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Abstract. Scanning confocal Raman microscopy is proposed to measure a gradient index
(GRIN) profile at an optical surface. The Raman microscope is calibrated to index of refraction
for a binary copolymer GRIN material, and then the index of refraction is mapped on the plano
surface of a GRIN polymer lens. The measurement deduces axial shift of 680 μm and identifies
lateral tilt or decenter with respect to the nominal position of the GRIN profile. Results suggest
that the mapping method is a nondestructive way to measure the GRIN profile of a GRIN lens
and its positioning within the lens geometry, to within the sampling precision of the Raman
microscope. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.OE.59.11.112605]

Keywords: gradient index; optics; metrology; nondestructive measurement; Raman spectros-
copy; confocal microscopy.

Paper 20200301SS received Mar. 13, 2020; accepted for publication Jun. 16, 2020; published
online Jul. 2, 2020.

1 Introduction

Gradient index (GRIN) optics offer many advantages in optical design but often pose unique
optical metrology challenges. Direct measurements of imaging performance at the design wave-
lengths, such as with interferometry,1 can be used for measuring effects of manufacturing errors
in a GRIN lens system. However, these effects on imaging performance cannot diagnose all
errors of GRIN fabrication. To this end, Raman spectroscopy can provide material distribution
information, and therefore index of refraction information, to measure the optic nondestructively.
Raman spectroscopy is superior to interferometry for mapping the GRIN profile in the following
ways: it can nondestructively measure large differences in index of refraction and can map the
absolute index of refraction rather than difference in index of refraction across the optic. The
accuracy of the index of refraction map is limited by the ability to map Raman spectrum to index
of refraction, which can be ensured with proper spectrum calibration of the material used for the
GRIN optic. This work outlines the mapping procedure.

For a binary material GRIN optic, Raman spectroscopy serves as a suitable candidate meas-
urement method. The objective of the present work is to map index of refraction in a polystyrene
(PS)/poly(methyl methacrylate) (PMMA) copolymer GRIN lens and report accuracy of mapping
the profile within the lens (Fig. 1). This is important because the lens is cut out of a large blank of
GRIN material. During the diamond turning of the optical surfaces, the GRIN coordinate system
may end up shifted in the lens geometry. Because of the large index of refraction variation
through the lens presently under test, Fang1 took a plane-parallel radial slice of a GRIN lens
of similar design [as in Fig. 1(d)]. This slice was used to measure the GRIN profile in a
Mach–Zehnder interferometer. Slicing the sample reduced optical path length to produce a
two-dimensional (2-D) index of refraction map with interferometry, but destroyed the lens.
Using Raman microscopy, alignment of the GRIN profile within this GRIN lens is measured
nondestructively.
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Section 1 outlines GRIN optics demanding better metrology and the corresponding capabil-
ities in Raman spectroscopy. Section 2 provides the GRIN design under test and the methods to
relate index of refraction to Raman spectra. Section 3 provides the scan results and indication of a
shifted GRIN profile within the lens, and Sec. 4 provides interpretation of the results and sug-
gestions for the future directions of this work.

1.1 Geometries of Gradient Index Optics

Practical application of GRIN optics relies on the ability to fabricate the GRIN to design tol-
erances and the ability to measure the GRIN profile. The first commercially available solid-state
GRIN optics were glass radial GRIN rod lenses, under the trade name SELFOC.2 Periodic focus-
ing and collimation within a single radial GRIN lens give it a variety of cited applications in fiber
communications,3,4 biomedical sensing,5,6 and imaging.7,8

For most common GRIN rods with radial symmetry, the index of refraction changes only as a
function of radial distance from a linear axis. One common way of making a glass radial GRIN
lens is by ion diffusion7,8 through the boundaries of a glass rod. The glass rod preform exhibits
rotational invariance; therefore, the resultant GRIN profile is also rotationally invariant because
the ions diffuse radially across the rod surface.

Another type of gradient employed is the axial GRIN optic, where the index of refraction
changes only as a function of one spatial axis. This index of refraction distribution is also rota-
tionally invariant about an axis, usually the optical axis. Such a lens can be used for beam
shaping9 and aberration correction.10 For both of the rotationally invariant forms, assessing the
tilt of the GRIN is necessary to correctly tolerance the GRIN lens performance.

The axial and radial GRIN geometries are common, and they both respect rotational sym-
metry to easily interface with rotationally symmetric homogeneous lens systems. Furthermore,
their symmetries often are limited to their manufacturing technique. Recent developments in
freeform optics have influenced the practical design and testing of nonrotationally symmetric
optical surfaces11 comprising homogeneous material lens systems. Simultaneously, develop-
ments in three-dimensional (3-D) printing of optics have enabled deterministic freefrom
GRIN fabrication techniques.12 The main limitation to freeform GRIN fabrication is that
designed freeform and GRIN optics often possess only a weak departure from a rotationally
invariant design. For homogeneous freeforms, this departure is designed large enough to correct
aberration but small enough to not heavily impact first-order optics, making the freeform sur-
faces suitable for deterministic nulling interferometry.11

(a) (b) (c)

(d) (e) (f)

Fig. 1 Schematic of the GRIN lens: (a)–(c) top surface and (d)–(f) diametric cut section views are
presented of GRIN profile schematic (a), (b), (d), (e) and of the fabricated lens (c), (f). The fab-
ricated GRIN profile (b), (e) may be decentered from the designed GRIN profile (a), (d) by some
amount. Cross and dotted line indicates optical axis relative to the GRIN profile.

Kochan et al.: Mapping of index of refraction profile for polymer gradient index optics. . .

Optical Engineering 112605-2 November 2020 • Vol. 59(11)



In contrast, lack of readily available tools for nondestructive measurement of nonrotationally
symmetric strongly refracting GRIN optics motivates this work. Ellipsometry has acheived prom-
ising measurements in bulk radial glass GRIN13 and in axial gradient thin films.14 However, the
diamond turning of the surfaces on the currently tested polymer GRIN lens did not achieve the
surface quality necessary for desired precision index of refraction measurement using ellipsometry.
In an interferometer, measurement of strong refracting profiles may be limited by high-fringe den-
sity. Other methods to measure GRIN include laser beam deflectometry15,16 and fringe projection
deflectometry17 techniques. These techniques assume geometries such as axial GRIN15,17 or 2-D
GRIN,16 making them unsuitable for measuring some asymmetric profile departures in 3-D space.
Methods such as spectroscopy leverage nonlinear optical response to effectively measure freeform
variation of the GRIN profile.

1.2 Raman Spectroscopy Impact on Polymer GRIN Optics

Measurement of the index of refraction at a flat surface of a homogeneous lens can be obtained
using a refractometer such as the Abbe refractometer. When the index of refraction varies along a
surface, conventional refractometry is no longer suitable.

Ellipsometry is often used to measure index of refraction at an interface, however, confocal
Raman spectroscopy is better suited to the current application. Interference effects localized to
the diamond-turned optical surface may confound the ellipsometric measurement of the GRIN
profile, but not the Raman measurement. For this reason, Raman measurement is pursued for the
current polymer lens.

The Raman signal must be properly extracted for effective measurements. Raman spectra
contain material-characteristic information in sharp peaks, which must be distinguished from
broader spectrum fluorescence features.18 Fluorescence is reduced by using a relatively long
excitation wavelength for the Raman spectrum, and polymers are good candidates for
Raman spectroscopy because of their low-moisture content and narrowness of their Raman spec-
tral signature. Low moisture reduces fluorescence in the signal, and narrow Raman spectral
peaks improve the ability to distinguish materials.

Raman microscopy has been applied to measure the diffusion of a PMMA/PS binary mixture
film by Hu et al.19 The authors analyzed the profile of a few characteristic Raman spectral lines
along the confocal scan. The authors mentioned that the difference in the index of refraction of
the sample would amount to distortion in the focal volume of the microscope and emission of
Raman scattered light. Commentary on the work elaborated the need to correct for aberrations
due to the refraction of the spot being collected by the dry objective of a Raman microscope.20

These effects were analyzed by Tomba et al.21 and Everall22 and certainly would need to be
considered for some geometries of bulk GRIN optics. For a binary copolymer GRIN profile
measurement, either a set of reference measurements should be taken to account for the results
of different diffractions and aberration-induced Raman scattering volumes, or the Raman micro-
scope system should be empirically modeled, accounting for focal volume refraction and dif-
fraction. Calibration by reference measurements of known binary copolymer constituent
concentrations generates a type of lookup table, and empirical modeling requires meticulous
instrument calibration. For proof of concept on an existing lab instrument, the lookup table
method is most approachable, especially when the index of refraction of the GRIN sample varies
minimally within the focal spot.

Raman spectroscopy has been applied to GRIN for a variety of materials. The degree of
two-photon photopolymerization for GRIN materials has been measured by Raman
microscopy.23 Raman spectroscopy was briefly mentioned as a validation method to measure
the mixture of styrene acrylonitrile, PMMA, and poly(vinylidene fluoride-cotrifluoroethylene)
for application in GRIN.24 Raman spectroscopy has also been applied to measure infrared
ceramic GRIN25 and infrared glass GRIN26,27 optics. In one of these works, Raman spectros-
copy mapped the GRIN profile of the infrared glass ceramic by measuring its material
morphology.25 In contrast, this work describes polymer GRIN created predominantly by
binary material mixture. This work proposes a method to create a full spatial index of refrac-
tion map of a binary copolymer GRIN lens surface and determine accuracy to which GRIN is
aligned withing the lens geometry.
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2 Measurement Model and Methods

A PMMA/PS copolymer GRIN lens fabricated at the University of Rochester has an index of
refraction varying as a function of both radial and axial position (Fig. 1). Previously, the GRIN
lens was measured destructively to produce a map of the relative index of refraction variation
through the sample. Scanning Raman microscopy in the current study, however, can map the
absolute index of refraction at a known surface.

The model for measuring the GRIN profile is to use the Raman spectrum to get a material
distribution within the focal volume of the microscope and then to use the material distribution to
get the index of refraction at a desired wavelength. Because the Raman microscope assesses
material in a volume, variation in the focusing of the beam and free volume of the polymer
may bias the measurement. These contributions are minimal relative to the measured change
in index of refraction. The index of refraction change over the 1.7-μm focal spot diameter,
as in the setup described below, is 4 × 10−5 index of refraction. Calibration measurements
on homogeneous copolymer samples verify that the Raman spectrum and index of refraction
can be linearly correlated. Details of the calculation follow below. Calibration measurements
provide the precision of the Raman scan at each index of refraction value.

The method employed here uses a least squares fit to determine the best linear combination of
two homogeneous polymer spectra for PS and PMMA for a measured PS/PMMA copolymer
spectrum. Given known basis spectra of PS and PMMA, this solves for a 1 × i coefficient vector
C, where i is the number of coefficients for basis spectra under consideration. Two coefficients
are for the PS and PMMA basis spectra, and these coefficients are assumed linear with volume
fraction of the constituent materials. The rest of the coefficients are for polynomial orders up to
fifth order in Raman frequency. These polynomial orders are used to reduce the effect of any
spectrally broad fluorescence signal on the measurement fit to PS and PMMA basis spectra.
Each coefficient vector element weights the contribution of each basis spectrum to the measured
1 × j spectrum vector M, where j is the number of discrete frequency measurements sampling
the Raman frequency spectrum. The coefficients and measurement are related by Eq. (1), where
i × j is the matrix B of basis spectra and 1 × j noise vector N. Equation (1) is the model for the
ordinary least squares fit:

EQ-TARGET;temp:intralink-;e001;116;380M ¼ BCþ N; (1)

from which optimal C is solved by psuedoinversion on the rectangular matrix B to minimize the
noiseN applied to measurementM. The psuedoinverse matrix Bþ of basis spectra B (with matrix
transpose denoted by T) is

EQ-TARGET;temp:intralink-;e002;116;313Bþ ¼ ðBTBÞ−1BT: (2)

The psuedoinverse then is used to recover optimal coefficients C by

EQ-TARGET;temp:intralink-;e003;116;269C ¼ BþM: (3)

The resulting coefficients in C for PS and PMMA, CPS and CPMMA, are then the weights to
compute the index of refraction nGRIN by a weighted average of PS and PMMA index of refrac-
tion, nPS and nPMMA:

EQ-TARGET;temp:intralink-;e004;116;201nGRIN ¼ ðCPMMAnPMMA þ CPSnPSÞ
ðCPMMA þ CPSÞ

: (4)

To confirm that this measurement model is reasonable for spectroscopy on the GRIN copoly-
mer lens, homogeneous copolymer PS/PMMA samples of known index of refraction and com-
position are used for reference. The homogeneous samples are measured on both a Pulfrich
refractometer and the Raman microscope. Comparing measurements ensures that index of
refraction is correlated with the different copolymer constituent concentrations. Pure PMMA
and PS homopolymer spectra are measured as well: they are the endpoints of the mixing model.
These pure spectra serve as basis spectra for the analysis.
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A Pulfrich refractometer built in-house was used to obtain high-accuracy reference index of
refraction measurements, as in the thesis work of Fang.1 Pulfrich index of refraction measure-
ments are taken at wavelength λ ¼ 532 nm. Therefore, all index of refraction data is reported at
λ ¼ 532 nm. Scanning confocal Raman microscopy is carried out with a custom-built micro-
scope, the construction and details of which are outlined in the thesis work of Beier.28 A basic
schematic of the microscope is provided (Fig. 2). The probe laser has wavelength λ ¼ 830 nm,
and the microscope objective (MO) is a 10×, 0.3 NA dry objective. In air, this objective gives a
lateral spot diameter of 1.7 μm.

The Raman microscope is scanned over the plano surface of the GRIN lens to measure the
GRIN profile. To deduce any shift in the measured GRIN profile relative to the designed profile,
the data must be fit to the nominal design form with some allowance for GRIN decenter and tilt.
The nominal GRIN design is an eighth-order radially symmetric polynomial with radial coef-
ficients c10: : : c40 at the z ¼ 0 plane (Fig. 3). Therefore, the GRIN profile at the z ¼ 0 plane of
the lens, accounting for possible small lateral shifts δx, δy and tilts tx, ty of the GRIN profile,
takes the general form:

EQ-TARGET;temp:intralink-;e005;116;555

nðx; yÞ ¼ n0 þ txxþ tyyþ c10½ðx − δxÞ2 þ ðy − δyÞ2�
þ c20½ðx − δxÞ2 þ ðy − δyÞ2�2 þ c30½ðx − δxÞ2 þ ðy − δyÞ2�3
þ c40½ðx − δxÞ2 þ ðy − δyÞ2�4: (5)

To account for any axial, or z, shift in the GRIN profile within the lens using the real data, the
linear term describing the axial variation of the GRIN is used.

(a) (b)

Fig. 2 Schematic of the (a) scanning confocal Raman miscroscope system and (b) scan configu-
ration. The system (a) has probe source indicated in solid red and Raman scattered light indicated
in dotted red lines. Probe laser light passes through a laser bandpass filter (LBF) and a dichroic
filter (DF) to then be focused onto the sample by the microscope objective (MO). Scattered Raman
light is collected by the objective, passing through the DF and through a notch filter (NF) to then be
focused into optical fiber for the spectrometer. Residual reflection off the DF is blocked by the LBF.
The sample scan (b) is arranged such that the sample moves under the MO in a raster pattern to
cover the entire 25 mm × 25 mm scan area enclosing the planar sample surface. Measurements
are separated by 400 μm in a square grid.

Fig. 3 Design index of refraction profile for the GRIN lens. Two plane cuts through the rotationally
symmetric index of refraction design profile are shown. (a) The XY plane profile is a view of the the
GRIN at the z ¼ 0 plane located by the black arrow in (b) the YZ plane profile. Both plots share the
same index of refraction scale.
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Using the MATLAB surface fitting tool, the raw index data are fit to the above shifted form of
the design equation. The fit solves for all of the polynomial coefficients and shifts of the data
relative to the global XY origin. The physical central coordinate of the plano surface is calculated
through an implementation of Welzl’s algorithm to find the minimum bounding circle for the
edge of the data.29 In this way, the shift in the GRIN profile is referenced to the physical center of
the plano surface on the lens to within the spatial accuracy of acquired data. Finally, the design is
subtracted from the fit GRIN profile so that lateral and axial shift of the GRIN profile can be
determined.

3 Results

Raman measurement mapping of index of refraction is verified by Pulfrich refractometry for the
homogeneous copolymer samples. Using the mapping of Raman spectrum to index of refraction,
GRIN profile along the plano surface of the lens is presented, and GRIN profile deviations are
calculated.

3.1 Comparing Raman Measurement with Pulfrich Refractometry

The Pulfrich refractometer has accuracy of 3.2 × 10−5 index of refraction.1 Eleven homogeneous
samples are measured, stepping in volume percentage of PS by 10%. Two of the eleven samples,
those containing pure PMMA and pure PS, are homopolymers, and the other nine are copolym-
erized samples.

Three data points at different locations on each homogeneous sample are taken with the
Raman microscope to account for unwanted material variation within a reference measure-
ment. The Raman-measured spectral weight coefficients of the two materials in each sample
are used for the weighted average of the index of refraction of the two materials [Eq. (4)].
The weights are applied to the homogeneous PS and PMMA index of refraction measure-
ments. This weighted average defines the index of refraction reported in the trend for the
Raman data.

Pulfrich refractometry reports index of refraction directly for each sample, and error bars for
that measurement are presented for comparison. The maximum departure of the Raman meas-
urement from linear is 4 × 10−3 index of refraction, and the maximum departure of the Pulfrich
measurement from linear is 1 × 10−3 index of refraction (Fig. 4). In this way, reference mea-
surements directly map index of refraction to the Raman data.

(a) (b)

Fig. 4 Raman microscopy method to report index of refraction verified with Pulfrich refractometry.
The trend is reported as a function of fabricated nominal volume fraction of PS for each of the 11
samples. (a) The data for each measurement method and (b) all data with the ideal linear trend
subtracted from them are presented to more easily see a residual departure from linear.
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3.2 Raman Microscopy of GRIN Lens

The fabricated GRIN lens was designed to have a rotationally symmetric index of refraction
profile (Fig. 3). Previous lenses were destructively measured; however, this sample was left
intact to perform the Raman measurement. Raman confocal microscopy is used to scan the
plane z ¼ 0 to measure any shift in the GRIN profile with respect to the plano surface aperture
of the lens.

The design GRIN profile at the surface of the lens varies around 1.57 and 1.58 index of
refraction. The reference measurements with the Pulfrich refractometer above show that the
Raman spectral coefficient map to index of refraction is precise to within 1 × 10−3 of index
of refraction for these design values. The microscope is scanned in two dimensions over the
plano surface of the PMMA/PS GRIN lens to gather the Raman spectra and map the index
of refraction on that surface (Fig. 5). The scan covers a 24 mm × 24 mm area, gathering
61 × 61 equally spaced data points and rejecting data at points outside the edge of the sample.
This serves as built-in lateral sample registration to the scan. A few points within the sample
region are rejected due to poor spectrum fit from low signal-to-noise ratio or cosmic ray
contamination.

The data are fit to the designed GRIN profile equation [Eq. (5)] and compared to the design
profile (Fig. 6). A shift in index of refraction along the z axis (perpendicular to x; y; a difference
in n0 term) of 1.5 × 10−3 � 3 × 10−4 is observed between the GRIN data fit and design profile.
Based on the design, the linear change in index of refraction along the z axis is

Fig. 5 Raw index of refraction data on the plano surface of the PMMA/PS GRIN lens. White data
points indicate no data or spurious spectral measurements. The SA covers 24 mm × 24 mm area,
gathering 61 × 61 equally spaced data points. The microscope focal spot diameter for measure-
ment is 1.7 μm.

Fig. 6 (a) GRIN profile fit to the data and (b) the as-designed profile are plotted with the same
scale, and (c) the difference figure of the design from the data is plotted with a different scale. All
plots share the same x and y coordinates.
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−2.2 × 10−3 mm−1; the amount of index of refraction shift equates to a GRIN profile shift of
680 μm in z with respect to the desired position.

The MATLAB fitting toolbox effectively accounts for the low-order polynomial fit coeffi-
cient, but cannot fit higher order polynomial coefficients. Level of noise limits certainty, and
higher order profile terms are not reliable. The decenter terms δx and δy from the fit show
GRIN profile shift in x and y is <400 μm, which is also the precision of centering the data
to the lens. The error in the GRIN profile shows a slight shift of higher order radial contributions
of the design, not normal tilt and decenter of the GRIN within the lens.

4 Discussion

The result is the first direct measurement of index of refraction profile on the surface of this
GRIN lens. Previous measurements were only able to measure the total change in index of
refraction by the optical path difference through the sample. Raman microscopy is correlated
with the Pulfrich refractometry using homogeneous sample measurements. By taking reference
measurements of homogeneous mixed PS/PMMA copolymer, the index of refraction can effec-
tively be mapped. The reference measurement is made to within 1 × 10−3 index of refraction for
values relevant to the GRIN lens measurement. With a finer step in reference sample polymer
composition, a finer precision reference mapping will be possible.

Sampling the plano surface more finely may result in finer spatial definition of the edge, and
therefore improved spatial referencing for tilt and decenter measurements of the GRIN. With
further calibration of the microscope focal volume, the method may be extended to measure
GRIN at a curved optical surface. This could be attempted in following experiments.

Unlike interferometry, Raman spectroscopy may measure large absolute index of refraction
departure from design without destroying the measurement feasibility. This makes Raman spec-
troscopy a faster nondestructive test method for GRIN optic fabrication.

The PMMA/PS copolymer GRIN lens is shown to be a suitable candidate for index of refrac-
tion mapping through Raman microscopy. The Raman measurement is correlated with Pulfrich
refractometry, and the index of refraction map of the GRIN lens is laterally aligned to the design
specification to within the lateral resolution of the measurement. The GRIN profile is found to be
axially displaced by 680 μm in z. Higher spatial resolution for measurement may be necessary to
determine the GRIN profile shift if tighter tolerance specifications are required.

Acknowledgments

The authors thank Joe Malone for his help in taking the Raman microscope measurements. The
authors declare no conflicts of interest in this work or in the publication of this work. All authors
consent to the publication of this work.

References

1. K. Fang, “Design, fabrication and characterization of polymer gradient-index (GRIN)
material,” PhD Thesis, University of Rochester (2016).

2. T. Uchida et al., “Optical characteristics of a light-focusing fiber guide and its applications,”
IEEE J. Quantum Electron. 6, 606–612 (1970).

3. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair cou-
pling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).

4. H. Melkonyan et al., “Gradient-index optical fiber lens for efficient fiber-to-chip coupling,”
Opt. Exp. 25, 13035–13045 (2017).

5. S. Guo et al., “Gradient-index lens rod based probe for office-based optical coherence
tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).

6. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-
of-care pathology,” Opt. Lett. 37, 2430–2432 (2012).

7. S. Ohmi et al., “Gradient-index rod lens made by a double ion-exchange process,” Appl.
Opt. 27, 496–499 (1988).

Kochan et al.: Mapping of index of refraction profile for polymer gradient index optics. . .

Optical Engineering 112605-8 November 2020 • Vol. 59(11)

https://doi.org/10.1109/JQE.1970.1076326
https://doi.org/10.1364/AO.42.000550
https://doi.org/10.1364/OE.25.013035
https://doi.org/10.1117/1.3076198
https://doi.org/10.1364/OL.37.002430
https://doi.org/10.1364/AO.27.000496
https://doi.org/10.1364/AO.27.000496


8. A. Visconti, “Design and fabrication of large diameter gradient-index lenses for dual-band
visible to short-wave infrared imaging applications,” PhD Thesis, University of Rochester
(2015).

9. C. Wang and D. L. Shealy, “Design of gradient-index lens systems for laser beam reshap-
ing,” Appl. Opt. 32, 4763–4769 (1993).

10. Y. Koike, H. Hidaka, and Y. Ohtsuka, “Plastic axial gradient-index lens,” Appl. Opt. 24,
4321–4325 (1985).

11. K. Fuerschbach, “Freeform, ϕ-polynomial optical surfaces: optical design, fabrication and
assembly,” PhD Thesis, University of Rochester (2014).

12. S. D. Campbell et al., “Three-dimensional gradient-index optics via inkjet-aided additive
manufacturing techniques,” in IEEE Int. Symp. Antennas and Propagation USNC/URSI
National Radio Science Meet., pp. 605–606 (2015).

13. Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging
ellipsometric technique,” Jpn. J. Appl. Phys. 44, 1111–1114 (2005).

14. C. K. Carniglia, “Ellipsometric calculations for nonabsorbing thin films with linear refrac-
tive-index gradients,” J. Opt. Soc. Am. A 7, 848–856 (1990).

15. D. Lin et al., “One-dimensional gradient-index metrology based on ray slope measurements
using a bootstrap algorithm,” Opt. Eng. 52(11), 112108 (2013).

16. D. Lin and J. R. Leger, “An iterative approach to measuring two-dimensional gradient-index
profiles based on external measurements of laser beam deflection,” Proc. SPIE 9576,
95760G (2015).

17. M. A. Sekh et al., “Measurement of gradient index profile using deflectometry,” Opt.
Commun. 306, 145–149 (2013).

18. F. J. Purcell and J. M. Bello, “Fluorescence-free Raman spectra of polymers,” Proc. SPIE
1336, 135–143 (1990).

19. C. Hu et al., “Observation of mutual diffusion of macromolecules in PS/PMMA binary films
by confocal Raman microscopy,” Soft Matter 8, 4780–4787 (2012).

20. J. P. Tomba, “Comment on ‘Observation of mutual diffusion of macromolecules in PS/
PMMA binary films by confocal Raman microscopy’ by C. Hu, X. Chen, J. Chen, W.
Zhang and M. Q. Zhang, Soft Matter, 2012, 8, 4780,” Soft Matter 12, 4510–4513
(2016).

21. J. P. Tomba, L. M. Arzondo, and J. M. Pastor, “Depth profiling by confocal Raman micro-
spectroscopy: semi-empirical modeling of the Raman response,” Appl. Spectrosc. 61(2),
177–185 (2007).

22. N. J. Everall, “Modeling and measuring the effect of refraction on the depth resolution of
confocal Raman microscopy,” Appl. Spectrosc. 54(6), 773–782 (2000).

23. A. Žukauskas et al., “Tuning the refractive index in 3D direct laser writing lithography:
towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).

24. M. Brindza et al., “Refractive index of nanolayered polymeric optical materials,” in Laser
Appl. Photonic Appl., JWA73, Optical Society of America (2011).

25. L. Sisken et al., “Evidence of spatially selective refractive index modification in
15gese2-45as2se3-40pbse glass ceramic through correlation of structure and optical property
measurements for grin applications,” Opt. Mater. Express 7, 3077–3092 (2017).

26. G. P. Lindberg et al., “Raman and CT scan mapping of chalcogenide glass diffusion gen-
erated gradient index profiles,” Proc. SPIE 9822, 98220W (2016).

27. G. P. Lindberg et al., “Methods of both destructive and non-destructive metrology of GRIN
optical elements,” Proc. SPIE 9451, 94511S (2015).

28. B. D. Beier, R. G. Quivey, Jr., and A. J. Berger, “Identification of different bacterial species
in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15(6), 066001 (2010).

29. A. Semechko, “Exact minimum bounding spheres and circles,” GitHub repository, 2020,
https://github.com/AntonSemechko/Bounding-Spheres-And-Circles.

Nicholas S. Kochan received his BS degree in optics and his MS degree in technical entrepre-
neurship and management from the University of Rochester in 2017 and 2019, respectively. He
is a PhD student at the University of Rochester Institute of Optics, studying optical system design
and optical metrology. He is a member of SPIE.

Kochan et al.: Mapping of index of refraction profile for polymer gradient index optics. . .

Optical Engineering 112605-9 November 2020 • Vol. 59(11)

https://doi.org/10.1364/AO.32.004763
https://doi.org/10.1364/AO.24.004321
https://doi.org/10.1109/APS.2015.7304689
https://doi.org/10.1109/APS.2015.7304689
https://doi.org/10.1143/JJAP.44.1111
https://doi.org/10.1364/JOSAA.7.000848
https://doi.org/10.1117/1.OE.52.11.112108
https://doi.org/10.1117/12.2186808
https://doi.org/10.1016/j.optcom.2013.04.077
https://doi.org/10.1016/j.optcom.2013.04.077
https://doi.org/10.1117/12.22903
https://doi.org/10.1039/C2SM07299H
https://doi.org/10.1039/C5SM02735G
https://doi.org/10.1366/000370207779947477
https://doi.org/10.1366/0003702001950382
https://doi.org/10.1002/lpor.201500170
https://doi.org/10.1364/OME.7.003077
https://doi.org/10.1117/12.2223775
https://doi.org/10.1117/12.2176615
https://doi.org/10.1117/1.3505010
https://github.com/AntonSemechko/Bounding-Spheres-And-Circles
https://github.com/AntonSemechko/Bounding-Spheres-And-Circles


Greg R. Schmidt received his PhD in optical engineering in 2009 from the University of
Rochester. He is a research professor at The Institute of Optics. His primary field of research
is gradient index optics materials, modeling, and metrology. He also studies nonimaging optics
for concentrating solar and illumination. He is a member of SPIE.

Andrew J. Berger received his BS degree from Yale in 1991 and his PhD from the
Massachusetts Institute of Technology in 1998, both in physics. He has been a professor of
optics and biomedical engineering at the University of Rochester since 2000. He is the author
of more than 40 journal articles and has written 2 book chapters. His current research interests
include in vivo vibrational spectroscopy of bone, estimation of organelle size distribution in
single biological cells using angularly resolved elastic scattering, and spectroscopic enhance-
ment of bruise contrast for better documentation of interpersonal violence.

Duncan T. Moore received his bachelor’s degree in physics from the University of Maine, his
master’s degree in optics from the University of Rochester, and his PhD in optics in 1974.
Currently, he is the vice provost of entrepreneurship and the Kingslake professor of optical engi-
neering, professor of business administration at the University of Rochester. He has extensive
experience in the academic, research, business, and governmental arenas of science and tech-
nology. He is an expert in gradient-index optics, concentrating solar optics, and the manufacture
of optical systems. He is a fellow of SPIE and received the SPIE Gold Medal in 2006.

Kochan et al.: Mapping of index of refraction profile for polymer gradient index optics. . .

Optical Engineering 112605-10 November 2020 • Vol. 59(11)


