination, the analyses are, respectively,
performed with two assumptions: (1) head size and probe registration error are known, where the
contrast vectors are calculated based on the actual registered probe, (2) head size and probe
registration error are unknown, where the contrast vectors are calculated based on the probe
registered to the average head size (420-mm circumference) without registration error.

3.6 Implementation in the Brain AnalyzIR (NIRS-Toolbox)

The calculation of the contrast vector for a given ROI has already been implemented in the Brain
AnalyzIR toolbox.18 This is an open-source analysis toolbox written in MATLAB® for fNIRS.
The main components in the implementation are described in this section.

3.6.1 Forward model

The AnalyzIR toolbox includes interfaces to several third-party optical forward model solvers
including NIRFAST,20,26 mesh-based Monte Carlo (MMC27,28), and Monte Carlo Extreme
(MCX29,30). This code allows construction and import of individual head models from anatomi-
cal MRI volumes to generate subject-specific optical forward models and registration. These
solvers can be used with either atlas-based or individual head models to generate this optical
forward model. However, since the computation of multiple optical forward models is often time
consuming, and furthermore this level of anatomical modeling is often not available for all
subjects (e.g., pediatric fNIRS studies), the default options in the AnalyzIR toolbox make use
of a presegmented head model derived from the Colin-27 atlas.21 Furthermore, to achieve fast
computation of the sensitivity of a particular fNIRS channel to the underlying brain region, a
simplified optical forward model is approximated using the closed-form solution for the semi-
infinite homogeneous slab geometry31 to compute a particular two-point Green’s function solution
to the diffusion model (e.g., the relationship of light traveling from a point on the surface to a point
in the volume). The sensitivity of a source–detector pair is then computed as the three-point
Green’s function combining two obliquely oriented slab-based two-point functions. This approxi-
mation of the optical forward model (termed the ApproxSlab forward model in the toolbox) was
found to give a reasonable approximation compared to formal solutions using finite element or
Monte Carlo methods, particularly given the existing approximations and errors associated with
the use of the Colin-27 atlas. We note also that the Brain AnalyzIR toolbox does support the use of
these proper finite element or Monte Carlo solvers to compute a more accurate forward solution,
but as mentioned, due to the computational time involved (several minutes per contrast vector
compared to a few hundred milliseconds for the ApproxSlab model), the default in the toolbox is
to use this approximate solution. All results in this work used this approximate solution.

In addition, to avoid the complexities of multivariate statistical testing between oxy- and
deoxyhemoglobin and multiple optical wavelengths inherent to the Beer–Lambert law, we
approximate the forward model using only a single wavelength (default at 808 nm), which
allows us to compute the spatially tapered contrast weight that can be applied to the statistical
parameters (β) defined in oxy- or deoxyhemoglobin. Note that the tapered contrast vector used in
the ROI definitions is normalized such that the value of the extinction coefficient for oxy- or
deoxyhemoglobin at that wavelength is irrelevant to the calculation.
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3.6.2 Labeling of regions

As mentioned previously, Colin27 atlas is used as the default anatomical model for probe regis-
tration in this work. To identify the voxels contained in a specific ROI, a parcellation of the
anatomical model is required. Considering the generality, random self-defined ROIs are used
in this study rather than the predefined Brodmann areas.13 Thus, instead of the Broadmann label-
ing,13 here the Talairach Daemon32 defines the ROIs, which gives a high-resolution parcellation
of the brain and allows us to define high-resolution ROIs.

3.6.3 Resizing of Colin27 atlas

Since the effect of the head size is investigated in this study, the anatomical model needs to be
scaled for different head circumferences and dimensions. In the AnalyzIR toolbox, the atlas head
size can be rescaled based on the experimental measurements of the head circumference, nasion-
inion (Nasion → Cz → Inion) and left/right periocular point (LPA → Cz → RPA) distances
over the top of the head where the head circumference is computed 10% above the contour
of nasion—right preauricular point (RPA)—inion—left preauricular point (LPA)—nasion.
These three measurements uniquely define the resizing of the head as an ovoid shape to match
each subject. Alternatively, when only one of these three measurements is available (e.g., head
circumference only), the head can be resized proportionately keeping the ratios of the major and
minor axes of ovoid fixed. In this case, for a given head size, we calculate the ratio of the given
head circumference to the standard model’s, then resize the atlas by multiplying the Talairach
coordinates33,34 of every point by the ratio of their head circumferences. As a result, the portion
of a specific ROI will be the same in the scaled atlas. In the Brain AnalyzIR toolbox, registration
of an fNIRS head cap to a brain model is done in two steps to (i) first register the cap to the ovoid
(spherical) 10-20 coordinate system and then (ii) register and resize the head/brain model into
the same ovoid 10-20 space.

4 Results

The results of ROC analysis and statistical testing of the simulations are shown in this section. To
be concise, we use “known” and “unknown” registration to denote the analysis conditions that
the contrast vectors are calculated based on the actual probe registration (known head size and
registration error) and average registration (unknown head size and registration error) in the
following context. For the same purpose, ROI radius and separation are used to denote the radius
of the spherical surfaces defining the ROIs and the distance between the center nodes of them.

4.1 Single ROI Analysis

In this section, we examined the performance of the uniform and proposed tapered contrast
vector methods to infer changes about a single ROI in the brain. The size of the ROI was varied
from 10 to 36 mm. The methods were examined in the case of both ideally known and unknown
(errors) in the probe registration model.

Figure 7 is an example of ROC curves of the two analysis methods. The images in Fig. 7(a)
demonstrate the full ROC plots for the case of the 14-mm ROI radius. In the case where the probe
registration information is known, the AUC for the uniform and tapered contrast vectors, for
HbO/HbR, are 0.910/0.868 and 0.937/0.897, respectively, for the 14-mm radius. When an
additional registration error is introduced and unknown as described in Sec. 3.1.3, the AUC
values are 0.897/0.850 and 0.913/0.865. In both the known and unknown cases, the AUCs
are statistically smaller (p < 10−5) for the uniform compared to the tapered contrast vector.
Figure 7(b) shows the AUC as a function of the ROI radius, in which the AUC values were
fairly consistent across the tested ROI radius sizes. The tapered contrast vector performs con-
sistently better under all conditions than those with the uniform contrast vector. We also observed
that the method using the uniform contrast vector demonstrates more fluctuation when the ROI
radius is greater than 28 mm. We believed that this is caused by the gyrus and sulcus since
this size is close to the thickness of gyrus and depth of sulcus. In this case, the ROI would
include multiple gyri, the space between which may reduce the statistical power of the analyses.
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Since the contrast vector for a weighted channel is calculated based on the forward model, it
already takes the anatomy into consideration and consequently reduces the AUC fluctuation for
large ROIs. Statistical tests for the AUC difference between the analyses using the two types of
contrast vectors are performed for each simulation ROI radius, i.e., 56 tests (14 radius values ×
known/unknown conditions × HbO/HBR) are conducted in total. The p-values of the tests for
the 28 AUC differences knowing the registration error are all less than 10−6, which implies that
the proposed method performs significantly better than the uniform contrast vector method under
this condition. For the unknown condition, although the AUCs of the tapered contrast vector
method decrease compared to that when registration information is known, most of the
28 p-values of the tests for the difference between the two methods are smaller than 0.05.
The only exception is the AUC for HbR analysis with an ROI radius of 20 mm, the p-value
for which is 0.109. It exceeds the commonly used significance level 0.05, however, it is just
slightly larger than 0.1. It can still be concluded that the proposed method performs significantly
better than the conventional uniform contrast vector method no matter whether the head size and
probe registration error is known or not.

In addition to examining the performance of the ROC analysis with the AUC, we examined
the control of the type-I error by comparing the empirically determined FPR with the theoretical
values (denoted as p̂ [p-hat]). Mismatch between the FPR and p̂ indicates either over- or under-
estimation of the true significance of the results. Figure 8(a) shows the results of the plot of the
FPR versus p̂ for the simulation with an ROI radius of 14 mm. It can be seen from Fig. 8(a) that
the empirical curves are both below the ideal one at the beginning part where FPR and p̂ are
small. However, they do not remarkably deviate from the ideal curve, so we do not think it is a
serious problem. Figure 8(b) shows the empirical FPR for the two analysis methods calculated
from simulations with different ROI sizes under the commonly used type-I error control, i.e.,
significance level α, of 0.05. All data points lay below the dotted line, which indicates that these
two methods both underestimate the type-I error with a similar performance. Although type-I
error is underestimated by both methods for all ROI radii, we also checked every empirical curve
to be sure the p-values are still generally evenly distributed [similar to Fig. 8(a)]. One usually
worries about the underestimation of type-I error because it may result in an overestimated type-
II error and consequently affect the ROC performance. However, the large AUCs demonstrate
the good performances of both methods under all conditions. Thus, we believe the concern for
the underestimation of type-I error at small p̂ is unnecessary.

(a)

(b)

Fig. 7 Comparison of analysis methods with uniform and tapered contrast vector using ROC.
(a) Each subplot shows the ROC curves of recognizing the hemoglobin activity within a single
ROI using the two types of contrast vectors (indicated by color) for data with ROI radius =
14 mm from 2000 iterations of simulations under the conditions where the probe registration infor-
mation (including head size and registration error) is known or not (indicated by column). The two
rows indicate oxy-/deoxyhemoglobin, respectively. (b) Each subplot shows the ROC AUC as a
function of ROI radius. Every data point represents the AUC calculated from 2000 simulation
iterations against the corresponding ROI radius (in mm) used in the simulation.
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Fig. 8 Comparison of analysis methods with uniform and tapered contrast vectors using type-I
error control. (a) Each subplot shows the empirical FPR versus reported p-value curves of
recognizing the hemoglobin activity within a single ROI using the two types of contrast vector
(indicated by color) for data with ROI radius ¼ 14 mm from 2000 iterations of simulations under
the conditions where the probe registration information (including head size and registration error)
is known or not (indicated by column). The two rows indicate oxy-/deoxyhemoglobin, respectively.
In an ideal situation, the empirical FPR equals the model-reported p-value, which is represented
by the dotted diagonal of each plot. Both methods underestimate the FPR at smaller p-values
(enlarged and embedded at the corner). (b) Each subplot shows the ROC AUC as a function
of ROI radius. Every data point represents the AUC calculated from 2000 simulation iterations
against the corresponding ROI radius (in mm) used in the simulation. Every data point represents
the empirical FPR calculated from 2000 simulation iterations against the corresponding ROI radius
(in mm) used in the simulation. Here, 0.05 is used as the type-I error control (threshold) that is
indicated by the dashed line.

(a) (b)

Fig. 9 Each subplot shows the ROC curves of recognizing the hemoglobin activity difference
between two ROIs using the two types of contrast vectors (indicated by color) for data from
2000 iterations of simulations under the conditions where the probe registration information
(including head size and registration error) is known or not. The simulated activities are generated
within one of the two 10-mm (radius) ROIs separated by 80 mm, and two types of probe, (a) low-
density and (b) high-density, are used in the simulation. The column and row of each subplot
indicate known/unknown probe registration and oxy-/deoxyhemoglobin, respectively.
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4.2 Comparison of Two ROIs

In addition to testing the null involvement of a specific ROI, our proposed approach can be used
to compare multiple ROIs to each other. In order to examine this, we performed a series of
simulations as previously outlined. In addition to varying the location, ROI radius, and probe
type, to compare two regions, we also varied the distance between the two regions to examine
the limits of this approach. Similar to the characterization of the single ROIs, we preformed
simulations to quantify the sensitivity and specificity of the approach in comparison to the use
of a fixed and uninform ROI.

Figure 9 is an example of ROC curves of the two analysis methods for both the low-density
and high-density probes, in which 10 and 80 mm are used as the ROI radius and separation,
respectively. For the low-density probe, the AUCs of the two methods, uniform and proposed
tapered contrast vector for HbO/HbR when the probe registration information is known are
0.622/0.605 and 0.696/0.673, respectively, and the values when the probe registration information

Fig. 10 The heatmap showing the AUCs of recognizing the hemoglobin activity difference
between two ROIs for simulation data under the conditions where the probe registration informa-
tion is known or not. The color of each small rectangle in the lattices, whose scale is indicated by
the legend, represents the AUC calculated from 2000 simulation iterations using its abscissa and
ordinate as the ROI radius and separation, respectively. Two types of probes, (a), (b) low-density
and (c), (d) high-density, are used in the simulations, and the results using (a), (c) uniform
contrast vector and (b), (d) tapered contrast vector, respectively. Within each panel, the column
and row of each subplot indicate known/unknown probe registration and oxy-/deoxyhemoglobin,
respectively.
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is unknown are 0.576/0.570 and 0.684/0.671. For the high-density probe, these values were
0.550/0.529 and 0.724/0.685 for the known probe registration case and are 0.531/0.530 and
0.691/0.654 for the unknown case. In all comparisons, the tapered contrast vector approach pre-
formed statistically better (p < 10−5) than the uniform weighing approach.

Figure 10 shows the AUC of the two methods for the ROI difference analysis by varying the
ROI size and separation in the simulation, from which we can see that the analysis using the
spatially tapered contrast vector performs consistently better than that using uniform contrast
vector under all conditions since its AUCs are in a higher color range. By performing statistical
tests for the AUC differences between the two methods for the simulations using low-density
probe, i.e., comparing each pair of small colored rectangles at a corresponding position in the
lattices of Figs. 10(a) and 10(b), we obtained significant p-values (smaller than 0.05) for each
pair of AUCs using tapered and uniform contrast vector across all ROI radii, separation distan-
ces, and analysis conditions. The maximum p-values is 0.0257 for the AUCs comparing the HbR
changes within two ROIs with 16-mm radius separated by 25 mm knowing the probe registration
error. Similar tests are conducted for the high-density probe simulations, i.e., Figs. 10(c) and
10(d), in which the all obtained p-values are smaller than 0.05, with uniform contrast vector
across all ROI radii, separation distances, and analysis conditions. The maximum p-value is
0.0250 for the AUCs comparing the HbO changes within two ROIs with 36-mm radius separated
by 80 mm without knowing the probe registration error. We can conclude that the proposed
method performs significantly better than the conventional methods for the ROI difference test
using both low- and high-density probes.

Finally, we examined the type-I error control for the comparison of two ROIs using the
tapered and uniform approaches. In Fig. 11, we demonstrate these results for simulations using
ROI radius of 10 mm and separation of 80 mm. In comparison to the single ROI analysis (shown
in Fig. 8), we found that using uniform contrast vector consistently underestimates the FPR in the
case of the low-density probe. It can be seen from Fig. 11(a) that the p̂ reaches 1 where the FPRs
using uniform contrast vector are only 0.55 and 0.74 when the probe registration is known and
unknown, respectively. This means that in 45% and 26% of cases, this method is not able to
distinguish between the two ROIs. The reason is that the uniform contrast vectors for the two
ROIs can be exactly the same when the two ROIs are close enough to each other, which results in
an all-zero contrast vector for the ROI difference test and consequently a zero t-statistic giving a

(a) (b)

Fig. 11 Each subplot shows the empirical FPR versus reported p-value curves of recognizing the
hemoglobin activity difference between two ROIs using the two types of contrast vectors (indicated
by color) for simulation data analyses under the conditions where the probe registration informa-
tion is known or not. The simulated activities are generated within one of the two 10-mm (radius)
ROIs separated by 80 mm, and two types of probe, (a) low-density and (b) high-density, are used
in the simulation. The column and row of each subplot indicate known/unknown probe registration
and oxy-/deoxyemoglobin, respectively. For a single curve, the abscissa of each data point is the
FPR using its ordinate as the threshold. In an ideal situation, the empirical FPR equals the model-
reported p-value, which is represented by the dotted diagonal of each plot.
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unity p-value. In the case of using a tapered contrast vector, the two contrast vectors will never be
the same no matter how close they are as long as they are not completely overlapping each other.
Therefore, the p̂ reported by the tapered contrast vector method appropriately estimates the
empirical FPR, which demonstrates this method has a higher spatial resolution than the other
two. This also explains why the ROC curves of uniform contrast vector-based method achieve
diagonals at 0.55 and 0.74 in Fig. 9(a). This is why we investigated this problem again using a
high-density probe that has a higher spatial resolution and is expected to improve the type-I error
rate with the uniform contrast vector. For the high-density probe [Fig. 11(b)], the type-I error is
slightly underestimated for the uniformly weighted model, which results in increased false pos-
itives. However, the two ROIs are more distinguishable. In both probes, the proposed tapered
contrast vector appropriately estimates the FPR.

In Fig. 12, the FPR at p̂ ¼ 0.05 is shown for various ROI radii and separation distances.
The four panels represent the same analyses as those in Fig. 10. The colors in the heatmap of

Fig. 12 The heatmap showing the empirical FPRs of recognizing the hemoglobin activity differ-
ence between two ROIs using the two types of contrast vector for simulation data analyses under
the conditions where the probe registration information is known or not. The color of each small
rectangle in the lattices, whose scale is indicated by the legend, represents the FPR calculated
from 2000 simulation iterations using its abscissa and ordinate as the ROI radius and separation,
respectively. Two types of probe, (a), (b) low-density and (c), (d) high-density, are used in the
simulations, and the results using (a), (c) uniform contrast vector and (b), (d) tapered contrast
vector. Within each panel, the column and row of each subplot indicate known/unknown probe
registration and oxy-/deoxyhemoglobin, respectively. Here, 0.05 is used as the type-I error control
(threshold) that is indicated by the bright color.
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the tapered contrast vector method, i.e., Figs. 12(b) and 12(d), fall into the range around 0.05
with both low-and high-density probes, which indicates the FPR estimation is generally appro-
priate. For the uniform contrast vector method, i.e., Figs. 12(a) and 12(c), the colors are
completely out of the appropriate range when the low-density probe is used. For a given
ROI separation distance, the FPRs reported by the uniform contrast vector method decrease and
deviate further from the type-I error control p̂ ¼ 0.05 because the enlarging overlap of the two
ROIs makes it more difficult to distinguish between the two ROIs. For the case of using the high-
density probe, although most of the colors are in an appropriate range and it can still be seen that
the type-I error rate is overestimated for small ROIs with large separations [note that darker color
represents a larger value in Figs. 12(c) and 12(d)]. However, the plots of the worst case (10-mm
radius and 80-mm separation) have been shown in Fig. 11(b), from which we can see that the
empirical curves do not significantly deviate from the ideal curve.

5 Discussion and Conclusion

In this paper, we show the analysis results of thousands of simulations using 2 (probe layouts) ×
14 (radius lengths) × 13 (separation distances) = 364 parameter combinations. Here, we discuss
the findings and draw conclusions in the following aspects.

5.1 Comparison of Multiple ROIs

It can be seen from Fig. 10 that the two factors, ROI radius and separation, jointly affect the
results. The effects of channel selection, uncovered area, and blind-spot can be different with
different ROI radii and separations. In general, the channels selected for calculating contrast
vectors of the two ROIs tend to be same as the two ROIs get larger and closer and larger
ROIs with a greater separation are more likely to have a larger portion exceeding the probe
coverage, while smaller ROIs are easier to fall into the blind-spot of the probe. The statistical
power and AUC will reduce under these three conditions. We will explain the AUC changes in
terms of these three effects. Let us first look at the heatmaps of the analysis using the uniform
contrast vector with known registration information in the left column of panel (a). With this
analysis method, the AUC increases as the two ROIs are separated by a greater distance given a
specific ROI radius and decreases as the radii of ROIs increase given a specific ROI separation
when the registration is known. This pattern is not difficult to understand. Since the nearest four
channels are used with equal weights, the contrast vectors of smaller ROIs with larger separa-
tions will have fewer shared channels, and the contrast vector for their difference is further from
0, resulting in a more significant t-statistic/p-value and vice versa. Another negative effect of a
large ROI is that ROIs with larger radii are easier to partially fall out of the probe coverage area,
especially for further separated ROIs, as they are more likely to be close to the edge of the probe,
which reduces the statistical power when a stimulus exists within the ROI. These are the reasons
that the AUCs are larger for the small-radius large-separation condition. For the condition using
the uniform contrast vector without knowing the registration in the right column of panel (a), the
AUC still increases as ROI separation increases given a specific ROI radius for the same reason,
while the decreasing pattern of the AUC along the ROI radius does not always hold. There is an
increase in AUC when the ROI radius is around 20 mm. Unlike the analysis when given the
registration error, here, the four channels used for contrast vector generation are selected based
on the Colin27 atlas with an average head size and no registration error. The selected channels
can be different from the nearest four channels in truth if there is a large enough difference in the
head size or probe registration between the subject probe and the average probe. Thus, the chan-
nel selection error is another factor affecting the analysis using this method. For a fixed probe
registration difference including both effects of head-size difference and registration error, the
relative registration difference for a smaller ROI will be larger than that for a larger one, which
means that the possibility of using the wrong channels for contrast vector calculation of smaller
ROIs is higher. Although the contrast vector of the difference between two larger ROIs has a
negative effect on the AUC (as explained for the known registration condition), the possibility of
using wrong channels for larger ROIs is reduced. Hence, the AUC change against the ROI radius
for a specific ROI separation is nonmonotonic. This is the reason we see a sudden increase in
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AUC around ROI radius ¼ 20 mm. The change of AUCs using the tapered contrast vector is
more complicated. We can see that the increasing/decreasing pattern found for uniform contrast
vector analysis is only true in the upper triangle whereas an opposite pattern appears in the lower
triangle of subplot (b). The effects of factors affecting the AUCs using a uniform contrast vector
analysis still hold for the analysis with a tapered contrast vector. However, the difference
between the two tapered contrast vectors is further from 0 than that of the uniform contrast
vectors, especially for closer and larger ROIs that are more likely to result in two uniformly
weighted contrast vectors that are exactly the same. This implies that the AUC decrease caused
by the contrast vector decrease is smaller than the uniform method for closer and larger ROIs (the
lower triangle area). Specifically, (i) larger ROIs with a given separation are more likely to have
uncovered area by the probe, so the effect of decreasing this possibility dominates that of smaller
contrast vector, as explained before, with the decrease in ROI separation; (ii) closer ROIs with a
fixed size are expected to have smaller uncovered areas by the probe, and smaller ROIs are more
likely to fall into the “blind-spots,” so the effect of decreasing this possibility dominates that of
the uncovered and smaller contrast vector with the increase in ROI size. The increase in AUC can
be consequently seen as an ROI separation decreases and the ROI radius increases for large ROIs
with a smaller separation. These are the reasons that we see an opposite pattern in the lower
triangle area of the plot.

5.2 Effect of Probe Registration Errors

To evaluate the effect of using probe registration errors in the analysis, we compared the results
of analyses with known or unknown registration errors for all simulation parameters and con-
ditions. In the single ROI analysis, we can see from Fig. 7(b) that the AUCs of both tapered and
uniform methods are improved with the registration errors provided (left two subplots) compar-
ing to the analysis without knowing the errors (right two subplots). It can also be found that
the improvements of tapered contrast method are larger. We also conducted statistical tests on
the significance of these improvements, from which significant p-values (smaller than 0.05)
are reported for all of the improvements using a tapered contrast vector, but the p-values are
only significant for small ROIs (radius < 30) using the uniform contrast vector. This means that
no significant improvements are found for large ROIs when the uniform contrast vector is used.
As explained in Sec. 5.1, there is a possibility that the four channels identified without registra-
tions are different from the nearest four channels in the truth. In the single ROI analysis, the
information of registration errors can help with determining the correct four channels when using
a uniform contrast vector. However, the possibility of choosing the wrong channels for larger
ROIs is smaller compared to that for smaller ROIs. This explains why the improvements for large
ROIs are insignificant. For the tapered contrast vector, the registration errors can correct the
calculation of the weights in the contrast vector. The contrast vectors calculated with and without
registration errors can never be the same regardless the size of the ROI. Thus, using the regis-
tration errors always significantly improves the ROC performance of the tapered contrast vector.
In the comparison of two ROIs, the analyses using the registration errors also improve the AUCs
compared to those without the errors. We performed similar statistical testing between the AUCs
with and without knowing the registration errors. However, only about 30% of the tests report
significant p-values for both uniform and tapered contrast vectors, and the appearance of these
p-values shows a random pattern, which does not make much sense to discuss. In summary,
utilizing the information of registration errors can improve the analysis performance, especially
cooperating with the tapered contrast vector in single ROI analysis.

5.3 Probe Comparison

The effects of factors affecting the AUCs of the low-density probe, as explained in Sec. 5.1, still
hold for the high-density probe [Figs. 10(c) and 10(d)]. For the analyses using a uniform contrast
vector, although we can see a similar changing pattern to the one shown in Fig. 10(a), the AUCs
do not notably change with the change in ROI radius. The reason for this is that the possibility of
obtaining an all-zero contrast vector high density is rare unless the two ROIs are close enough,
since many more channels are used to construct the uniform contrast vector compared to the
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low-density probe. Hence, the detrimental effect of large ROIs on the contrast vector is reduced.
For the tapered contrast vector, the AUC changing pattern is also similar to Fig. 10(b) except that
the AUC rise for large-size small-separated ROIs is smaller. This is because the high-density
probe also reduces the number and size of “blind-spots” and the possibility of small ROIs falling
into “blind-spots” is smaller than that with low-density probe, i.e., the negative effect of “blind-
spots” is reduced. Thus, although increasing the radius for short-separated ROIs can get rid of
the effect of “blind-spots,” this effect itself is smaller and so is the AUC rise.

It might be noted that the AUCs using the high-density probe do not show a remarkable
improvement compared to that using the low-density probe. This is because a different SNR
is used for the high-density probe, which is indicated in the title of each panel. The SNRs used
in the ROC simulations were chosen to generate nontrivial comparisons of the methods being
tested (e.g., with too high an SNR, all methods converge on AUC ¼ 1, while with too low an
SNR, all methods approach chance levels). In practice, one is expected to see an improvement
when switching to the high-density probe from a low-density probe for the same experiments.
Due to the same reason, it is impossible to conduct direct statistical testing between the perfor-
mances of the two probes.

5.4 Robustness of the Analysis

The analyses conducted in this study demonstrate that the proposed method constructs a chan-
nel-space statistic that can be used to statistically test the noninvolvement of a specific ROI and
the activity difference between two ROIs during a functional task utilizing the optical forward
model as the channel weights without solving the underdetermined ill-posed image reconstruc-
tion inverse model. Although the computation of the tapered contrast vector depends on many
factors including the forward model approximation, wavelength, brain anatomy, etc., the
differences in these factors do not remarkably change the tapered shape of the contrast vector.
Moreover, we also check the difference between different forward models as well as the contrast
vectors calculated using various wavelengths. The computation shows the correlations between
the forward models generated via the slab approximation and using NIRFAST is 0.921, the error
between which is around 1 − 0.9212 ¼ 15%, and the change in wavelengths between 660 and
890 nm only makes a 4.6% difference in the contrast vector magnitude. Thus, the computation
precision using the ApproxSlab forward model and an 808-nm wavelength is acceptable.
Introducing the complexity of the forward model approximation and wavelength will not notably
change the analysis results.

5.5 Comparison of Uniform and Tapered Weighting Methods and
Overall Recommendations

Going through all the results shown above, we can conclude that the proposed tapered contrast
vector performs better than the conventional uniform one. In terms of ROC performance, its
AUC is significantly larger than the conventional method for both single ROI analysis and
two-ROI comparison regardless of ROI size, separation distance, and probe layout selection.
The p-values for the difference between the AUCs are smaller than 0.05 with only one exception,
which is slightly larger than 0.1. For the type-I error control, both methods are generally appro-
priate with the low-density probe in a single ROI analysis, although the type-I error rates are
underestimated at the commonly used threshold of 0.05. However, in the comparison of two
ROIs, the proposed tapered contrast vector method always appropriately estimates the type-I
error while the conventional method always underestimates and sometimes overestimates the
type-I error rate when the low- and high-density probes are used. In conclusion, the proposed
tapered contrast vector is always recommended for ROI-based analysis.

5.6 Limitations and Future Plan

Although this work demonstrates that the proposed method is significantly better than the con-
ventionally used method, it still has several limitations. First, in the single ROI analysis, the type-
I error rate is underestimated at the widely used significance level, i.e., 0.05. Although using
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a high-density probe could solve this problem, considering the small improvement space in AUC
and the time and cost consumption of a high-density probe, we do not think it is worth using
high-density probe in this problem. Second, the performance for the comparison of two ROIs is
not good enough. There is still a space for ROC AUC improvement. Third, the model is still
based on a misregistered probe when the registration information is unknown and the anatomical
difference between subjects is not involved.

Therefore, the next step of this work will include introducing anatomy variations and opti-
mizing probes based on an image reconstruction model considering the probe is a random factor
that deviates from an optimal average probe position. It is reasonable to believe that the tapered
contrast vector calculated based on the optimal probe would provide a better analysis.
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