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Abstract. Pansharpening is an effective way to enhance the spatial resolution of a multispectral (MS) image by
fusing it with a provided panchromatic image. Instead of restricting the coding coefficients of low-resolution (LR)
and high-resolution (HR) images to be equal, we propose a pansharpening approach via sparse regression in
which the relationship between sparse coefficients of HR and LR MS images is modeled by ridge regression and
elastic-net regression simultaneously learning the corresponding dictionaries. The compact dictionaries are
learned based on the sampled patch pairs from the high- and low-resolution images, which can greatly char-
acterize the structural information of the LR MS and HR MS images. Later, taking the complex relationship
between the coding coefficients of LR MS and HR MS images into account, the ridge regression is used to
characterize the relationship of intrapatches. The elastic-net regression is employed to describe the relationship
of interpatches. Thus, the HR MS image can be almost identically reconstructed by multiplying the HR dictionary
and the calculated sparse coefficient vector with the learned regression relationship. The simulated and
real experimental results illustrate that the proposed method outperforms several well-known methods, both
quantitatively and perceptually. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.9.093105]
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1 Introduction
Due to the launch cost and technical limitations, most
Earth observation satellites, such as IKONOS, QuickBird,
GeoEye, WorldView-2, GaoFen-1, and GaoFen-2, provided
a high-resolution (HR) panchromatic (PAN) image and a
low-resolution (LR) multispectral (MS) image with several
spectral bands.1–4 With the increasing requirement of higher
spatial and spectral resolution remote data for various appli-
cations, such as feature extraction, land-cover classification,
and climate change evaluation, the ability to capture high-
quality images with lower cost is becoming increasingly
more important. Pansharpening is a special data fusion,
which emerged as the practical requirement. It integrates the
complementary spectral and spatial characteristics from the
provided MS image and the PAN image into the desired
product.2 Up to now, a large number of pansharpening
approaches have been developed. Broadly, three methodol-
ogies have been commonly used, namely, the component
substitution, the high-frequency information injection, and
the model-based methods.

The basic framework of component substitution methods
is to transform the MS image into other space using a suit-
able transformation, and then the intensity channel or the
first principal component is substituted by the PAN image.
The classical component substitution methods are the
intensity–hue–saturation (IHS)4 and principal component
substitution.5 These methods may yield poor results in
terms of spectral fidelity.6 In addition, due to an inadequate
spectral model of the pansharpening method, spectral distor-
tion is also generated. Some variant improvements to the
original IHS-based method have been proposed. Rahmani
et al.7 proposed an adaptive IHS (AIHS) method, which

tried to represent the intensity component by an adaptive
linear combination of the MS bands with the combination
coefficients obtained by solving an optimization problem.
Masoudi and Kabiri8 proposed a new IHS method using
texture analysis and genetic algorithm adaption.

The high-frequency information injection methods can be
briefly summarized as the sequential operations of details
extraction and injection.9–12 Since most of the directional
and structural information is contained in the PAN image,
several researchers proposed using wavelets11 and contourlet
transforms12 to capture it from the PAN image. Then,
the details missed in the LR MS image can be extracted
and supplemented from the PAN image. Compared with
the component substitution methods, although this method
preserved better spectral information, the spatial distortions
may occur accompanied with some blurring and artifacts.

The model-based fusion approach is another important
category. On the basis of the image restoration, some
research regards the solution of the fused image as an inverse
optimization problem.13–17 Recently, inspired by sparse
representation techniques, some researchers have achieved
great success in data fusion.18–21 The initial work is proposed
by Li and Yang.18 Then, Jiang et al.19 proposed a two-step
sparse coding method with patch normalization (PN-TSSC).
Zhu and Bamler20 proposed a new pansharpening method
named sparse fusion of images (SparseFI), which explores
the sparse representation of MS image patches in a dictionary
trained only from the PAN image. To take into account the
signal correlation among individual MS channels, the jointly
SparseFI (J-SparseFI) algorithm was proposed.21 Although
these methods perform well, the sparse coefficients of
LR MS image patches are assumed to be identical to the
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corresponding HR MS patches. Due to complex and variant
image content in the real-world images, the mappings
between sparse coefficients of LR MS and that of HR MS
should be complex.22,23

To address this issue, we propose a pansharpening
approach via sparse regression aimed at finding the intrinsic
and implicit relationship among the sparse coefficients to
improve the robustness and stability of the remote sensing
image pansharpening. To achieve this goal, on the one hand,
we learn a pair of compact dictionaries relied on the sampled
patch pairs from the high- and low-resolution images. The
learned dictionary pair can greatly characterize the structural
information of the LR MS and HR MS images. On the other
hand, taken the complex relationship between the coding
coefficients of LR MS and HR MS images into account, we
model the complex relationship by a ridge regression and
an elastic-net regression. The ridge regression characterizes
the relationship of intrapatches. The elastic-net regression
describes the relationship of interpatches. The theoretical
analyses and experimental results in this paper indicate that
the proposed method can generate competitive fusion results.
The flowchart of the proposed method is summarized in
Fig. 1.

2 Pansharpening via Mapping of Sparse
Coefficients

In this section, the scheme of dictionary learning and the
ridge regression of intrapatches are introduced at first.
Thereafter, the interpatches regression mapping based on

elastic-net model is discussed in detail. Finally, we present
the high-resolution MS images reconstruction.

2.1 Dictionary Learning and the Ridge Regression of
Intrapatches

The HR PAN image patches
�
XðbÞ

P

�B
b¼1

and the correspond-

ing LR PAN image patches
�
YðbÞ

P

�B
b¼1

have the sparse coef-

ficients
�
αðbÞH

�B
b¼1

and
�
αðbÞL

�B
b¼1

under the corresponding
dictionaries DH and DL, respectively. Inspired by Wang
et al.,22 we make an assumption that there is an implicit map-
ping function M ∈ RN×N between the sparse coefficients
of LR MS and HR MS patch pairs. In addition, the sparse
coefficients of LR PAN and HR PAN patch pairs share the
mapping function (see Fig. 2), which can be modeled by
the following linear ridge equation:

Fig. 1 The flowchart of the proposed method.

Fig. 2 The relationship of the coefficients among the intrapatches.
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EQ-TARGET;temp:intralink-;e001;63;752αðbÞH ¼ MαðbÞL þ ε; (1)

where ε is an unknown error with zero mean. Always,
the standard approach is known as ordinary least squares
(OLS), which seeks to minimize the sum of square residuals.
Mathematically, it solves Eq. (1) of the form

EQ-TARGET;temp:intralink-;e002;63;683arg min
M

XB
b¼1

kαðbÞH −MαðbÞL k22: (2)

However, OLS often does poorly in prediction. Thus,
corresponding penalization techniques have been proposed
to improve OLS to get a particular solution with desirable
properties. For example, ridge regression24 and lasso25 are
two popular and representative methods.

In our work, to get the mapping function M with low
computational burden and stable least square solution, we
impose an F-norm regularization penalty. The regularization
term is included in the above-mentioned minimization

EQ-TARGET;temp:intralink-;e003;63;534arg min
M

XB
b¼1

kαðbÞH −MαðbÞL k22 þ βkMk2F: (3)

To enforce that the image patch pairs have the correspond-
ing sparse coefficients with respect to HR dictionary DH and
LR dictionary DL, a joint learning model below is proposed
to find the desired dictionary pair as well as the desired intra-
patches mapping

EQ-TARGET;temp:intralink-;e004;63;429

arg min
DH;DL;αH;αL;M

XB
b¼1

kXðbÞ
P − DHα

ðbÞ
H k22 þ

XB
b¼1

kYðbÞ
P − DLα

ðbÞ
L k22

þ λ1
XB
b¼1

kαðbÞH k1 þ λ2
XB
b¼1

kαðbÞL k1

þ λ3
XB
b¼1

kαðbÞH −MαðbÞL k22 þ λ4kMk2F

s:t: kDH;ik22 ≤ 1; kDL;ik22 ≤ 1; i ¼ 1;2; : : : ; N: (4)

In the above equation, the PAN image and its degraded

version are denoted by XP and Yp, respectively. X
ðbÞ
P and

YðbÞ
P are the b’th patch. λ1, λ2, λ3, and λ4 are the regularized

parameters, and the terms DH;i and DL;i are the atoms of
the dictionaries DH and DL, respectively.

Given XP¼½Xð1Þ
P ;Xð2Þ

P ;:::;XðBÞ
P �, YP¼½Yð1Þ

P ;Yð2Þ
P ;:::;YðBÞ

P �,
αH¼½αð1ÞH ;αð2ÞH ;:::;αðBÞH �, αL¼½αð1ÞL ;αð2ÞL ;: :: ;αðBÞL �, kαHk1;1 ¼P

B
b¼1 kαðbÞH k1, and kαLk1;1 ¼

P
B
b¼1 kαðbÞL k1, Eq. (4) can be

rewritten as follows:

EQ-TARGET;temp:intralink-;e005;63;174

arg min
DH;DL;αH;αL;M

kXP − DHαHk2F þ kYP − DLαLk2F þ λ1kαHk1;1

þ λ2kαLk1;1 þ λ3kαH −MαLk2F þ λ4kMk2F
s:t: kDH;ik22 ≤ 1; kDL;ik22 ≤ 1; i ¼ 1;2; : : : ; N: (5)

Obviously, the above objective function is nonconvex in all
of the variables but is convex in one of them with the other

fixed.26,27 Thus, initialized the mapping function fMg as an
identity matrix and the dictionary pairs by DCT basis, the
optimization performs in an alternative scheme over three
stages. We call them “sparse coefficients update,” “dictionary
update,” and “mapping function update,” which are corre-
sponding to Eqs. (6)–(11). In other words, Eq. (5) is solved
by translating to three subproblems.

In the sparse coefficients update stage, the mapping
function M and dictionary D are fixed, and we can get the
sparse coefficients αH and αL as follows:

EQ-TARGET;temp:intralink-;e006;326;642arg min
αH

kXP−DHαHk2Fþλ1kαHk1;1þλ3kαH−MαLk2F; (6)

EQ-TARGET;temp:intralink-;e007;326;604arg min
αL

kYP−DLαLk2Fþ λ2kαLk1;1þ λ3kαH −MαLk2F: (7)

Different from the traditional sparse coding, each equation
has an extra F-norm regularization term. To simplify them,
we combine the first and final terms and rewrite these
equations as like the form of traditional sparse coding.

Given X̄P ¼
�

XPffiffiffiffiffi
λ3

p
MαL

�
and D̄H ¼

�
DHffiffiffiffiffi
λ3

p
I

�
, Eq. (6) has

the following form

EQ-TARGET;temp:intralink-;e008;326;489arg min
αH

kX̄P − D̄HαHk2F þ λ1kαHk1;1; (8)

where I is an identity matrix. Then, Eq. (8) can be calculated
by least angle regression algorithm.28

Similar to the sparse coefficients update stage, with the
sparse coefficients fαH; αLg fixed, we update the dictionaries
according to the following equations:

EQ-TARGET;temp:intralink-;e009;326;395arg min
DH

kXP −DHαHk2F s:t: kDH;ik22 ≤ 1; i ¼ 1;2; : : : ;N;

(9)

EQ-TARGET;temp:intralink-;e010;326;340arg min
DL

kYP −DLαLk2F s:t: kDL;ik22 ≤ 1; i ¼ 1;2; : : : ; N:

(10)

Equations (9) and (10) are quadratic programmings,
Lagrange dual technology29 can be used to solve fDH;DLg.

At last, we update the mapping function M fixed the
dictionaries and sparse coefficients

EQ-TARGET;temp:intralink-;e011;326;248M� ¼ arg min
M

kαH −MαLk2F þ βkMk2F; (11)

where β ¼ λ4
λ3
. Equation (11) has a closed-form solution

EQ-TARGET;temp:intralink-;e012;326;198M� ¼ αHα
T
LðαLαTL þ βIÞ−1: (12)

2.2 Learning Interpatch Regression Mapping Based
on Elastic-Net Model

The above-mentioned regression mapping learning model
just express the relationship of the sparse coefficients of
image intrapatches. In Sec. 2.2, the relationship between
sparse coefficients αðbÞH and all of the sparse coefficientsn
αðbÞL

o
B

b¼1
of LR patches is taken into account.
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Let
n
αðbÞL

o
B

b¼1
be the predictors and αðbÞH be the response.30

Then, the model between response and predictors can be
assumed as

EQ-TARGET;temp:intralink-;e013;63;603αðbÞH ≈
XB
p¼1

αðpÞL wðpÞ
b ; b ¼ 1;2; : : : B: (13)

It can be shown in Fig. 3. The aim of this relationship is to

seek the weight vectors wb ¼
�
wð1Þ
b ; wð2Þ

b ; : : : ; wðBÞ
b

�
T
.

Given A ¼ ½αð1ÞL ; αð2ÞL ; : : : ; αðBÞL �;, the response is centered,
and the predictors are standardized. Then, we reformulate
Eq. (13) as

EQ-TARGET;temp:intralink-;e014;63;486αðbÞH ¼ Awb þ n; b ¼ 1;2; : : : B: (14)

Based on elastic-net regression model,30 we proposed
the following model:

EQ-TARGET;temp:intralink-;e015;63;430ŵb ¼ arg min
wb

kαðbÞH − Awbk22 þ γ1kwbk1 þ γ2kwbk22; (15)

where γ1 > 0 and γ2 > 0 are the regularized parameters.

Let us define Ā ¼ ð1þ γ2Þ−1
2

�
Affiffiffiffiffi
γ2

p
I

�
, ᾱðbÞH ¼

�
αðbÞH
0

�
,

γ ¼ γ1ffiffiffiffiffiffiffiffi
1þγ2

p , and w̄b ¼
hwb

0

i
. Then, the elastic-net model can

be described as a lasso-type problem

EQ-TARGET;temp:intralink-;e016;63;317ŵb ¼ arg min
w̄b

kᾱðbÞH − Ā w̄bk22 þ γkw̄bk1: (16)

The forward–backward operator splitting algorithm31 is
employed to solve the problem

EQ-TARGET;temp:intralink-;e017;63;253

8><
>:

vðnÞðbÞ ¼ w̄ðnÞ
b − μĀT

�
Ā w̄ðnÞ

b − αðbÞH

�

w̄ðnþ1Þ
b ¼ arg min

w̄b

1
μ

			w̄b − vðnÞðbÞ
			2
2
þ γkw̄bk1

; (17)

where μ ∈ ð0;2∕kĀTĀkÞ. Thus, w̄ðnþ1Þ
b can be given by

the classical iterative soft threshold method32

EQ-TARGET;temp:intralink-;e018;63;164w̄ðnþ1Þ
b ¼ shrink

�
vðnÞðbÞ;

μγ

2

�
; (18)

where shrinkðv; δÞ ¼ maxðkvk − δ; 0ÞsgnðvÞ. We get

EQ-TARGET;temp:intralink-;e019;63;114wb ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p ŵb: (19)

2.3 High-Resolution Multispectral Image
Reconstruction

After learned the dictionary-pairs DH, DL, the intrapatch
mapping function M� and interpatches mapping function
W� from the HR PAN image patches and the degraded
ones, we can reconstruct the HRMS image under the follow-
ing assumptions:

1. The input LR MS images fYMS;kgKk¼1 and LR PAN
image share the LR dictionary DL.

2. The reconstructed HR MS images fXMS;kgKk¼1 and HR
PAN image share the HR dictionary DH.

3. The sparse coefficients of LR MS images αLMS and
HR MS images αHMS share the learned mapping func-
tion M� and W�.

The sparse coefficients of the k’th band of the LR MS
image fYMS;kgKk¼1 can be calculated by following step
(each band is processed independently):

EQ-TARGET;temp:intralink-;e020;326;538arg min
αLMS;k

kYMS;k − DLαLMS;kk2F þ λ2kαLMS;kk1;1: (20)

Then, we generate the corresponding coding coefficients
associate αLMS;k with the regression function M� and W�,
respectively

EQ-TARGET;temp:intralink-;e021;326;464ᾱHMS;k ¼ M�αLMS;k; (21)

EQ-TARGET;temp:intralink-;e022;326;434α̂HMS;k ¼ αLMS;kW�: (22)

The sparse coefficients of the k’th band of the HR MS
image fXMS;kgKk¼1 is αHMS;k¼ð1−pÞ · ᾱHMS;kþp · α̂HMS;k,
where p is the weight parameter (here, p ¼ 0.45).

Finally, each band can be reconstructed as

EQ-TARGET;temp:intralink-;e023;326;363XMS;k ¼ DHαHMS;k: (23)

3 Experimental Results and Analysis
To assess the performance of the proposed method, both
simulated experiments and real data experiments are carried
out. The simulation experiments are based on the strategy
proposed by Wald et al.33 First, the original PAN and MS
images are blurred with a low-pass filter and downsampled
by a decimation factor 4 to obtain a degraded PAN image and
MS images. Then, these degraded PAN and MS images are
used to yield the HR MS images with the same spatial res-
olution to the original MS images. Finally, the fused HR MS
images are compared with the original MS images. The
QuickBird and WorldView-2 data are employed to test the
performance of the proposed method. Five typical evaluation
metrics are adopted to quantitatively evaluate the pansharp-
ened results. The correlation coefficient (CC)34 and root-
mean-square error (RMSE) are calculated for each band
between the fused MS images and the reference original
MS image. Erreur relative globale adimensionnelle de
synthèse (ERGAS)33 and Q4,

35 which are two comprehen-
sive evaluation indexes, provide unique measures of the
fusion performance for all the MS bands. Furthermore, the
spectral angle mapper (SAM) index34 is also considered to
measure the spectral distortion. Smaller values of RMSE,
SAM, and ERGAS tend to be achieved by a better fusion

Fig. 3 The relationship of the coefficients among the interpatches.
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result, as do larger CC, and Q4 values. In the real data experi-
ments, since there is no reference HRMS image, the “quality
with no reference” (QNR) measurement is used to evaluate
different pansharpened results objectively.35

The proposed method is compared with five popular
fusion algorithms: AIHS,7 Wavelet,11 PN-TSSC,19 SparseFI,20

and J-SparseFI.21 The results of AIHS method are gotten
from the software developed by Rahmani et.al. The imple-
mentation of the AIHS method is available online in Ref. 36.
The default parameters given in their implementations are
adopted. Two levels of decompositions are used for the
Wavelet method. The LR patch size in the SparseFI method
is 7 × 7. A total of 10,000 patch pairs are selected to con-
struct the dictionary pairs. As to J-SparseFI method, patch
size is 7 × 7, and the dictionary size is 1000.

For our proposed pansharpening method, there are several
parameters to be selected. In our experiments, we set the
weight parameter p ¼ 0.45, the regularization parameters
λ1 ¼ 0.01, λ2 ¼ 0.01, λ3 ¼ 0.1, λ4 ¼ 0.1 and γ1 ¼ 0.3,
γ2 ¼ 0.5, the patch size 5 × 5, and the dictionary size 512.
In Sec. 3.1, we provided a recipe about how to select these
parameters to achieve a promising pansharpened result.
Experimental results using parameters selected according to
this recipe will be presented through the evolution curves
and final fused images on different datasets.

3.1 Parameter Analysis

In this section, we investigate the effect of the weight param-
eter p and the regularization parameters λ1, λ2, λ3, λ4 and
γ1, γ2 of the proposed method.

Fig. 4 Performance comparison of the WorldView-2 data with different weight parameters.

Fig. 5 Performance comparison of the QuickBird data with different weight parameters.

Table 1 The effects of the proposed method under different λ1 on WorldView-2 data.

λ1

0.008 0.009 0.01 0.011 0.012 0.015 0.02 0.05 0.1 0.2 0.5

CC 0.9828 0.9829 0.9830 0.9830 0.9825 0.9826 0.9798 0.9821 0.9229 0.8511 0.7392

RMSE 0.0456 0.0452 0.0451 0.0455 0.0511 0.0498 0.0502 0.0510 0.7829 0.9525 1.4834

SAM 3.1892 3.1877 3.1816 3.1782 3.1940 3.2352 3.2355 3.2408 4.5768 6.2065 8.8587

ERGAS 3.5991 3.5708 3.5547 3.5912 3.6576 3.6766 3.6700 3.6701 4.2308 6.9293 9.0720

Q4 0.8195 0.8196 0.8197 0.8189 0.8192 0.8190 0.8191 0.8180 0.7877 0.7104 0.5266

The bold and italic values represent the best results.
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Table 2 The effects of the proposed method under different λ2 on WorldView-2 data.

λ2

0.008 0.009 0.01 0.011 0.012 0.015 0.02 0.05 0.1 0.2 0.5

CC 0.9825 0.9828 0.9830 0.9829 0.9828 0.9820 0.9808 0.9779 0.9378 0.8821 0.7901

RMSE 0.0457 0.0453 0.0451 0.0448 0.0455 0.0498 0.0673 0.1998 1.0273 1.6532 2.7903

SAM 3.2211 3.1945 3.1816 3.1808 3.1949 3.5775 3.8128 4.0106 6.0818 6.9501 8.0002

ERGAS 3.5987 3.6213 3.5547 3.6111 3.5654 3.6799 3.7991 4.2257 5.9802 6.7733 8.7616

Q4 0.8195 0.8197 0.8197 0.8196 0.8194 0.8193 0.8193 0.8192 0.8050 0.7608 0.6191

The bold and italic values represent the best results.

Table 3 The effects of the proposed method under different γ1 on QuickBird data.

γ1

0.25 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.35 0.4 0.5

CC 0.9626 0.9630 0.9633 0.9632 0.9632 0.9632 0.9629 0.9625 0.9618 0.9587 0.9427

RMSE 0.0677 0.0661 0.0656 0.0652 0.0651 0.0653 0.0659 0.0673 0.0722 0.0865 0.0991

SAM 4.0602 4.0584 4.0571 4.0563 4.0563 4.0563 4.0576 4.0583 4.0626 4.0744 4.1378

ERGAS 5.3766 5.3689 5.3607 5.3595 5.3587 5.3592 5.3611 5.3639 5.3705 5.3876 5.4305

Q4 0.7850 0.7857 0.7861 0.7864 0.7865 0.7865 0.7862 0.7860 0.7852 0.7831 0.7804

The bold values represent the best results.

Fig. 6 The effects of patch size on the pansharpening of WorldView-2 image: (a) 3 × 3, (b) 5 × 5,
(c) 7 × 7, (d) 9 × 9, and (e) original HR MS image.
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1. The effect of the weight parameter p: The pansharp-
ened performance obtained by the proposed method
has strong links with the regularization parameter p.
To demonstrate it, we present the influence of
the proposed method by choosing different weight
parameters (p). CC, SAM, and Q4 are evaluated to
determine p. The corresponding curved lines are plot-
ted in Figs. 4 and 5, respectively. As shown in Fig. 4,
when p ¼ 0, which can be regarded as the case of
ridge regression of intrapatches, the performance of the
proposed method is restricted. With the increase of p,

more benefits on performance can be gained. This
implies that the interpatches regression model is also
essential for the fused result. However, we should also
see that the value could not be set too high. Therefore,
with a proper regularization parameter p, the proposed
method will gain the best results. A similar conclusion
can be drawn for the QuickBird data in Fig. 5. Among
the above resulted images, quantitatively, the best
pansharpening result is yielded at p ¼ 0.45.

2. The influence of the regularization parameters λ1, λ2,
λ3, λ4 and γ1, γ2: In this section, we probe how
the regularization parameters affect the pansharpened
performance of the proposed method. To test the
influence, we tune one of them with the other fixed.
Tables 1 and 2 are the objective assessment results
of the proposed method on WorldView-2 data accord-
ing to different values of λ1 and λ2. Table 3 reports the
influence of γ1 on QuickBird data. But it should
reinforce the point that the pansharpened results are
consistent with different test datasets under different
parameters. From the tables, we can see that the regu-
larization parameters play important roles in the final
pansharpened performance. Little worse performance
will be obtained when small deviations of the regulari-
zation parameters are around the selected values.
If one tunes them far away from the value set by us,
some worse performance will appear in the final fused
image. When λ1, λ2, and γ1 are in the order of 0.01,
0.01, and 0.3, respectively, the proposed method can
continually obtain a stable and optimal performance.
The same thing happened again to other regulariza-
tion parameters λ3, λ4, and γ2. For balancing the

Fig. 7 Performance of the proposed method with different patch
sizes.

Fig. 8 The effects of dictionary size on the pansharpening of QuickBird image: dictionary size (a) 256,
(b) 512, (c) 1024, and (d) 2048, and (e) the original HR MS image.
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reconstruction error, we set λ1 ¼ 0.01, λ2 ¼ 0.01,
λ3 ¼ 0.1, λ4 ¼ 0.1, γ1 ¼ 0.3, and γ2 ¼ 0.5.

3.2 Effects of Patch Size

As described in Sec. 2, our proposed method is based on
patches learning. Thus, the effects of patch size on the pan-
sharpening performance are evaluated in this section. To be
fair, the dictionary size is fixed as 512. Four different patch
sizes for LR PAN image are studied, including 3 × 3, 5 × 5,
7 × 7, and 9 × 9. Figure 6 shows how the patch size affects
the visual quality of the fused results on WorldView-2 data.
We can observe that the difference of spectral distortion is
very small under different patch sizes. To illustrate well
the performance change with the patches sizes, the quality
indexes are calculated, where the average CC and RMSE
of eight bands are presented. In addition, all the values of
indexes are normalized to the range [0, 1]. The normalized
results with respect to the different patch size are plotted in
Fig. 7, where the horizontal axis is the patch size, and the
vertical axis is the normalized results. Larger CC and Q4
indicate better fused result, and smaller RMSE, SAM, and
ERGAS mean better result. Based on the curves in Fig. 7,
it can be seen that when the patch size is 7 × 7, the best
performance of the proposed method is obtained. The
performance of patch size 5 × 5 is slightly worse. However,
the proposed method has less space complexity at this
time. Taken into account a trade-off between the practical
application in the future and the performance, we choose
the patch size 5 × 5 in the following experiments.

3.3 Effects of Dictionary Size

The above experimental results, we fix the dictionary size to
be 512. In general, larger dictionaries should possess more
expressive power and thus may yield more accurate approxi-
mation while increasing the computation cost. In this section,
we evaluate the effect of dictionary size on pansharpening,
i.e., the number of atoms in dictionary. From the sampled
image patch pairs, we train four dictionaries of size 256,
512, 1024, and 2048 and apply them to the same remote
sensing image. The results are evaluated both visually and
quantitatively in Figs. 8–10 and Table 4.

Figure 8 shows the fused results for the QuickBird image
using dictionaries of different sizes. Human visual system
is not sensitive to the weak spectral distortions. Always
we justify the distortion from the color change.10 Thus, in

Fig. 9, we display the difference of pixel values measured
between each pansharpened image and the reference HR
MS image. Deep blue represents the smallest difference,
whereas the red means the largest difference. Figure 9 shows
the difference image under different dictionary sizes. While
there are not many visual differences for the results using
different dictionary sizes from 256 to 2048, we indeed
observe the artifacts will gradually diminish with larger dic-
tionaries (i.e., the subtle differences in the yellow circle in
Fig. 9). In Table 4, we list five indexes of the pansharpened
image for dictionaries of different sizes. As shown in the
table, using larger dictionaries will yield better quantitative
indexes. However, the computation is approximately linear
to the size of the dictionary, i.e., larger dictionaries will result
in heavier computation. Figure 10 shows the computation
time in seconds with the fused image. In practice, one
chooses an appropriate dictionary size as a trade-off between
pansharpening quality and computation cost. We find that
dictionary size 512 can yield decent outputs while allowing
fast computation.

3.4 Simulation Results and Analysis

The size of the LR MS image in the simulated WorldView-2
data experiment is 128 × 128 pixels with eight bands and

Fig. 9 The difference image of different dictionary sizes on the pansharpening of QuickBird image: dic-
tionary size (a) 256, (b) 512, (c) 1024, and (d) 2048.

Fig. 10 The computational time on QuickBird image with dictionaries
of different sizes (in seconds).

Optical Engineering 093105-8 September 2017 • Vol. 56(9)

Tang et al.: Pansharpening via sparse regression



the corresponding PAN image sized 512 × 512 pixels. In
Fig. 11(i), there are many varieties of ground objects, such
as vegetation, buildings, and roads. In the aspect of the
visual effects, the Wavelet method suffers from both spectral
distortion and blocky artifacts in the building regions, as

shown in Fig. 11(d). Meanwhile, the proposed method and
J-SparseFI method show especially significant improvement
in the spatial resolution. The details in the final fused images
are as clear as that in the PAN image. AIHS and PN-TSSC
methods are not good enough at improving the spatial
resolutions. In Figs. 11(c) and 11(e), a lot of details are
lost in the buildings, and the noise is introduced into the
fused images. Compared with AIHS and PN-TSSC methods,
SparseFI method is good in injecting more details. However,
there are phenomena of the spectral distortions. The color of
the whole fused images is dark. The visual effects are not
close to the reference HR MS image.

To evaluate the performance of various methods objec-
tively, Table 5 presents the objective evaluations about
different methods. On the whole, the proposed method
demonstrates the best objective performance, i.e., ranking
as the first for the CC, RMSE, SAM, ERGAS, and Q4.
The CC value of J-SparseFI method is inferior to the pro-
posed method. It means J-SparseFI method cannot preserve

Table 4 The objective indexes of the pansharpened images with dic-
tionaries of different sizes.

Dictionary size CC RMSE SAM ERGAS Q4

256 0.9641 0.0815 4.1271 5.3470 0.7788

512 0.9642 0.0801 4.1023 5.2598 0.7820

1024 0.9638 0.0786 4.0882 5.1753 0.7852

2048 0.9640 0.0758 3.9789 4.9666 0.7932

The bold values represent the best results.

Fig. 11 Pansharpening results obtained by different methods on WorldView-2 data: (a) LR MS image,
(b) PAN, (c) AIHS, (d) Wavelet, (e) PN-TSSC, (f) SparseFI, (g) J-SparseFI, (h) proposed, and (j) HR MS
image.
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the spectral information as well as the latter. The high Q4
value represents its effectiveness of improvement of the spa-
tial resolution. The low SAM and ERGAS values of AIHS,
PN-TSSC, and SparseFI methods show their shortage of
spectral information of preservation. We also noticed the
values of Q4 are very high, which reflect that the SparseFI
and J-SparseFI method have the advantage of improving
the spatial resolution.

Figure 12 shows the difference of pixel values measured
between each pansharpened image and the reference HR MS
image. We can see that all the fused images by different
methods have a lot of areas with blue and deep blue from
the corresponding difference images. Fortunately, the pro-
posed method shows the best performance. The least area of
the red part in Fig. 12(f) indicates that the proposed method
has a small number of outliers, which is consistent with the
above objective and subjective analysis.

3.5 Experiments on Real Data

To verify the effectiveness of the proposed method in prac-
tical applications, we move on to conduct the experiments on
the real data. Figures 13 and 14 present the fused results
using six different methods. In Fig. 13, we can see that the
AIHS method has the problem of textures overenhancement,
as shown in the mountain. Figures 13(e)–13(g) are the pan-
sharpened images provided by the PN-TSSC, SparseFI, and
J-SparseFI, respectively, which can obtain promising results
without causing obvious spectral and spatial distortion.
Since our work illustrates the complex mapping relationship
between the LRMS and HRMS image, experiments are also
performed on complex urban scenes, as shown in Fig. 14.
The final pansharpened results of various methods are pre-
sented in Fig. 14(c)–14(h). By the comparisons of all results,
the component substitution method (AIHS) and the model-
based methods (PN-TSSC, SparseFI, J-SparseFI, and pro-
posed) outperform the high-frequency information injection
method (Wavelet) in preserving the spectral information.
Specifically, the proposed method produces the natural and
satisfactory pansharpened images, which has similar spatial
structures with the PAN image and similar spectral informa-
tion with the MS image, as shown in Fig. 14(h). Table 6 and
7 show the quantitative assessment results.35 The ranking of
QNR scores can confirm that the proposed method is better
than the other methods in sharpening the real data.

3.6 Time Consumption

All the methods are implemented in MATLAB® 2010b and
run on an Intel Core i7@3.6-GHz PC with 32-GB RAM. For

Table 5 Objective performance for different pansharpening methods
on WorldView-2 data.

AIHS Wavelet PN-TSSC SparseFI J-SparseFI Proposed

CC 0.9712 0.9745 0.9779 0.9785 0.9816 0.9830

RMSE 0.0691 0.0911 0.0662 0.0594 0.0490 0.0451

SAM 5.3163 7.0537 4.0698 3.1437 3.0297 3.0009

ERGAS 5.4726 7.5020 4.1187 3.6593 3.6208 3.5547

Q4 0.7405 0.6712 0.8089 0.8172 0.8196 0.8197

Fig. 12 Difference image between each HR MS image and the reference high resolution MS image
(deep blue means small differences and red means large differences). (a) AIHS; (b) Wavelet;
(c) PN-TSSC; (d) SparseFI; (e) J-SparseFI; (f) Proposed.
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fusing a 512 × 512 PAN image and 128 × 128 × 4 MS
images, the AIHS and Wavelet methods need less than 1 s.
The PN-TSSC, SparseFI, and J-SparseFI methods take about
147 s, 115 s, and 5 min, respectively. The running time of our
proposed method is 133 s. Compared with these methods,
the running time of the patch-based methods is still room

for improvement. However, it is also reasonable to believe
that with the rapid development in computer hardware and
computation techniques, the time cost of the proposed
method will soon no longer be an issue. We also can learn
numerous projection matrices from the LR MS feature
spaces to the corresponding HR MS feature spaces, which

Fig. 13 Real data experimental results by different methods: (a) real MS image at 2-m spatial resolution,
(b) real PAN image at 0.5-m spatial resolution, (c) AIHS, (d) Wavelet, (e) PN-TSSC, (f) SparseFI,
(g) J-SparseFI, and (h) proposed method.

Fig. 14 Real data experimental results by different methods: (a) real MS image at 1.65-m spatial
resolution, (b) real PAN image at 0.41-m spatial resolution, (c) AIHS, (d) Wavelet, (e) PN-TSSC,
(f) SparseFI, (g) J-SparseFI, and (h) proposed method.
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may decrease the computational time in the pansharpening
phase. This will be investigated in our future work.

4 Conclusion
In this paper, combining ridge regression and elastic net of
sparse representation, a pansharpening method is proposed
for merging a PAN image with an MS image. The method
used HR PAN image patches and their degraded ones to con-
struct a training database. Then, the semicoupled dictionary
learning method is used to train the LR–HR dictionary pair,
which is to depict the MS structural information. The rela-
tionship between coding coefficients of LR MS and HR MS
image patches is predicted by the within-patch ridge regres-
sion and among-patch elastic-net model. Our method can
enhance the spatial resolution of MS images while reducing
the distortion of spectral. The experimental results demon-
strate that the proposed method can be compared with other
state-of-the-art fusion methods.
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