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ABSTRACT  

The uninflated shape configurations of parabolic and spherical membrane mirrors were calculated by solving the inverse 
problem, i.e., given the design inflation pressure, the membrane material and geometric properties, what must be the initial 
uninflated shape such that on inflation to the design pressure, the exact desired surface of revolution is obtained.  The 
resulting first order nonlinear differential equation was numerically integrated using the boundary conditions.  The initial 
uninflated shape was then subjected to a forward transformation using FAIM, a proprietary geometric nonlinear membrane 
finite element code.  FAIM has been validated against exact analytical solutions for both small and extremely large 
deformations that are up to eight orders of magnitude larger compared with the starting undeflected shape. Simulations 
reveal that to fabricate a very accurate and precise inflated membrane mirror relative to the design parameters, one must 
not only accurately measure and input the moduli in both meridional and hoop directions but an accurately measured 
Poisson’s ratio as well. The code was used to guide the membrane mirror design. For very small aperture diameters, the 
initial uninflated shape may be fabricated by thermo-forming the membrane.  For aperture diameters exceeding one meter 
however, the membrane mirror is built with discrete gores that are joined together with tapes at the seams. This provided 
the impetus to write a companion computer code FLATE, to calculate the gore shapes using a slight modification of the 
solution to the inverse transformation equation to account for the presence of the seam tapes.  After the gores were 
determined, the resulting final inflated shape was calculated and verified using FAIM.  Sensitivity analyses can now be 
carried out to determine the resulting surface shape as a function of the different sources of error: gore width, gore length, 
perimeter attachment uncertainties, thermal effects, variation of material properties over the membrane continuum and 
inflation pressure changes.  The code has been shown to be more robust than equivalent commercial analytical packages 
in so far as membrane, cable and space-frame element combinations are concerned.  In particular, the analytical and finite 
element codes were used in the preliminary assessment of a membrane optic for the OASIS Mission (Orbiting 
Astronomical Satellite for Investigating Stellar Systems) [1].  The OASIS is a 20-meter class space observatory operating 
at high spectral resolution in the terahertz frequencies.  Over its nominal 2-year mission it will probe conditions and search 
for biogenic molecules on hundreds of protoplanetary disks and other solar system objects. 
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1. INTRODUCTION  

For telescopes and antennas, aperture is everything – whether they are terrestrial or space-based. Very large aperture 
telescopes can easily be constructed and erected on the ground but the same cannot be said if the telescope is intended to 
be put in space. The cost of putting a telescope in orbit is orders of magnitude more expensive and if conventional telescope 
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technology is used, the aperture size gets limited by packaged volume, i.e., the packaged unit must fit within the fairing of 
currently available rocket boosters.  The James Webb Space Telescope (JWST) that is due for launch in November 2021 
is 6 ½ meters in diameter. Once on operation, the JWST becomes the largest aperture telescope operating in the infrared, 
overtaking the 3.5-meter Herschel. The JWST will undoubtedly provide exciting science information never before seen 
but just imagine how much more science one can collect and be surprised with, with an aperture ten times larger.  The 
desire to have a launchable large diameter antenna/telescope provided the impetus to create an analytical tool capable of 
determining accurately what design parameters are needed to achieve requisite surface accuracies coupled with the ability 
for a telescope primary to be stowable into a small volume. And once on orbit, the antenna/telescope deploys to full 
aperture with non- or minimally degraded performance.  The resulting analytical tool developed is a nonlinear finite 
element code for membranes.  There are commercial nonlinear codes in the market, but they are very expensive and for 
the problems analyzed in this paper, the codes found it challenging to converge to the right solution. The commercial codes 
needed some “assistance” to converge. 

The primary candidate for a lightweight and packageable telescope mirror is a space hazard resistant polyimide membrane 
coated with a few thousand angstroms of aluminum.  The telescope mirror is constructed using the mirror-membrane 
formed into a surface of revolution, e.g., paraboloid or sphere.  Inflation is used to maintain the surface shape configuration 
where the reflector and canopy form a lenticular configuration as shown in Fig. 1.  A stiff toroidal ring is used to constrain 
the inflated lenticular and prevent it from collapsing inward.   One other advantage of an inflatable system is its inherent 
high damping characteristics.  Typical structural damping coefficients are between 5% and 20%.[2] 
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                                                    (A)                                                                                            (B ) 
Figure 1.  (A) Inflatable lenticular surface of revolution. In the analysis, the toroidal ring may be replaced by a spring 

boundary condition, Kr.  (B) A 7-meter diameter inflatable paraboloid lenticular engineering model built by 
L’Garde.  The torus and three struts were made of inflatable gel-rigidizable material. 

Figure 2A shows the 14-meter diameter Inflatable Antenna Experiment (IAE) [2] undergoing ground testing and Fig. 2B 
is a 3-meter diameter sector of the same reflector.  Figure 2C shows the IAE, minutes after launch from the Space Shuttle 
STS-77 mission in May 1996 – the earth is in the background. 

One of the major concerns with inflatables in space is the effect of impact with natural and man-made debris particles.  
Although most of the particles, especially micrometeoroids, are very small, with diameters on the order of microns, their 
velocities can be up to 20 km/sec and even higher – the energy of impact is immense.  These pose a serious threat especially 
to inflatable space structures.  The detailed analysis of the effect of natural and man-made debris is not the subject of this 
paper but suffice it to say that the inflatable membrane mirrors for space-based telescopes can be designed such that it only 
takes very little pressure to smooth out the surface.  As an example, the 14-meter diameter Inflatable Antenna Experiment 
(IAE) reflector was pressurized to only 1/33,000th of an atmosphere and that was more than sufficient to render the reflector 
surface very specular, Fig. 2.  The reason for this is the low membrane thickness used coupled with a large effective radius: 
28 meters for the IAE.  It is therefore noted that the absolute inflation pressure needed to stress a thin film to a value to 
make for a very smooth and mirror-like surface is small especially for surfaces of revolution with very large radii as is the 
case for most space applications.  The pressure is so low that the rate of inflatant loss due to micrometeoroid punctures 
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can be affordably replaced by carrying makeup gas on board. [3,4] The OASIS 20-meter diameter reflector pressure is 
only 1/30,000th of an atmosphere and can be attributed to its large surface radius of 50m - the inflatant gas is in the free-
molecular flow regime.[5] 

   

 

 

 

 

 

                           (A)                                                      (B)                                                             (C) 

Figure 2. (A) 14-meter diameter Inflatable Antenna Experiment (IAE) reflector undergoing ground surface accuracy tests 
at the L’Garde Tustin California facility – fabrication team in the background, (B) 3-meter diameter sector of 
the IAE, (C) Photographed from the Space Shuttle: the 14-meter IAE on-orbit, jettisoned from the Space Shuttle 
STS-77 in May 1996. The earth is in the background. 

2. SOLVING THE INVERSE PROBLEM 

In this section a method to solve the inverse problem is outlined: given the final desired surface shape, inflation 
pressure, material and geometric properties of the membrane, what must be the initial uninflated shape so that on 
inflation to the specified pressure, the initial shape configuration transforms to the desired surface of revolution.  This is 
a statement of the inverse problem. 

2.1 Paraboloid [6] 

Consider the two states of a thin-walled shell membrane described schematically in Fig. 3.  An axisymmetric shell of 
uniform thickness, whose coordinates are distinguished by a prime, describes the uninflated membrane.  When inflated, 
the membrane is transformed into an axisymmetric paraboloid defined by 𝑧 ൌ 𝑟ଶ 4𝐹⁄ .  In this geometric formulation, F 
refers to the focal length of the parabola.  In the forward transformation of the uninflated axisymmetric shell to the 
inflated paraboloidal shell, infinitesimal arc elements in the circumferential and meridional directions are stretched from 
their uninflated lengths 𝑑𝑐ᇱ and 𝑑𝑠ᇱ to corresponding inflated lengths 𝑑𝑐 and 𝑑𝑠 respectively.  The strains in the 
circumferential and meridional directions are given by 
 

                                                                                   𝑑𝜖𝑐 ൌ
𝑑𝑐െ𝑑𝑐′

𝑑𝑐′
       (1a) 

 and 

                                                                                   𝑑𝜖௠ ൌ ௗ௦ିௗ௦ᇲ

ௗ௦ᇲ
 .      (1b) 

 

In Eqs. (1) the 𝜖௜ are the membrane strains. For an orthotropic material 𝜈௖௠ and 𝜈௠௖ represent the Poisson ratios and obey 
the following relationship: 
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           (2) 

where the 𝐸௜ are the elastic moduli in the circumferential and meridional directions.  The large stress-strain relation is used 
to account for large deformations and the more general expression using tensor relationships is used: 
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Figure 3. Shell membrane profile before and after pressurization showing differential elements of the surface. 
 

When the static equilibrium of the paraboloidal membrane is considered, the two principal stresses in the shell membrane 
may be expressed in terms of the inflation pressure 𝑝, the thickness 𝑡 and the focal length 𝐹 as follows: 

                                                                          𝑆௖ ൌ
௣ி

௧

ଵାଶሺ௥/ଶிሻమ

ඥଵାሺ௥/ଶிሻమ
       (4a) 

                                                                          𝑆௠ ൌ
௣ி

௧
ඥ1 ൅ ሺ𝑟/2𝐹ሻଶ       (4b) 

The arc lengths in Eqs. (1) may be expressed in terms of the membrane geometry as 

                                                                             𝑑𝑐 ൌ 𝑟𝑑𝜃        (5a) 

                                                                             𝑑𝑐ᇱ ൌ 𝑟ᇱ𝑑𝜃        (5b) 

                                                                             𝑑𝑠 ൌ √𝑑𝑟ଶ ൅ 𝑑𝑧ଶ       (5c) 

                                                                             𝑑𝑠ᇱ ൌ √𝑑𝑟ᇱଶ ൅ 𝑑𝑧ᇱଶ       (5d) 

Recall the geometric equation of the paraboloid: 

                                                                                𝑧 ൌ 𝑟ଶ/4𝐹        (6a) 

                                                                             𝑑𝑧/𝑑𝑟 ൌ 𝑟/2𝐹       (6b) 

Substituting Eqs. (5) into Eqs. (1) and using Eqs. (6) yields 

                                                                               𝜖௖ ൌ
௥

௥ᇲ
െ 1        (7a) 
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 Forward Transformation to Inflated Shape 

Inverse Solution 
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                                                                       𝜖௠ ൌ ට
ଵାሺ௥/ଶிሻమ

ሺௗ௥ᇲ/ௗ௥ሻమାሺௗ௭ᇲ/ௗ௥ሻమ
െ 1      (7b) 

The set of six equations, Eqs. (1) through (5) and (7) have been developed for six unknowns: the two principal stresses 𝑆௖, 
𝑆௠, the two principal strains 𝜖௖, 𝜖௠, and the coordinates 𝑟ᇱ and 𝑧ᇱ, defining the shape of the uninflated membrane in terms 
of 𝑟, the radial coordinate of the inflated paraboloid.  The solution of these equations defines the precise shape of the 
uninflated membrane needed to achieve a pressurized paraboloid exactly defined by 𝑧 ൌ 𝑟ଶ 4𝐹⁄ .   
  

2.2 Sphere [6] 

The inverse problem for the sphere of radius R is solved in a similar manner with Eqs. (4) replaced by 

                                                                                       𝑆௖  ൌ
௣ோ

ଶ௧
       (8a) 

                                                                                       𝑆௠ ൌ
௣ோ

ଶ௧
       (8b) 

noting that for an inflated thin membrane sphere, 𝑆௖ ൌ 𝑆௠.  The analogs of Eqs. (6) and (7b) for the sphere are, respectively 

 

                                                                        𝑧 ൌ 𝑅 ቀ1 െඥ1 െ ሺ𝑟 𝑅⁄ ሻଶቁ      (9a) 
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ඥଵିሺ௥ ோ⁄ ሻమ
       (9b) 

and 

                                                                 𝜖௠ ൌ ට
ଵ

ሾሺௗ௥ᇲ ௗ௥⁄ ሻమାሺௗ௭ᇲ ௗ௥⁄ ሻమሿሾଵିሺ௥ ோ⁄ ሻమሿ
-1     (10) 

The six equations in the six unknowns are then solved for the uninflated spherical membrane surface shape.  These 
equations have been incorporated into the FLATE code – Section 2.3. 

2.3 The FLATE code 

The equations in Sections 2.1 and 2.2 were solved and a computer code FLATE was written to include the gore flat pattern 
calculation given the number of gores desired.  The use of doubler material; i.e. tape, to join gores at the seams have also 
been accounted for in the calculation of the flat pattern. A special case of direct sun-staring condition has also been 
included.  FLATE can also handle orthotropic materials where the moduli in the machine and transverse directions are 
different.  In fact, this is the case for both Mylar and Kapton where not only are the moduli different in the perpendicular 
directions but when one measures the modulus as a function of orientation in the material, one gets an ellipse, where the 
distance from the center to the periphery of the ellipse is the value of the modulus along that orientation.  Mylar and Kapton 
are anisotropic with Mylar exhibiting higher anisotropic behavior than Kapton.[7] 

Figure 4 shows a gore flat pattern.  The FLATE code has an added feature where the optimum pressure may be calculated 
iteratively as a function of number of gores. This pressure is defined as the pressure that stretches the thicker seam to the 
same final length as the center of the gore.  Because the optimum pressure may be high for a given application, it cannot 
always practically be used, hence a numerical step-by-step procedure was created to determine the outer edge perimeter 
gore edge shape when an arbitrary pressure is desired. [8] 
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Figure 4.  Example gore flat pattern calculated by FLATE for a 1m diameter F/D=1 paraboloid antenna with 20 gores. 
The flat pattern fits the initial uninflated configuration.  The slight curvature of the side edges depends on the 
number of gores used. SFlat and ZFlat are terminologies used by the FLATE code. 

 

3. FORWARD TRANSFORMATION: FINITE ELEMENT ANALYZER FOR 
INFLATABLE MEMBRANES – THE FAIM CODE [9, 10, 11, 12] 

FAIM is a general-purpose finite element code for determining the stresses and deformations of inflatable shell 
membranes due to internal pressure.  It uses a numerically intensive, iterative procedure to solve the nonlinear 
equilibrium equations to a user-specified desired degree of accuracy.  A restart capability is provided to achieve higher 
levels of accuracy than those obtained from a previous analysis. It is a geometric nonlinear finite element calculator. A 
pre- and post- processor for FAIM was coded based on Femap [13]. The stiffness and mass matrix generated by the code 
may be input to an eigenvalue solver to calculate modes and natural frequencies of the material continuum. 

3.1 FAIM Element Library 

The elements in the FAIM library are shown in Fig. 5.  A 6-node isoparametric triangle, an 8-node isoparametric 
quadrilateral and a 3-node tension only cable element are the basic elements of the code.  More recently, a fourth element 
was added.  It is the 2-node space frame element. A conscious decision was made early on to discard the computational 
advantage of the 3-node triangle and the 4-node quadrilateral shell elements since these elements were deemed too crude 
to provide the requisite deformation information.  A 3-node triangle for instance can only approximate the smooth surface 
of an inflatable parabolic shell surface with a collection of flat, triangular facets.  These facets, each of which has a constant 
slope are simply not adequate when one needs to determine the surface slope throughout the continuum.  In contrast, the 
8-node quad and 6-node triangle do not have these limitations.  A 3-node tension only cable element was included because 
of the need to include the effect of the stiffer, thicker seams. The thicker seam area can be modeled by quads and triangles, 
but the seam width is much smaller than the gore width.  Modeling the seams this way would result in a prohibitively large 
number of elements.  

FAIM was initially designed to analyze linear elastic material and a geometrically nonlinear deformation behavior.  A 
nonlinear material capability has since been added although for most inflatable applications for space, geometrical 
nonlinear behavior dominates, i.e., the strains involved are small, but the geometric deflections are orders of magnitude 
greater than the material thickness. It is also noted that the code now includes anisotropic shell membrane material 
capability.  The need to consider geometric nonlinear behavior of the membrane is obvious when one considers that linear 
theory assumes that the deformation normal to the element surface is only a fraction of the thickness whereas deformations 
of inflatable membrane shells are several orders of magnitude greater than the membrane thickness. 
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                               3-node tension only cable                                              2-node space frame 

Figure 5.  Elements in the FAIM library. 

3.2 A Multitude of Loadings and Boundary Conditions 

The loadings available in a FAIM analysis are (a) follower pressure, (b) concentrated nodal forces, (c) 3D arbitrary body 
force accelerations and (d) nodal or element temperatures.  Several enhancements have been added to increase the analysis 
capabilities as well as its computational efficiency.  A “spring boundary condition” capability was coded in anticipation 
of the need to characterize the outer radius mounting surface of the surface of revolution to a flexible rather than an 
infinitely rigid support as shown in Fig. 6.  In Fig. 6, the toroidal ring is replaced by springs characterized by spring 
constant 

                                                                                   𝐾௥ ൌ
ா஺

ோమ
 

Where E is the torus material modulus, A is the cross-sectional area of the torus and R is the major torus radius. 

 

 

 

 

 

 

 

 

Figure 6.  “Spring Boundary Condition”.  The flexible toroidal support ring is replaced by “springs” of constant Kr. 

 

Another feature available in FAIM is what is called a “skew” boundary condition.  Referring to the axisymmetric finite 
element model depicted in Fig. 7 we note that this model required the x-y-z displacements at the outer radius to be zero as 
well as specifying that the circumferential displacements along the radial edges be zero due to symmetry conditions.  The 
symmetry required on the circumferential displacement necessitated an implementation of the “skew” boundary condition.  
A skew boundary condition means a node is restrained to move along a plane not parallel to the global x-y, y-z and x-z 
planes. 

Both a zero and non-zero displacement boundary conditions are available.  The non-zero displacement boundary condition 
can be used to model “pre-stress”; e.g., the outer edge nodes of the gore are displaced (stretch) to their final inflated 
locations. 

Proc. of SPIE Vol. 11820  118200U-7



 
 

 

 

 

The significant computational efficiency enhancements to FAIM include a new solution strategy for solving the large 
number of simultaneous equations as well as a “restart capability”.  There are three significant contributions to the 
coefficient matrix of these equations: (1) elastic terms, (2) geometric terms, and (3) pressure terms.  Whereas the first two 
lead to a symmetric coefficient matrix, the third leads to a skew symmetric.  The combination of these three effects leads 
to an unsymmetric matrix.  FAIM now has two simultaneous equation algorithms for solving the equilibrium equation of 
a shell membrane model: (a) symmetric, banded coefficient matrix and (b) unsymmetric, banded coefficient matrix 
solution.  Both solution strategies are implemented “in-core”.  This has an obvious advantage and disadvantage at the same 
time.  Because it is an in-core solution, it is very fast.  However, for the same reason, it can analyze only a problem small 
enough that will fit in main memory.  With current advanced operating systems, memory paging is used if the RAM is not 
large enough to accommodate the entire matrix “in-core” but at the expense of increased CPU execution time. 

 

 

                                                                                                      Skew boundary conditions at this edge 

 

 

 

 

Figure 7.  Axisymmetric finite element FAIM model of a shell of revolution. 

The symmetric solution strategy takes some numerical shortcuts to achieve efficiency.  One then may initially ignore the 
resulting minor contributions of the pressure term that results in an unsymmetric matrix and assume that the resulting 
matrix is symmetric.  This shortcut significantly reduces the execution time by a factor of 5 to 10 and requires only about 
half as much storage.  Once a satisfactory equilibrium state has been achieved to a desired degree of accuracy with the 
symmetric albeit slightly inaccurate coefficient matrix, one can repeatedly solve the simultaneous equations with the 
proper unsymmetric coefficient matrix using the “restart capability”. 

After creating the finite element model with all its nodes and element connectivity, including the material and geometric 
properties, the entire FAIM input text script is fed into a companion node renumbering computer program, REN.  REN 
uses the GPS algorithm [14] to minimize the matrix bandwidth.    

3.3 Validation of the FAIM Code – the Inverse and Hencky [15] Problems 

This section details three analytical and one experimental validation of the FAIM calculations: (a) “inflation” of the 
uninflated shape (solution to the inverse problem), (b) deflection of a flat circular membrane (Hencky Problem), (c) 
temperature-loaded flat circular membrane, and (d) measurement of the deflections of a pre-stressed 1 meter diameter 
membrane. 

3.4 Forward Loading -evolution of the uninflated configuration towards the ideal paraboloid shape 

An exact solution has been derived for the inverse problems for the seamless paraboloid and sphere in Section 2.  In this 
section we carry out a forward transformation using FAIM.  The analytically derived initial uninflated shapes of a 
paraboloid for three values of the Poisson’s ratio were “inflated” using FAIM and the results are shown in Fig. 8.   

In Fig. 8, the results are expressed in terms of the dimensionless parameters (Z/2F) and (r/2F) where F is the paraboloid 
focal length, z is the vertical displacement and r is the radial distance from the vertex.  The inflation pressure used is 
pF/Et=1 and for typical membrane materials, this translates to a very high pressure. For example, for a membrane with 
E=3.45 GPa and using t = 12.7 microns and F=5m, p=8.8 kPa, the resulting film stress is 3.45 GPa (500,000 psi). This 
is only a theoretical exercise to show the large deflection case. This is indeed an extremely high inflation pressure and 
results in very large (geometrically nonlinear) deflections as can be seen in Fig. 8.  The results in Figure 8 show that for 
the three different initial uninflated shapes corresponding to three different values of Poisson’s ratio, FAIM converges to 
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Uninflated shapes 

the analytical result.  The results also indicate that the Poisson’s ratio is very important.  In practice, to obtain the correct 
initial uninflated shape, the Poisson’s ratio and elastic modulus must be measured accurately. 

 

  

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of analytical and FAIM results: the analytical solution is that of the inverse problem for a seamless 
paraboloid. 

3.5 Deflection of flat circular membrane – the Hencky [15] problem 

A classic series-solution for the stress and deformation of a pressurized circular membrane may be derived [15, 16]. The 
z-deflection of the flat membrane as a function of pressure is given by [16] 

      𝑤ሺ𝜌ሻ ൌ 𝑞ଵ ଷ⁄ ∑ 𝑎ଶ௡ሺ1 െ 𝜌ଶ௡ାଶሻஶ
଴       (11) 

where,  

𝜌: dimensionless radial coordinate and 

𝑞: dimensionless loading parameter = 
௣௔

ா௛
; 𝑎 ൌradius, 𝑝=pressure, 𝐸=modulus, ℎ= membrane thickness. 

Tables 1 and 2 list the evaluated coefficients taken from ref. 13. 

 

Table 1.  Coefficients of the Series Solution for the flat membrane deflection. 

Coefficients Value 

a0 0.543419194 

a2 0.043602350 

a4 0.007774497 

a6 0.001715457 

a8 0.000420438 

a10 0.000109772 

a12 2.99016E-05 

a14 8.39701E-06 

a16 2.41279E-06 

a18 7.05823E-07 

a20 2.09468E-07 
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Table 2.  Table of coefficient 𝑏௢ as a function of Poisson Ratio. 𝑎௢ is a function of 𝑏௢. 

Poisson’s Ratio  𝒃𝒐 

0.2 1.6827 

0.3 1.7244 

0.4 1.7769 

0.5 1.8402 

 

Equation (11) with the coefficients given in Tables 1 and 2 were used to calculate the deflection of an initially flat circular 
membrane.  The membrane properties are listed in Table 3.  The results of the FAIM calculation expressed in non-
dimensional units are shown in Fig. 9.  The actual dimensions are obtained by multiplying the horizontal and vertical axes 
by the radius. The solid circles in the curve are FAIM results. 

Table 3.  Flat circular membrane parameters. 

Parameter Value Unit 

Diameter 20 meter 

Elastic Modulus 2.78 GPa 

Membrane thickness 12.7 microns 

Pressure 0.0026995 18.6 Pa 

Poisson’s ratio used 0.1, 0.3, 0.5 - 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Deflection of initially flat circular membrane under pressure, expressed in non-dimensional units. The circular 
centered symbols are the FAIM results. 

 

The stresses for the flat circular membrane are likewise predicted quite accurately by FAIM.[17]     
 

3.5.1 Temperature loading of a flat circular disk [18,19,20,21] 

The last analytical validation/verification check of FAIM is comparison of its prediction of the radial deflections and 
stresses on a flat circular disk subjected to the following temperature loading conditions: 

Poisson’s Ratio: 0.1 

Poisson’s Ratio: 0.3 

Poisson’s Ratio: 0.5 
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                                      Uniform radial temperature distribution 𝑇௢ሺ𝑟ሻ ൌ 𝑇௢      (12) 

                                      Linear radial temperature distribution 𝑇ଵ ൌ 𝑇௢ ൅ ሺ𝑇ோ െ 𝑇௢ሻ
௥

ோ
     (13) 

                                      Quadratic radial temperature distribution 𝑇ଶ ൌ 𝑇௢ ൅ ሺ𝑇ோ െ 𝑇௢ሻ ቀ
௥

ோ
ቁ
ଶ
     (14) 

In Eqs. (12) through (14), 𝑟 is the radial distance from the center, 𝑅 is the radius of the disk, 𝑇௢ is the temperature at the 
center and 𝑇ோ is the temperature at 𝑟 ൌ 𝑅. The results of the runs using FAIM compared with theory [21] are shown in 
Fig. 10.  The solid lines in the figures correspond to the theoretical values.  The solid symbols, squares, diamonds, and 
triangles are FAIM-predicted and correspond to the uniform, linear and quadratic temperature distributions, respectively.  
The axisymmetric finite element model is shown in Fig. 11.  It is a 15-degree slice of the disk. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Radial displacements, radial stresses and circumferential stresses on a temperature-loaded membrane disk. 

 

 

 

 

 

 

Figure 11.  15-degree axisymmetric slice, 400 triangle element model of the thermally loaded circular disk. 
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3.6 Comparison with Measurements of a Pre-stressed 1m Flat Circular Membrane 

In this section we present the results of the comparison between FAIM and the measurement of the pressurized profile of 
initially pre-stressed 1 meter diameter Mylar and Kapton membranes.  Since it is easier to achieve and control a finite, 
non-zero initial prestress state in a membrane than an initial zero stress condition, the membranes used in the experiment 
were given an initial prestress of 345 kPa (50 psi).  Table 4 lists the properties of the circular flat membranes measured.  
The VSTARS photogrammetry system from Geodetic Services, Inc. of Melbourne, Florida was used in the profile 
measurement.   

 

Table 4.  Parameters of the 1.0 Meter Circular Membranes Measured using Photogrammetry.[7] 

Parameter Kapton (Isotropic) Mylar (Orthotropic -30) 

Thickness 12.7 microns 12.7 microns 

Measured Modulus 3.74 GPa 𝐸ଵ ൌ 6.46 𝐺𝑃𝑎;  𝐸ଶ ൌ 4.47 𝐺𝑃𝑎 

Poisson’s Ratio 0.3 𝜈ଵଶ ൌ 0.35    𝜈ଶଵ ൌ 0.24 

Diameter 1.0 meter 1.0 meter 

Prestress 345 kPa 345 kPa 

Pressures used 17.24 and 206.84 Pa 11.7 and 124.1 Pa 

Stresses due to pressure 4.39 kPa; 12.2 kPa 4.6 kPa; 27.6 kPa 

 

 

 

 

 

 

 

 

 

 

                                                (A)                                                                                                               (B) 

Figure 12.  (A) Measured Mylar profile. (B) Measured Kapton profile.  Two inflation pressures used for each.  The 
corresponding stresses are shown in Table 4. 

The Young’s modulus and Poisson’s ratios were measured using a video metrology system.  The values shown in Table 4 
are average values.  While Kapton is isotropic, Mylar is orthotropic with principal material axes approximately 70 degrees 
from the material machine direction. The results of the measurement are shown in Fig. 12.  The predictions by FAIM are 
superimposed on the same plot.  The error bars correspond to the uncertainties in the measurement of the pressure and the 
nonuniformity of the modulus over the material surface.  However, a 10% higher (or lower) modulus value corresponds 
to only a 3% decrease (or increase) in the vertical deflection of the membrane.  For Mylar, the uncertainty in the modulus 
is +10%/-5% and for Kapton, it is 6%.  Notice the excellent agreement between FAIM and measurements especially for 
Mylar. The agreement is not as good for Kapton, Fig. 12B but it is still within experimental error. The reason for this is 
that the Kapton membrane used was not as “flat” as the Mylar.  In fact, even after the Kapton was pre-stressed to 345 kPa 
(50 psi), certain sections of the Kapton showed minor rippling. This is believed to have previously existed in the material 
as a result of how it was rolled-packaged around its central cardboard cylinder hub. There are other types of Kapton, such 
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as Kapton E that exhibits far more uniformity than the Kapton HN used.  Kapton E was not available during the time of 
the measurement. The size of the circle symbols in Figure 12 may be taken as the length of the error bars.  The VSTARS 
photogrammetry system used had an accuracy of 1/100,000 of the characteristic size of the article under test.  In this case 
that is 1m/100,000 = 10-4 m or 0.1 mm.  

3.7 The effect of seams 

Figure 13 shows how a real inflatable membrane antenna-reflector is fabricated.  Gores, very much like those of an 
umbrella (see Fig. 4) are bonded together at the seams.  The gores are joined together using an overlap or a butt joint seam.  
Therefore, where the seams are, the material is considerably thicker and stiffer compared with the gore material. It is noted 
that since the gore pattern is a two-dimensional flat, the initial shape prior to pressurization curves only in the meridional 
direction and are flat faceted along the circumference. In the inflated state, inflation pressure provides additional curvature 
along the circumference.   

Past measurements of the surface profiles showed that the effect of the seams on surface accuracy was relatively minimal.  
Surface errors were generally slowly varying across the membrane exhibiting a “W” or “M” curve as illustrated in Fig. 14. 
[22] The curve shown in Fig. 14B is a plot of the deviation of the measured surface with the calculated best-fit paraboloid.  
The vertical axis, z is the deviation in millimeters.  It was found from previous testing that when the membrane included 
seams, the result was a slight bumpiness in the error profile which retained the “W” of “M” shape at nearly the same level 
as without seams.  Since the test article tested was fabricated using gores calculated by FLATE (Sect. 2.3), the presence 
of the seams has been taken into consideration and hence one would expect to not have considerable error contribution 
from these regions.  As will be shown in the following, the use of FAIM shows that the contribution to the error in surface 
shape is small compared to the observed surface deviations in typical inflatable membrane reflectors.  The significance of 
these findings is that inflatable membrane reflectors can be made inexpensively using seamed construction with no 
appreciable degradation of surface accuracy when compared to more expensive, monolithic continuous formed 
membranes. 

 

 

 

 

 

 

          (A)                                         (B)                                                                          (C) 
Figure 13. Parabolic antenna reflector geometry for FAIM analysis.  (A) The center line of the gore flat pattern is along 

the ideal uninflated shape of revolution that was calculated by solving the inverse problem. (B) Top view.  
(C) gores seamed together to form the initial uninflated seamed configuration. 

 

FAIM was used to analytically assess the effect of seams on the rms surface accuracy, and the results published in ref. 22. 
Three analytical cases with and without seams were examined: (i) deflection of a one-meter diameter six gore, flat circular 
membrane, (ii) deflection of a one-meter six-gore pre-formed spherical membrane, and (iii) deflection of an axisymmetric 
64-gore, 14-meter diameter on-axis parabolic reflector.  The resulting deflections for the flat membranes, cases (i) and (ii) 
were fitted to the Hencky equation, using the following form: 

                                                             𝑧 ൌ 𝑃ଵ ൅ 𝑃ଶሺ𝑥ଶ ൅ 𝑦ଶሻ ൅ 𝑃ଷሺ𝑥ଶ ൅ 𝑦ଶሻଷ      (15) 

The full circular configuration was used in this particular case and the finite element model is shown in Fig. 15A.  For the 
preformed case, a 1-meter diameter membrane was taken from a sphere of 241.3 cm radius.  The material thickness was 
12.7 microns.  The seam tape was 0.953 cm wide and 12.7 microns thick.  The results are shown in Tables 5 and 6. 
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                                              (A)                                                                                               (B) 

Figure 14.  (A) Ideal example of “W” curve deviation from the best fit paraboloid. (B) Actual measured rms deviation 
from the best-fit paraboloid, for a 1meter diameter aperture [22].   

The results in Tables 5 and 6 show that the change in the rms surface accuracy relative to the membrane surface shape is 
small.  As expected, the cable elements (seam tapes) provide some stiffening as expressed by 𝑃ଵ but the surface accuracy 
relative to the overall profile remains about the same.  Moreover, when precision inflatable structures are designed using 
flat gores, the effect of the seams must be taken into account, as was in this case in order to get as close to the desired final 
inflated configuration. 
 

 

 

 

                    (A)                                                                            (B) 

 

 

 
Figure 15. (A) Finite element model of a 1-meter diameter flat circular membrane. (B) A 1m Flat Circular Membrane 

being mounted on its ring support at the University of Arizona. ` 
 

The case shown in Table 6 is that of a 64-gore, 14-meter diameter on-axis inflatable parabolic reflector.  The F/D ratio is 
1.0 and the material used was 6.35 microns thick with a modulus of 3.45 GPa and a Poisson’s ratio of 0.3.  The surface 
was fitted to the following (paraboloid) equation: 

 
                                                              𝑧 ൌ 𝑧௢ ൅

ଵ

ସி
ሾሺ𝑥 െ 𝑥௢ሻଶ ൅ ሺ𝑦 െ 𝑦௢ሻଶሿ      (16) 

 
Only the case with seams is shown in Table 6 since we have already seen that FAIM predicts the final inflated shape to a 
high degree of accuracy even of a highly deformed seamless membrane – Fig. 8.  The RMS surface accuracy predicted is 
0.11 mm RMS.  This is about an order of magnitude lower error than that measured for large reflectors such as the IAE 
[2].  When designed properly, seamed inflatable reflectors, even the large diameters, can be tailored to be accurate. 
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Table 5.  Parameters [ Eq. (15) ] for flat circular membrane. 

Parameter Without seam tape With seam tape 

𝑃ଵ (cm) 7.3418 7.2128 

𝑃ଶ (cm-1) -0.00247 -0.00237 

𝑃ଷ (cm-3) -1.8604 x 10-7 -2.2244 x 10-7 

Sum of squares (cm2) 0.00861 0.0157 

RMS Deviation (mm) 0.087 0.117 

 

Table 6.  Parameters [ Eq. (15) ] for pre-formed circular membrane. 

Parameter Without seam tape With seam tape 

𝑃ଵ (cm) 245.7668 243.1058 

𝑃ଶ (cm-1) -0.00289 -0.00279 

𝑃ଷ (cm-3) -2.2315 x 10-7 -2.4637 x 10-7 

Sum of squares (cm2) 0.01382 0.01991 

RMS Deviation (mm) 0.110 0.132 

 

Table 6.  Parameters of Eq. (16) for the 14-meter diameter inflatable reflector with seams. 

Parameter Value with seams 

1/4F; (m-1) 0.1807 

𝑥௢; (cm) 13.797 

𝑦௢; (cm) 0.732 

𝑧௢; (cm) 0.721 

RMS Deviation; (mm) 0.110 

 

 

4. THE OASIS REFLECTOR [1] 

4.1 OASIS Reflector Parameters 

We next present the FAIM analysis of the preliminary configuration of the primary membrane mirror of the 20-meter 
aperture diameter OASIS [1] reflector. Table 7 lists the OASIS parameters.  The axisymmetric seamless case was analyzed, 
and the finite element model is similar to that shown in Fig. 11.  An artist’s concept of the OASIS is shown in Fig. 16.  
The telescope consists of an inflatable reflector secured to a spacecraft via deployable inflatable-rigidizable struts.  A 
closed loop adaptive optics system continuously measures the reflector’s surface and compensates for distortions, using a 
deformable mirror [1].  The toroidal ring constrains the inflatable lenticular perimeter from collapsing inward due to the 
reaction in response to the internal pressure.  The toroidal ring is made of the same material as the struts.  Because all three 
major components of the telescope – the primary mirror, toroidal ring and struts – are made of inflatable-rigidizable 
material, the system is very lightweight and stows with very high packaging efficiency.   From preliminary analysis, it is 
estimated that the packaging volume required is on the order of 1 m3.  
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Table 7.  OASIS reflector. 
Parameter Value 

Aperture diameter (m) 20 
Conic Constant (parabola) -1 
Radius at vertex (m) 50 
Focal length (m) 25 
Membrane thickness (microns) 12.7 
Inflation pressure Pa (atm) 3.5 (3.45 x 10-5) 
Film stress Pa (atm) 6.895 x 106 (68) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.  The OASIS inflatable reflector. [1] 
 

4.2 Inflating the OASIS Reflector using FAIM 

The OASIS uninflated seamless shape was calculated using the FLATE code (Sect. 2.3) and was used to generate an 
axisymmetric model.  Skew boundary conditions were used along the gore side edge and the nodes at the outer periphery 
of the uninflated gore shape were displaced to their final locations in the inflated state using FAIM’s displacement 
boundary condition capability.  Figure 17 shows the uninflated and final inflated configurations including the direction of 
the applied pressure.  For the inflation pressure used, the inflated and uninflated configurations are very close to each 
other.  Figure 17B is a close up of the radial region starting at 8 meters.  The two shapes differ from each other by about 
10 centimeters in the RMS sense. 

Two other pressure cases were run: ten percent higher and ten percent lower than the nominal value.  The finite element 
results were run through a best-fit parabola calculation and are shown in Table 8.  The 𝑥௢, 𝑦௢ and 𝑧௢  are the translation 
parameters in the best-fit calculation.  There are two other rotation (Euler Angle) parameters, and like the translation 
parameters, they are small due to the axisymmetric nature of the FAIM finite element model.  The rms value is relative to 
the best-fit paraboloid. 
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                                        (A )                                                                                            (B) 

Figure 17.  The OASIS reflector. (A) uninflated and final inflated configuration. (B) Closeup near r = 8 meter region. 
The uninflated shape is above the inflated shape.  Pressurization direction is indicated by the arrow. 

 

Table 8.  Results for the OASIS reflector. 

Best-fit Parameters IDEAL Nominal 
Pressure 

10% Lower 
Pressure 

10% Higher 
Pressure 

Focal Length (m) 25 25.013 25.220 24.810 

𝑥௢ (cm) 0 2.02 x 10-5 3.07 x 10-3 -6.57 x 10-3 

𝑦௢ (cm) 0 2.31 x 10-4 -1.82 x 10-2 0.2143 

𝑧௢ (cm) 0 5.948 x 10-2 1.029 -0.893 

rms (mm) 0 0.028 0.718 0.587 

              Nominal pressure: 3.5 Pa (5.08 x 10-4 psi); reflector membrane film stress: 6.89 MPa (1,000 psi) 

 

From Table 8, it is seen that the higher pressure case results in a deeper parabola with a shorter focal length as expected.  
The lower pressure case turns the surface flatter with the focal length slightly longer than nominal.  Again, this is expected.  
The nominal pressure case exhibits the lowest rms value – it is closest to the desired ideal shape but the rms and the other 
best-fit parameters although small, did not “FAIM-calculate” to zero. This is due to the fact that the finite element model 
used a finite number of elements - it is a 3.46-degree axisymmetric slice with 861 nodes and 400 elements.  Increasing the 
nodal and element discretization density should only bring the nominal case result closer to the ideal. 

A few more finite element runs can be made to get a good measure of the change in focal length as a function of pressure 
(∆𝐹 ∆𝑝ሻ⁄ . This will be useful in the optical simulation of the OASIS.  Collaboration with Takashima, et al [23] at the 
University of Arizona and scientists at Northrop-Grumman [4] is on-going and possible enhancements to FAIM may be 
made to increase its capabilities including facilitated modeling of the continuum with material properties varying with 
position.  The cases shown in Table 8 have been used by Takashima, et al [23] to carry out optics simulation to get a 
measure of the secondary and tertiary mirror sizes.  For even larger reflectors, one must result to using analytics as it will 
be expensive and difficult to perform the experimental measurements, e.g., finding a large enough thermal vacuum 
chamber to test a 40m diameter or greater aperture. 

4.3 Sensitivity Analyses 

The surface accuracy of an inflatable reflector depends on several factors.  These include (a) material property uniformity 
over the surface, (b) gore shape accuracy, (c) seaming accuracy, (d) inflation pressure stability, and (e) temperature change 
and temperature uniformity of the surface.  The probability distribution (Gaussian, Weibull, etc.) of all these sources of 

Pressure 

Uninflated 

Inflated 

Pressure 
Uninflated 

Inflated 

OASIS: E=3.5GPa; G=1.28 GPa; P=3.5 Pa OASIS: E=3.5GPa; G=1.28 GPa; P=3.5 Pa 
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errors can be determined and used in the finite element analyses and the most probable values with corresponding 
uncertainties used to carry out analytical runs in a limited Monte-Carlo sense, from which an error budget table can be 
created.  Table 9 is the result of analyses carried out on the Large Inflatable Structures (LIS) project [24]. The error budget 
in Table 9 was to achieve a surface accuracy on the order of a few millimeters RMS on 7m to 15m aperture diameter 
reflectors.  An error budget table similar to Table 9 will be generated for the OASIS project but for sub-millimeter rms 
surface accuracy. 

 

Table 9.  Fabrication Error Budget for Inflatable Antenna Reflector. 

Error Source Budget 

Gore Width  0.10 mm 

Gore Seaming  0.05 mm 

Gore Length  0.1 mm per meter length 

Mounting   0.38 mm 

Material non-uniformity 𝑀௢  േ 0.04𝑀௢ 

Temperature at manufacture 𝑇௢  േ 2 ℃ 

Humidity at manufacture 𝐻௢  േ 5% 𝑅𝐻 

 

On orbit, the main contributor to the overall surface accuracy will be the non-uniform temperature distribution over the 
reflector surface and inflation pressure stability.  The errors introduced for the direct sun-staring case can be eliminated by 
design - the FLATE code has this capability.  It is the off-boresight reflector-to-sun angles that result in large temperature 
gradients that contribute to surface degradation of a few millimeters rms.  The OASIS team is currently evaluating the use 
of Novastrat, a zero-CTE polyimide from Nexolve, Inc. [25] 

 

5. SUMMARY AND CONCLUSIONS 

The resulting shape geometry of inflatable membrane reflectors for both initially flat and initially curved surfaces were 
presented.  The use of reliable analytical codes is deemed to be of utmost importance to guide the design.  The validity 
of the codes used was tested against known analytical solutions and experimental measurements. From experience, in so 
far as membrane and cable elements are concerned the FAIM code has been shown to be robust.  Given a set of correct 
input, loading and boundary conditions, FAIM converges to the correct results.  There are commercially available codes 
that can be used but they are expensive and more often, the user has to have the necessary experience and know-how to 
coax the code to achieve convergence and to know whether or not the code converged to the correct results.  The results 
of the present study show the feasibility of using inflated membrane shape for space reflector applications approaching 
the terahertz operating frequency of OASIS.  
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