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cLaboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS,
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ABSTRACT

Spin-polarized lasers such as spin-polarized vertical-cavity surface-emitting laser (spin-VCSELs) are prospective
devices in which the radiative recombination of spin-polarized carriers results in an emission of circularly-polarized
photons. Nevertheless, additional linear in-plane anisotropies in the cavity generally lead in preferential linearly-
polarized laser emission and to possible coupling between modes. Optimization of room-temperature spin-
VCSELs thus relies on a proper modeling method and on a good understanding of these anisotropies that may
reveal (i) a local linear birefringence due to strain fields at the surface or (ii) a birefringence in quantum wells
(QWs) due to phase-amplitude coupling originating from the reduction of the biaxial D2d to the C2v symmetry
group at the III-V ternary semiconductor interfaces. We present a novel method for the modeling of steady-state
and dynamical properties of generally anisotropic multilayer semiconductor lasers containing multiple QWs active
region. In order to solve the dynamical properties of spin-VCSELs, we combine here optical Bloch equations for
a 4-level system with the scattering-matrix formalism, which treats VCSELs as a multilayer structure containing
classical active dipole layers [T. Fördös et al., Phys. Rev. A 96, 043828 (2017)]. The method is then demonstrated
on real semiconductor laser structures with InGaAs/GaAsP quantum wells. It is used for calculation of the laser
resonance condition, the polarization properties of eigenmodes, the electromagnetic-field distribution inside the
laser cavity, and time-dependent properties of the emitted light.

Keywords: spin-VCSEL, dynamical properties, scattering matrix formalism, Bloch equations

1. INTRODUCTION

Due to advances in nanostructure preparation techniques in the recent years, it is now possible to prepare systems
in which the quantum nature of matter and fields plays a significant role. It is for example the modification of
spontaneous emission using nanostructured photonic crystals, where photonic density of states is basically engi-
neered. Considering laser technologies, it is promising technology of vertical (external)-cavity surface-emitting
lasers [V(E)CSELs].1 Active zones of such devices consist of semiconductor quantum wells (QWs) or quantum
dots (QDs) with quantized energy spectrum due to reduced dimensions at least in one spatial direction. Here, we
limit ourselves to semiconductor QWs. A process of stimulated emission requires the recombination of conduc-
tion and valence band electronic states governed by optical selection rules. Laser cavity of monolithic VCSEL
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contains top and bottom distributed Bragg reflectors (DBRs) of very high reflectivity that originates from the
existence of photonic band gap in DBR’s spectra.2 On the other hand, VECSELs consist of a single DBR at the
bottom of the structure and an external mirror placed in significant distance from a laser chip. From a material
point of view, V(E)CSEL technologies are based on binary and ternary III-V semiconductor compounds.

The architecture and properties of V(E)CSEL structures are suitable for industrial realization of so-called
spin-polarized lasers (or simply spin-lasers).3, 4 Energy states in semiconductor QWs are degenerated in a
spin degree of freedom. However, this degeneracy can be lifted using spin-injection into QWs, which can be
realized using spin-polarized electrical current and/or appropriately polarized optical pump.5, 6 According to
Fig. 1 (right), which shows 4-level active media of spin-laser (considering only conduction electrons and heavy
holes), it is possible, in principle, to control the polarization of emitted field by lifting degeneracy of the electron
spin projections using the spin-injection.7 σ± stand for the transitions of circularly-polarized photons.

Spin-lasers promise improved performance compared to their conventional counterparts.3, 4 Namely, one can
expect the threshold pumping rate reduction, which is already routinely demonstrated in laboratories around
the world. However, desired and theoretically predicted 50 % threshold reduction is difficult to obtain due to
very short spin relaxation lifetime. In practice, the polarization control is affected by the presence of optical
anisotropies in the laser cavity, which is of the main interest of this work. Strong anisotropies, such as residual
linear birefringence and linear gain dichroism at semiconductor/air interface and in QWs, respectively, make
linear polarization preferable.8–11 Actually, there are successful approaches to overcome this phenomena, e.g.
placing birefringent optical element inside laser cavity to compensate residual birefringence of laser. Moreover, the
oscillation of elliptical and also circularly-polarized laser eigenmodes was observed.6, 11, 12 Such approaches are not
practical for integration of spin-laser with components of integrated optics. Another consequence of anisotropies
is significant coupling between laser eigenmodes which results, for example, in time-domain modulation of emitted
degree of circular polarization.13 This strongly influence stability of laser eigenmodes.6, 8, 10 Enhanced modulation
dynamics of spin-lasers is also intensively studied.14 Recently, it was demonstrated that several times higher bit
rate can be obtained with spin-lasers.15

Different modeling tools are currently available to predict steady-state and dynamical properties of spin-
lasers. Qualitatively correct analysis of spin-laser eigenmodes in the presence of optical anisotropies was recently
performed using 2 × 2 Jones matrices revealing for example possible compensation of linear anisotropies using
spin-injection.16 However, such approaches operate with effective quantities distributed through entire laser
structure, which is not practical for design of future spin-lasers. Sophisticated layer-by-layer treatment of spin-
lasers [spin-V(E)CSELs especially] based on scattering matrices was currently proposed by Fördös et al.17, 18

Such approach allows to extract and study laser eigenmodes of arbitrary spin-V(E)CSEL with localized linear
birefringence and linear dichroism and consequently allows possible design of future spin-lasers.19 In the present
paper, we extend this work. Dynamical properties of spin-lasers, on the other hand, are studied in the framework
of the spin-flip model. Excellent agreement with experiment was obtained using spin-flip model in the recent
years.14 However, also spin-flip model uses effective quantities describing linear optical anisotropies. Here, we
include optical anisotropies as localized phenomena also in the context of laser dynamics.

In the Sec. 2 we introduce the description of anisotropic spin-lasers in the framework of the generalized
Maxwell-Bloch equations. We present alternative derivation of gain tensor and amplification matrix18 used in
the matrix formalism of Fördös et al. for extraction of laser eigenmodes. Sec. 2 is dedicated also for description
of the method for the calculation of electromagnetic field distributions in anisotropic spin-V(E)CSELs. Next,
we formulate the rate-equation model derived directly from the generalized Maxwell-Bloch equations, which
describes oscillation of two modes in a spin-polarized V(E)CSEL with localized optical anisotropies. In the
Sec. 3, we apply our modeling tools to a real spin-VECSEL with linear gain anisotropy in QWs and linear
birefringence at the semiconductor/air interface. We calculate electromagnetic field distribution inside the laser
structure considering the optical anisotropies and spin-injection. Finally, the rate-equation model respecting
localized nature of the anisotropies is used to determine dynamical properties of the spin-VECSEL involving the
linear gain dichroism.

Proc. of SPIE Vol. 10926  1092614-2



Figure 1. (left) The polarization of laser eigenmode E(i) and polarization of optical transition inside active media
described by the Jones source vector Jd do not have to be necessarily collinear. Non-collinearity may be caused by optical
anisotropies inside laser cavity and/or by anisotropic nature of active media. In a case of semiconductor QW with linear
gain dichroism, it is related to the non-orthogonality of Jones source vectors A

d

± related to N± populations.18 (right)
4-level electronic system of semiconductor QW with two possible optical transitions.7

2. THEORETICAL BASIS

2.1 Active Media Dynamics, Generalized Maxwell-Bloch Equations

Dynamics of interaction between active media and electromagnetic field in the dipole approximation can be
described by the Maxwell-Bloch equations, sometimes called the optical Bloch equations.20 Considering generally
multimode oscillation, they couple together the electric field intensity E(i), the electric dipole moment density
P(i) of i-th mode, and the population inversion variables Nq, where index q defines carrier channel or type of
the optical transition. In the case of spin-polarized lasers q ∈ {+,−}, referring to different spin projections of
conduction band electrons. One of the advantages of optical Bloch equations related to modeling of an anisotropic
laser structures such as birefringent spin-V(E)CSELs is respecting of vectorial nature of the electric field intensity
and the macroscopic polarization P. As shown in Fig. 1 (left), laser eigenmodes are generally not collinear with
the Jones vector characterizing active media eigenpolarization. It is due to optical anisotropies present in a laser
cavity and due to anisotropic nature of laser active media. In fact, it means that in a case of such non-collinearity
only fraction of incoming electromagnetic field is amplified during stimulated emission.

Mathematically, it is realized by projecting the electric field intensity vector of laser eigenmode on directions
of the active media Jones source vectors.21 Interaction of multiple modes of electromagnetic field with the
spin-polarized carrier densities N± in an anisotropic laser cavity is described by the generalized Maxwell-Bloch
equations18
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[

i
(

ωt− k(i)z
)]

, (3)

where the first of them, Eq. (1), describes the time-dependece of macroscopic polarization P(i) induced by
interaction of the field mode E(i) with both carrier channels. The macroscopic polarization decays with the
rate Γ. Parameter δ represents the spectral detuning and µ is the off-diagonal matrix element of the electric
dipole operator. Eq. (2) describes dynamics of the population inversions N± pumped with the rates γN0±, where
γ stands for the population decay rate coefficient. Spin-mixing processes can be also described by the effective
coefficient γs. Equation (3) connects active media to the rest of the laser structure by describing propagation
of eigenmode of the frequency ω in entire laser cavity and its dynamics. Decay of laser eigenmodes is described
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by κ which is defined as 1/τph, where τph stands for the photon lifetime inside cavity. Optical properties of the
cavity are described by the permittivity ε, which is generally different for each layer.

As shown in Fig. 1, non-orthogonality of the Jones source vectors Ad
± is caused by the presence of linear

gain anisotropy in semiconductor QW which is induced by reduced crystallographic symmetry at quantum
well/barrier interfaces.22 In order to evaluate the exact form of Jones source vectors in an active media with
linear gain dichroism, let us define the dipolar transition matrix elements Πx′ , Πy′ along x′ = [110] and y′ = [11̄0]
axes (see Fig. 4). We introduce parameter 1 −∆ which quantifies linear gain anisotropy.18 It follows that two
orthogonal dipolar matrix elements Πx′ , Πy′ are linked together as Πy′ = ∆Πx′ . It means that the dipolar
interaction has different strength along x′ and y′. In the reference frame defined by basis axes x = [100] and
y = [010], the Jones source vectors characterizing optical transitions in (+) and (−) channels are18

Ad
+ = Ad∗

− =
1√

1 + ∆2





1+∆
2 − i 1−∆

2

−i 1+∆
2 + 1−∆

2



 . (4)

Note that for ∆ = 1, which corresponds, according to our convention, to vanishing linear gain anisotropy, the
Jones source vectors describe orthogonal circularly-polarized transitions σ+ and σ−, as shown in Fig. 1. For ∆ 6= 1
vectors Ad

± are not orthogonal to each other, resulting in a strong mode coupling between laser eigenmodes.

Note that the laser eigenmodes E(i) are determined not only by properties of active media such as spin
polarization Ps or linear gain dichroism ∆, but additionally by optical properties of entire laser cavity.18 In
order to find such laser eigenmodes we will introduce the required matrix formalism in the next parts of this
paper.

2.2 Amplification Matrix

We will adapt the description of light interaction with semiconductor QWs based on the generalized Maxwell-
Bloch equations presented in Sec. 2.1 for a need of matrix method which will enable us for example to find
laser eigenmodes. Using slowly varying envelope approximation and adiabatic elimination of the dipole moment
density P(i) valid for Class-A and Class-B lasers,20, 21 we simplify Equation (3) into18

dE(i)

dt
= −1

2
κE(i) +

ωµ2

2ε(Γ + iδ)~

[

(E(i) ·Ad∗
+ )Ad

+N+ + (E(i) ·Ad∗
− )Ad

−N−

]

, (5)

where the first term represents cavity losses and the second term represents interaction of i-th mode of the

electromagnetic field E(i) with carriers N+ and N−. For simplicity, we use notation g = ωµ2

2ε(Γ+iδ)~ for the

interaction constant.18 Next, we consider the general electric field intensity vector E(i) → E. Using methods of
tensor calculus, it can be shown that Equation (5) can be re-expressed as18, 21

dE

dt
= −1

2
κE+ g

[

(Ad
+ ⊗Ad∗

+ )N+ + (Ad
− ⊗Ad∗

− )N−

]

E, (6)

where we have introduced the gain operator T̂ = [(Ad
+ ⊗Ad∗

+ )N++(Ad
− ⊗Ad∗

− )N−]. Note that we are searching
for matrix description of monochromatic light passing through an anisotropic QW. For this reason, we go from
time to space domain using dE

dt
= dE

dz
dz
dt
, where dz

dt
= v = c

n
is speed of considered electromagnetic wave inside

QW of the refractive index n. Since a phenomenological description of cavity losses takes into account all of loss
mechanisms of photons in a resonator, we are allowed to neglect the loss term during short interval in which
photons pass through QW. We can write

c

n

dE

dz
= g T̂ E, (7)

which can be solved by conventional methods under the assumption that population inversion is fixed to its
threshold value. For a QW of the thickness W we have

Eout = exp

[

nWg

c
T̂
]

Ein, (8)
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where Eout and Ein are intensities of the electric field outgoing from and incoming to QW, respectively. Due to
very small thickness of QW we use a linear approximation valid also for arbitrary operator Â: exp[Â] ∼= Î + Â,

if
〈

Â
〉

<< 1, where Î stands for the unity operator. We obtain the operator expression connecting the electric

field components outgoing from and incoming to single QW

Eout =

[

Î +
nWg

c
T̂
]

Ein, (9)

where it is useful to re-define the gain tensor as T = T̂ /N :18

T =
N+

N+ +N−

(Ad
+ ⊗Ad∗

+ ) +
N−

N+ +N−

(Ad
− ⊗Ad∗

− ), (10)

and introduce the gain coefficient g0
18

g0 =
nWgN

c
=

nWωµ2N

2εc(Γ + iδ)~
, (11)

where N = N+ +N−. We may represent unity operator using the 2 × 2 unity matrix I. Additionally, since we
are considering semiconductor active media, we should use the Henry’s coefficient α to describe changes in the
real part of the refractive index due to pumping of the carriers into QW.23 Finally, using Eqs. (10) and (11),
Eq. (9) becomes18

Eout = [ I+ g0 (1− iα) T ]Ein = TµµEin, (12)

where Tµµ are the 2×2 components of amplification matrix T and where index µ ∈ {u, d} defines up- and down-
travelling amplitudes. In the framework of the scattering matrix formalism, we can describe light amplification
in a single semiconductor QW as18

[

Au

Ad

]

out

=

[

Tuu 0
0 Tdd

] [

Au

Ad

]

in

. (13)

The amplification matrix T relates amplitudes outgoing from and incoming to QW.

2.3 Propagation in Optical Cavity, Extraction of Laser Eigenmodes

In order to model emission from a V(E)CSEL, it is necessary to describe also propagation in the rest of the laser
cavity. We devide the structure into three blocks:17, 18 the upper Bragg mirror (or external mirror in the case of
1/2-VCSEL), the active zone and the lower Bragg mirror as shown in Fig. 2. Let us begin with the description
of light interaction in the semiconductor multiple QW (MQW) active region. Respecting the notation in Fig. 2,

Figure 2. The approach used for solving the problem of light propagation and amplification in a complex anisotropic
V(E)CSEL or spin-V(E)CSEL. Laser structure is devided into three parts which are described separately.
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we relate amplitudes interacting with active zone using the amplification matrix T derived in Sec. 2.2 in the
following way18

[

A
′

u

A
′′

d

]

=

[

Tuu Tud

Tdu Tdd

]

[

A
′′

u

A
′

d

]

, (14)

where also off-diagonal submatrices Tud and Tdu appear due to reflection events in MQW.18 In the framework of
scattering matrix formalism the off-diagonal elements stand for reflectivity matrices. We use scattering matrices
S(1) and S(2) to describe light propagation in upper and lower mirrors respectively. Definition of S-matrices is
presented in Appendix A. According to Fig. 2 we can write18

[

A(0)
u

A
′

d

]

=

[

S(1)
uu S

(1)
ud

S
(1)
du S

(1)
dd

]
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A
′

u

0

]

, (15)
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A
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u

A
(N+1)
d

]

=

[

S(2)
uu S

(2)
ud

S
(2)
du S

(2)
dd

]

[

0

A
′′

d

]

, (16)

where we use the fact that electromagnetic field radiates only out of the structure. In the next step, we solve

Eqs. (14), (15) and (16) to obtain emitted amplitudes A(0)
u and A

(N+1)
d . Resulting system of four linear equations

is written in the matrix form18

[

TudS
(1)
du − I TuuS

(2)
ud

TddS
(1)
du TduS

(2)
ud − I

][

S(1)
uu 0

0 S
(2)
dd

]−1 [

A(0)
u

A
(N+1)
d

]

= S̃TAout = 0. (17)

For a nontrivial solution of this system of algebraic equations, which corresponds to laser resonance, the following
condition for total matrix S̃T must be fulfilled17, 18

det
{

S̃T (λ, g0)
}

= 0. (18)

Note that, in practice, it is equal to finding the resonant wavelength λ and the threshold value of gain coefficient
g0, for which laser gain exactly compensates cavity losses. Once we find the resonant wavelength and the threshold
value of the gain coefficient, Eq. (17) is used to determine the polarization state of the laser eigenmodes and the
electric field distribution inside a cavity.

2.4 Standing-Wave Pattern Calculation

Procedure for extraction of laser eigenmodes of complicated anisotropic laser structures presented in Sec. 2.3
turns out to be very useful in determining several steady-state properties of spin-V(E)CSELs such as distribution
of electromagnetic field inside laser cavity. Our method for the calculation of standing-wave pattern is described
in Fig. 3. The important point is that the field in the entire laser structure can be obtained using emitted
amplitudes. The procedure is following: i) we calculate laser eigenmode together with resonant wavelength
and polarization state, ii) field is calculated for each z-coordinate using transfer or scattering matrices of each
component of laser structure from both sides always up to the last QW (in the sense of considered direction of
propagation). Note that in the active zone we obtain two sets of electromagnetic-field components originating
in propagating field using transfer matrices from both sides of laser. For this reason iii) we average these two
fields. It is necessary to perform the averaging because in the present approach each QW is approximated as
an infinitesimally thin dipole layer placed at the center of QW film. Consequently, the field is not amplified
smoothly but by steps, which causes certain inaccuracy. It is worth noting that the method is polarization-
sensitive. Morover, one can apply recursive S-matrix algorithm18 to calculate exact field distribution in MQW
system.
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Figure 3. The method for calculation of electromagnetic-field distribution inside multi-QW spin-V(E)CSEL. Field
components in Bragg mirrors or generally in passive laser components are calculated directly using emitted amplitudes.
On the other hand, field inside multi-QW region is obtained as an average of fields given by both emitted amplitudes.

2.5 Rate Equations of Two-Mode Spin-V(E)CSEL With Linear Gain Dichroism

Let us now limit our considerations to dual-mode operation of spin-polarized V(E)CSEL with linear gain dichro-
ism only and neglected birefringence. Such oscillation regime can be described in the limit of Class-A and Class-B
lasers by Eqs. (2) and (5), where i ∈ {1, 2}. However, it is impractical for example to solve time-dependence or
stability of modes due to mathematical structure of the generalized Maxwell-Bloch equations, e.g. the presence of
scalar product. For this reason we derive the rate equation model describing dynamics of anisotropic two-mode
spin-polarized V(E)CSEL directly from Eqs. (2) and (5).

We introduce normalized intensities8 Ĩ(1,2) = I(1,2)/2Isat, where I(1,2) are the optical intensities of laser

eigenmodes and Isat is the saturation intensity. We define new population variables8 N = g̃
2κ (N+ + N−) and

m = g̃
2κ(N+−N−), where g̃ = 2Re {g}. It can be shown that we may consider N,m ’eigenpopulations’ of 4-level

system in Fig. 1. We find the following system of equations24
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m
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(
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m
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Ĩ(2) − κĨ(2), (20)
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(
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)
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)
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2

)

Ĩ(2)

]

m, (21)

dm

dt
= γPǫN0 − γ̄sm− γ

[

(

β+
1 + θ−1

)

Ĩ(1) +
(

θ+2 + β−

2

)

Ĩ(2)

]

m− γ
[

(

β+
1 − θ−1

)

Ĩ(1) +
(

θ+2 − β−

2

)

Ĩ(2)

]

N, (22)

where β+
1 , β−

2 and θ−1 , θ
+
2 are the effective optical gain coefficients and the cross-coupling coefficients,18 respec-

tively. SymbolX±

i denotes coefficient describing coupling between i-th mode andN± carrier population inversion,
where X ∈ {β, θ}. Note that eigenpolarizations can be obtained in the absence of any additional anisotropies
in laser cavity such as the linear birefringence simply by finding eigenvectors of a gain tensor in Eq. (10).18

Overall pumping rate is quantified using γN0, where N0 stands for the unsaturated population inversion.21 Spin
polarization of pump is controlled by the parameter Pǫ and so-called spin flip rate coefficient γ̄s is defined as
γ + 2γs.

8

Eqs. (19-22) describe coupling of two modes E(1,2), generally differing in wavelength and polarization, to
carrier population inversions N±. Such coupling between modes increases with increasing linear gain dichroism
quantified using the parameter ∆.18 Note that in the absence of gain dichroism (and birefringence), which is
equivalent to consider ∆ = 1, there is no cross-coupling. It means that β+

1 = β−

2 = 1 and θ−1 = θ+2 = 0 and
consequently (21), (22) become equivalent to (27), (28) (see Appendix B). One can see that also the rest of rate
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equations of our model become formally equivalent to spin flip model in the absence of linear gain anisotropy. In
this sense, Eqs. (19-22) form the generalization to spin flip model where amplitude anisotropies are described by
effective parameter γa and are not localized.8, 10 It should be noted that our approach to solve time-dependence
of spin-V(E)CSELs can be adapted to include also linear birefringence that can be localized in arbitrary layer
of laser structure. In the case of birefringent spin-V(E)CSEL structure, it is not possible to find eigenmodes as
a gain tensor eigenvectors anymore and numerical methods must be used instead. It means that the calculation
of effective gain coefficients and cross-saturation coefficients is much more complicated. However, this is out of
the scope of this article.

3. APPLICATION TO REAL SPIN-V(E)CSEL STRUCTURES

Figure 4. (left) A simplified structure of spin-VECSEL containing 12-QW active region with gain anisotropy used for
application of proposed modeling tools. (right) Used reference frame. Source of linear birefringence is localized in two
capping layers.

In the present part of this work we use modeling tools introduced in Sec. 2 to study both static and dynamical
properties of real spin-V(E)CSELs. We limit ourselves to 1/2-VCSEL structures with external output coupler
as shown schematically in Fig. 4. It contains active region with twelve InGaAs/GaAsP QWs and GaAs spacers.
Optical feedback is realized by bottom Distributed Bragg Mirror(DBR) with 26 periods of GaAs/AlAs which
provides almost perfect reflectivity. Reflectivity of output coupler placed typically few millimeters from 1/2-
VCSEL chip is R = 0.95. Note that by changing distance between output coupler and 1/2-VCSEL, one is able to
modify photon lifetime τph in optical cavity and consequently dynamical behavior of VECSEL. Entire structure
is optimized to emit at λ = 980 nm.

Our modeling tools respect anisotropic nature of V(E)CSEL structures. We consider both linear gain dichro-
ism and linear birefringence in a calculation of electromagnetic-field distribution in laser structures and linear
gain dichroism only in the context of dynamical properties of spin-VECSELs. Linear gain dichroism quantified
using the parameter ∆ is localized exactly inside each of QWs. On the other hand, linear birefringence quantified
by the parameter δn = ne−no is localized inside two capping layers at the top of 1/2-VCSEL.19 Total thickness
of birefringent layers is 40 nm. Note that according to Fig. 4, axes of ordinary and extraordinary refractive
indices are not aligned along axes, in which linear gain dichroism was applied.

3.1 Electromagnetic-Field Distribution Calculation

Let us now apply method of electromagnetic-field distribution calculation described in Sec. 2.4 to above-
mentioned 12-QW VCSEL structure. Fig. 5 shows the resulting standing-wave pattern inside 1/2-VCSEL for
∆ = 0.95, δn = 0.025 and the effective degree of spin polarization Ps = 0. The polarization of the optical
eigenmode is linear. Since axes of linear gain anisotropy and linear birefringence are not aligned, a vector of
electric field intensity is oriented in quite general direction. We would obtain Ex = Ey in each point of spin-
VECSEL, if we took δn = 0. On the other hand, Ex component increases with increasing linear birefringence
parameter δn. We note that while searching for anisotropic spin-VECSEL eigenmodes, we usually find multiple
sets of two transversal modes. Those sets are equidistant. We do not consider simultaneous oscillation of these
two transversal modes in this subsection. Consequently, what we present is the field distribution of a single
transversal mode.
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Figure 5. Electromagnetic-field distribution inside 1/2-VCSEL with linear gain dichroism and linear birefringence.
Orthogonal directions are not equivalent due to optical anisotropies inside the laser cavity. We see that the wavelength
of optical eigenmode lays inside photonic bandgap of DBR and thus electromagnetic field exponentially decays inside the
Bragg mirror.
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Figure 6. Electromagnetic-field distribution inside 1/2-VCSEL with linear gain dichroism and linear birefringence and
pumped using spin-polarized current. Large effective spin polarization of conduction band electrons inside QWs is able
to almost compensate the effects of linear optical anisotropies.

In the next case (see Fig. 6), we consider also non-zero effective spin polarization degree Ps. We see that
using quite large value of Ps, we are able to almost compensate the effects of linear optical anisotropies.11, 16

Polarization of emitted field is very close to perfectly circular one, which can be deduced from the values of the
Stokes vector describing polarization state of emitted light.

3.2 Dynamical Properties of Spin-V(E)CSELs

This part of our contribution is dedicated to analysis of time-dependent phenomena in spin-V(E)CSELs. We
study transient behavior of both laser eigenmodes under different conditions and polarization dynamics using
time-dependent Stokes vectors components of emitted light. All the calculations are performed for spin-polarized
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Figure 7. Time-dependence of two laser eigenmodes of spin-VECSEL calculated with fixed value of linear gain dichroism
parameter ∆ = 0.9. Pump polarization Pǫ is variable parameter.

1/2-VCSEL with external cavity described in the previous subsection and shown in Fig. 4 (left). We emphasize
here the effects of anisotropic properties of the laser cavity and active media such as the linear gain anisotropy
and the spin polarization of conduction band electrons in QWs. Note that considering dynamical properties of
spin-lasers linear birefringence is out of the scope of the present work.

The analysis is based on Eqs. (19-22) which are solve using conventional numerical Runge-Kutta methods.25

We use following values of parameters for simulations:6 the spin lifetime τs = 1/γ̄s = 60 ps, the carrier lifetime
τ = 1/γ = 1 ns and the photon lifetime τph = 1/κ = 10 ns. Note that we are able to calculate the electric field
decay rate coefficient κ or equivalently the photon lifetime τph for arbitrary optical cavity using the scattering
matrix formalism. It can be derived using Fourier analysis that the photon lifetime in a laser cavity is given by
the cavity’s transmission line shape.26 Normalized pumping parameter is fixed at value N0 = 5, it means five
times the threshold pumping rate. There are two controlled parameters of simulations, the pump polarization
Pǫ and the linear gain dichroism parameter ∆.

In our first result (see Fig. 7), we consider realistic experimental situation of spin-polarized VECSEL with
the gain dichroism characterized with ∆ = 0.9. We solve time-dependence of both laser eigenmodes for several
values of pump polarization Pǫ. In the first case, for Pǫ = 0, eigenmode E(2) quickly decays to zero. A possible
physical interpretation is following: since there is zero spin polarization of electrons in QWs, two transversal
linearly-polarized modes along [110] and [11̄0] axes can oscillate in a cavity.18 This can be deduced from gain
tensor defined in Eq. (10). These two possible modes interact with joint carrier reservoir described by carriers
density N = N+ +N−. However, they have different gain coefficient due to linear gain dichroism, which results
in instability of mode with larger threshold population inversion.10 Such degeneracy of carrier reservoirs is lifted
by non-zero spin pumping (Pǫ 6= 0). As shown in Fig. 7, oscillation of both modes is possible for moderate
values (Pǫ = 0.2, Pǫ = 0.4, Pǫ = 0.6) of pump polarization. In this sense, spin pumping is able to compensates
the effects of linear gain anisotropy. On the other hand, if pump polarization is too large, only single mode
oscillation regime occurs. The reason is that when we reduce the threshold pumping rate of preferential mode
using spin pumping, we increase needed pumping rate for weaker mode. This effect is probably even stronger in
presence of linear gain dichroism.6

Simulations presented in Fig. 8 consider experimentally rather impractical situation, because in this case
linear gain dichroism is variable. It shows that fixed value of pump polarization of about Pǫ = 0.5 is able to
compensate (in the sense of two-mode oscillation regime) values of linear gain dichroism coefficient even slightly
smaller that ∆ = 0.9. We see that preferential mode E(1) has typical Class-A laser characteristics which is given
by values of the carrier and photon lifetimes.20, 21 This is not the case for second mode which always oscillates
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Figure 8. Time-dependence of two laser eigenmodes of spin-VECSEL calculated with fixed value of pump polarization
Pǫ = 0.5. Non-zero pump polarization together with linear gain dichroism result in preference of one mode E(1) over the
other one E(2).

for a short time and then quickly decays to zero. It is caused by negative mode coupling – stronger mode makes
the weaker one unstable.

In the following part we investigate polarization dynamics of spin-VECSELs. For this reason, we define the
Jones vector of emitted field as

J =

√

√

√

√

Ĩ(1)

Ĩ(1) + Ĩ(2)
J(1) +

√

√

√

√

Ĩ(2)

Ĩ(1) + Ĩ(2)
J(2), (23)

where J(1) and J(2) are the Jones vectors of laser eigenmodes, which can be extracted directly from gain tensor
in the absence of additional anisotropies in a laser cavity. Definition of J fulfills the normalization condition
J∗ · J = 1 in a case of orthogonal eigenpolarizations. Using Eq. (23), we are able to calculate components of the
Stokes vector describing polarization of emitted laser field in terms of optical intensities.

Figure 9. Stokes vector components S2, S3 expressed as functions of pump polarization Pǫ and linear gain dichroism
paramater ∆. The result slightly differs from the calculations for each of eigenmodes separately.
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Figure 10. Time-dependence of Stokes vector components calculated for the fixed value of linear gain dichroism coefficient
∆ = 0.9 and for several values of pump polarization Pǫ.

In order to determine polarization state of emitted field, we solve Eqs. (19-22) to obtain steady-state nor-
malized intensities of laser eigenmodes. Next, we extract J(1) and J(2) using gain tensor. In Fig. 9, we show
the calculated Stokes vector components S2 = Ix′ − Iy′ , S3 = I+ − I− defined as intensity difference of linear
modes along x′, y′ axes and difference of orthogonal circular polarizations, respectively. Note that axes x′, y′ are
principal axes of linear gain anisotropy. Consequently, the Stokes vector element S2 should be very sensitive to
changes in ∆. We see that this claim is confirmed by calculation. It means that S2 changes more rapidly with
changing ∆ than with Pǫ. On the other hand, the element S3 should be more sensitive to changes in spin pump-
ing since circular polarizations are eigenpolarizations of spin-laser in the absence of any anisotropies. Again, it is
verified by presented model. Note that obtained result depends on dynamical properties of spin-VECSELs such
as mode coupling.

In Fig. 10, we present results concerning polarization dynamics. We express Stokes vector components as a
function of time in interval until laser reaches its steady-state.

4. CONCLUSIONS

In this paper, we investigated dynamical and polarization properties of spin-V(E)CSELs using powerful scattering-
matrix approach which respects general semiclassical description of laser light amplification and dynamics. We
used matrix methods to calculate electromagnetic field distribution inside real spin-VECSEL structure with
localized phase and amplitude anisotropies, such as surface linear birefringence and linear gain dichroism in
semiconductor QWs. Proposed method of standing-wave pattern calculation, which treats laser cavity as an
active structure, can be used in the future to design and optimize future spin-lasers such as spin-V(E)CSELs.
Also, we formulated generalized rate-equation model including linear gain dichroism in QWs of which the spin-
flip model is a special case. It will be modified in the near future to describe dynamical properties of spin-lasers
with arbitrarily distributed anisotropies.

APPENDIX A. SCATTERING MATRIX FORMALISM

Let us consider general a anisotropic multilayer consisting of N layers interacting with planar electromagnetic
waves. Optical phenomena such as interference, reflection and transmission can be described in the framework
of the scattering matrix formalism. By solving Maxwell equations in each layer and using appropriate boundary
conditions2 one can construct the scattering matrix of a structure, which relates the incoming and the outgoing

Proc. of SPIE Vol. 10926  1092614-12



Figure 11. Scattering of electromagnetic field on generally anisotropic multilayer consisting of N thin layers. Incoming
and outgoing amplitude components of the field are marked green and violet respectively and are related to each other
using the scattering matrix.

amplitudes. The relation between the incoming and outgoing amplitudes as shown in Fig. 11 can be expressed
as

[

A(0)
u

A
(N+1)
d

]

=

[

Suu Sud

Sdu Sdd

]

[

A(N+1)
u

A
(0)
d

]

, (24)

where we use a notation with 2× 2 submatrices and 2-component subvectors. General submatrix Sµν relates the
incoming amplitude subvector Aν to outgoing subvector Aµ, where indices µ, ν ∈ {u, d} define the direction of
propagation – up or down.

APPENDIX B. SPIN FLIP MODEL

Originally developed in 1990s in order to describe polarization dynamics of conventional V(E)CSELs, modified
version of spin flip model is frequently used to model dynamical properties of spin-polarized lasers.8, 10 These
4-level rate equations couple the normalized amplitudes of orthogonal circularly-polarized fields E+, E− to two
different population inversion variables N ∝ (N+ +N−) and m ∝ (N+ −N−) as described by Eqs. (25-28). The
cavity decay rate is defined here as κ̄ = κ/2 and the spin flip rate constant as γ̄s = γ + 2γs.

dE+

dt
= κ̄(1 + iα)(N +m)E+ − κ̄E+ − (γa + iγp)E−, (25)

dE−

dt
= κ̄(1 + iα)(N −m)E− − κ̄E− − (γa + iγp)E+, (26)

dN

dt
= γN0 − γ

{[

1 + |E+|2 + |E−|2
]

N +
[

|E+|2 − |E−|2
]

m
}

, (27)

dm

dt
= γPεN0 − γ̄sm− γ

{[

|E+|2 + |E−|2
]

m+
[

|E+|2 − |E−|2
]

N
}

. (28)

In contrary to our approach, spin flip model treats amplitude and phase anisotropies using effective parameters
γa and γp which must be often fitted to experimental results.
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