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Abstract. A kind of novel power splitter built with two-
dimensional photonic crystals based on directional coupling
is proposed. Different output power levels are achieved by
changing the coupling length. The distribution of light inten-
sity in the coupling waveguides is investigated and the de-
pendence of transmission on coupling length is provided. A
good agreement between the theoretical and experimental
output transmissions is shown. With the low-loss bends, a
total transmission up to ~0.96 is achieved. The power in

each branch can be easily further split. © 2006 Society of Photo-
Optical Instrumentation Engineers.
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Photonic crystals (PCs) are artificially engineered mate-
rials with periodic arrangement of dielectric constants.
They prohibit propagation of light for frequencies within
the photonic band gaps. The PC has opened up a new way
to control light and construct integrated optical circuits.
Many optical devices based on PCs have been proposed,
e.g., optical couplers, filters, and microcavity lasers. 2D
PCs are widely adopted because of the difficulty in fabri-
cating 3D PCs. An index-guiding mechanism is utilized in
the vertical direction to eliminate out-of-plane losses in 2D
PC structures.”

The power splitter is one of the most important compo-
nents of the integrated optical systems. The ty})ical power
splitter built on PC with a Y-junction structure” has a poor
transmission. The directional coupling has been used to de-
sign high efficient power splitters. The performance of the
PC waveguide directional coupler has been experimentally
demonstrated by Cuesta et al. at microwave frequencies for
a PC with a triangular arrangement of dielectric rods in air.!
In the coupling region, the single mode in the isolated
waveguide splits into two guided modes with odd and even
symmetries with respect to the plane equidistant from both
waveguides. The odd and even modes have different propa-
gation constants: 8,4, and f3,,.,, respectively. As a result,
the electromagnetic power fully shifts from one guide to
another after propagating a distance of L.=7/|B,44= Beven|
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and then turns back to the first guide after the same dis-
tance. An efficient power splitter based on PC waveguide
directional coupling has been designed with a mechanism
similar to the conventional three-waveguide directional
couplers.5 However, each of the two output power is fixed
to about half of the input power because of the symmetry
structure. In this work, we propose a novel power splitter
based on PC waveguide directional coupling that provides
different levels of output power. The dependence of the
transmission on the length of directional coupling region is
presented. The experimental results are compared with the
theoretical ones, and good correspondences between them
will be shown.

In our calculation, a supper cell of 1a X 10a is taken to
calculate the disg)ersion curve by utilizing the plane wave
method (PWM),” where a is the lattice constant. The finite-
domain time-difference (FDTD) scheme’ implemented
with PC-based perfectly matched layers (PC-PMLs)® is em-
ployed to simulate the wave propagation and to calculate
the transmission spectrum. The bulk PC is defined by a
square arrangement of dielectric rods in air. The dielectric
constant of the rod is €=8.9 and the radius is 0.23a. Such
parameters provide a band gap of a/A=0.3~04 for
E-polarized wave.

First, we investigate a power splitter with two branches
as shown in Fig. 1. It is designed by creating a bend wave-
guide WGc beside a straight one labeled WGb. The dis-
tance between the paralleling waveguides is 2 PC lattices.
The bend with very high transmission is employed to
greatly reduce the bend loss.” Directional coupling occurs
within the parallel region of these two waveguides. The
input single mode splits into one odd and one even mode.
Figure 2 shows the dispersion relations of the input single
mode and the coupling modes. 8,,; and S,,., are obtained
by employing the PWM with 1521 plane waves. They are
symmetric with respect to the propagation constant of the
single mode. Because of the structural symmetry in the
coupling region, each of the parallel waveguides carries the
same quantity of power, and the amplitudes of the odd and
even modes are also equal to each other. Therefore, the
amplitudes of the odd and even modes are both A/2, where
A is the amplitude of the input mode. Furthermore, the
intensity at the left end of coupling region in WGc is al-
ways zero, that is, there is a phase difference of 7 between
odd mode and even mode at that position. The wave func-
tion in WGc can be obtained with E.=FE,;; .+ E,ye, ., Where
Ey4. and E,,,, . are wave functions of odd and even
modes in WGc, and they can be expressed as:

Eodd,c‘ = (A/2) : exp[j(ﬁoddx - wt)], (1)
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Fig. 1 Schematic of power splitter with two branches.
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Fig. 2 Dispersion relation for the directional coupling waveguides. the distance between the parallel waveguides increases.
A 2D photonic crystal in the microwave frequency re-
gime is designed for experiments. The alumina rods, which
Eppone= (A72) - explj(Bopent — 0t + @)1, 2) are 400 mm in length and 2.8 mm in diameter, are arranged
in a square lattice array with a lattice constant of a
=6 mm. As shown in Fig. 3, a network analyzer is used to
measure the transmission spectra and two horn antennas are
. 5 used as the source and detector adaptors. The horn antennas
1) = Lysin[ e/ (2L,) ], (3) are placed directly to the input or output ports with orien-
where I,, is the input intensity. The intensity in WGc at the tations that provide electric field paralleling to the alumina
right end of coupling region will be guided around the bend rods. The port A is set along the y direction in the experi-
and sent to the output port A. Transmission of the output mental setup, so that the signals from port A and port B can
port A is defined as Ty=1,/1;,, where 1, is the intensity at be detected separately.
output port A. The transmission of the output port A and B
can be calculated by:

where ¢==+r. Therefore, we obtain the distribution of in-
tensity within coupling region in WGc:
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Fig. 3 Setup for experiments in the microwave frequency region. Fig. 5 Electrical field patterns for different coupling lengths /.
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Fig. 6 Electrical field pattern for a power splitter with 4 output
branches.

The measured results of the transmissions are shown in
Fig. 4, and are compared with the theoretical results calcu-
lated with Egs. (4) and (5). The frequency of input micro-
wave is 17G and L. is 12a at this frequency. In order to
eliminate the influence of input and output coupling effi-
ciency, the experimental transmission of the splitter is nor-
malized by the transmission of an isolated straight wave-
guide. A good correspondence between the experimental
and theoretical results can be observed. The slight disagree-
ments are caused mainly by the position disorders of alu-
mina rods. On the other hand, the difference in group ve-
locities of odd and even modes, which can be observed in
Fig. 2, results in low cross talk in coupling properties. This
is also one of the reasons for the disagreement. Figure 5
shows the field patterns calculated by FDTD for power
splitters with different coupling lengths. The lengths of
coupling region and the transmission for each output port
are shown in Fig. 5. The input power is split into different
ratios. The pulse with narrow frequency range centered at
a/N=0.34 is excited by a dipole source with a Gaussian
temporal profile. A total transmission of ~0.96 is obtained
throughout the calculated coupling lengths. The loss is
mainly caused by the bends of WGc.
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Then, by further splitting power in each branch, the
number of output port can be improved. Figure 6 shows the
electric field pattern in a splitter with 4 output ports. The
frequency of input pulse is a/\=0.34. The coupling lengths
are [1=18a, [,=16a, and I[3=15a, respectively.
T,:Ty:T3:Ty~5:2:1:6 is observed, where T(i
=1,2,3,4) is the transmission of port 1~port 4 in Fig. 6.

In conclusion, we have proposed a novel splitter based
on PC waveguide directional coupling. Different output
power levels can be obtained by changing the coupling
length. A high total transmission is achieved with the low-
loss bends. The power in each branch can be further split to
obtain more output ports.

We would like to acknowledge the support from the Na-
tional Natural Science Foundation of China under Grant
No. 10475048.
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