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Abstract. Quantum random number generators (QRNGs) can provide genuine randomness by exploiting the
intrinsic probabilistic nature of quantum mechanics, which play important roles in many applications. However,
the true randomness acquisition could be subjected to attacks from untrusted devices involved or their
deviations from the theoretical modeling in real-life implementation. We propose and experimentally
demonstrate a source-device-independent QRNG, which enables one to access true random bits with an
untrusted source device. The random bits are generated by measuring the arrival time of either photon of
the time–energy entangled photon pairs produced from spontaneous parametric downconversion, where
the entanglement is testified through the observation of nonlocal dispersion cancellation. In experiment,
we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation, which can be improved
to gigabits per second by using advanced single-photon detectors. Our approach provides a promising
candidate for QRNGs with no characterization or error-prone source devices in practice.
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1 Introduction
Random numbers are important resources in scientific and prac-
tical applications. Classical random number generators deny the
existence of unpredictability, which cannot provide secure ran-
domness. In contrast, quantum random number generators
(QRNGs) can generate genuine randomness from the inherent
indeterminacy of quantum mechanics,1,2 which have been ap-
plied in various quantum information processing tasks.3–5

In the last decades, the generation of quantum random num-
bers has been extensively studied. Various high-speed and real-

time QRNGs have been developed6–9 and started to become
commercial.10,11 However, these QRNGs can only extract true
randomness based on the strong assumption that the source
and measurement devices are trusted. The device-independent
QRNG (DI QRNG)4,12,13 is able to access true randomness with-
out any assumptions on the source and measurement devices,
but it requires a loophole-free Bell test, resulting in great chal-
lenges in implementation and low efficiency. An alternative
technique is semi-DI QRNG, where high speed and low-cost
information-provable randomness can be generated based on
a few justifiable assumptions on the system operation and its
critical components, such as trusted sources,14–17 the character-
ized measurement settings,18–24 assumptions on the indistin-
guishability, or dimension of the input states.25–28
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For practical semi-DI QRNGs, security, generation rate, and
practicality are highly desirable in applications. Particularly, any
deviation of the realistic source from its theoretical modeling
may affect the security and generation rate of true randomness.
Source-DI QRNGs generating true randomness from an un-
trusted source provided convenient and characterized measure-
ment devices, offer distinct advantages in semi-DI QRNGs, and
have been extensively studied.

One kind of approach is based on measurement of the vac-
uum noise via homodyne detection.23,29–31 Benefiting from the
fast detection speed, such a technique has achieved a random
number generation rate as high as gigabits per second (Gbps);
however, the homodyne detection requires a well modeled and
calibrated local oscillator. In contrast, the single-photon detec-
tion technique, despite the drawback on detection speed, has the
merit of easy operation and simple structure. With such a tech-
nique, source-DI QRNGs have also been reported18,20 based on
an assumption of the squashing model32 in the detection devices.
In this paper, we propose and experimentally demonstrate a
secure and fast source-DI QRNG based on single-photon detec-
tion and entangled photons. The random bits are generated via
the measurement of photon arrival time that is beneficial for pro-
ducing high-dimensional QRNGs.33,34 In our scheme, we use
either photon of time–energy entangled photon pairs produced
from spontaneous parametric downconversion (SPDC) as the
entropy source. The security of our scheme relies on the obser-
vation of nonlocal dispersion cancellation (NDC),35 which has
been applied to guarantee the security of quantum key distribu-
tion tasks.36–38 Moreover, we employ a modified entropic uncer-
tainty relation (EUR)39 to quantify the randomness to improve
security. The experiment results show that the genuine quantum
randomness can be extracted at a rate of 4 Mbps (megabits per
second), which could reach the level of Gbps if using the
advanced single-photon detectors with faster detection speed
and lower temporal resolution.

2 Source-DI QRNG Protocol
In our protocol, we suppose an untrusted source produces a tri-
partite state ρABE with the reduced state ρAB ¼ TrE½ρABE�, where
A and B are distributed to two noncommunicating observers
named Alice and Bob, respectively, and E is held by the under-
lying eavesdropper Eve as a quantum memory or considered as
the environment. In the ideal case, ρAB is a pure time–energy
entangled photon pair state generated via SPDC. Here we sup-
pose that the SPDC source is pumped by a pulsed laser with a
center frequency of ωp and a coherence time of σcoh and that the
generated photon pairs have a correlation time of σcor deter-
mined by phase-matching bandwidth. The ideal state can be
written in the time and frequency domains, respectively, as
follows:

Ψt
AB ¼

ZZ
ψðtA; tBÞeiωpðtAþtBÞ∕2jtAiAjtBiBdtA dtB; (1)

Ψω
AB ¼

ZZ
ϕðωA;ωBÞjωAiAjωBiBdωA dωB; (2)

where the joint time function ψðtA; tBÞ and joint frequency
function ϕðωA;ωBÞ are given by

ψðtA; tBÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσcohσcor
p e−ðtA−tBÞ2∕4σ2cor−ðtAþtBÞ2∕16σ2coh ; (3)

ϕðωA;ωBÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π∕2σcohσcor
p e−ðωA−ωBÞ2σ2cor∕4−ðωAþωBÞ2σ2coh ; (4)

where jtAiAðjtBiBÞ and jωAiAðjωBiBÞ represent photons AðBÞ at
time tAðtBÞ and frequency ωAðωBÞ.

Alice and Bob both have two trusted positive operator-valued
measures (POVMs), denoted by Tj

δ ¼ fTj
kg and Dj

δ ¼ fDj
kg

with j ∈ fA; Bg and k ∈ N. The measurement Tj
δ is the direct

photon arrival time detection, expressed as

Tj
k ¼

Z ðkþ1Þδ

kδ
jXtijhXtjjdt; (5)

where jXtij ¼
R∞−∞ dωffiffiffiffi

2π
p eiωtjωij and δ is the detection precision

of the system. The other measurement, Dj
δ, is the arrival time

detection after the photons in Alice and Bob, respectively,
undergo normal and anomalous dispersion with equal magni-
tudes, which can be written as

Dj
k ¼

Z ðkþ1Þδ

kδ
jYtijhYtjjdt; (6)

where jYtij ¼
R∞−∞ dωffiffiffiffi

2π
p eiðωtþβjω

2∕2Þjωij and βAðBÞ is the group-
velocity dispersion (GVD) coefficient in Alice (Bob) satisfy-
ing βA ¼ −βB.

However, in practice, we perform measurements Tj
δ and Dj

δ
in a range from −Ndδ∕2 to Ndδ∕2, where Nd is the frame size
(dimensionality); thus the null measurements T∅

j andD∅
j can be

defined when the photon arrives before or after the range, which
limits the characterization of entanglement in high-dimensional
quantum systems.39 The null measurements can be expressed by

T∅
j ¼

Z −Ndδ∕2

−∞
jXtijhXtjjdtþ

Z
∞

Ndδ∕2
jXtijhXtjjdt; (7)

D∅
j ¼

Z −Ndδ∕2

−∞
jYtijhYtjjdtþ

Z
∞

Ndδ∕2
jYtijhYtjjdt: (8)

Then the refined POVMs can be written as Tj
δ ¼

fTj
kgNd∕2

k¼−Nd∕2⋃T∅
j and Dj

δ ¼ fDj
kgNd∕2

k¼−Nd∕2⋃D∅
j .

Alice and Bob choose two measurements, Tδ and Dδ, sep-
arately, which are switched through a classical random signal
S with probabilities q and 1 − q, respectively. Before extracting
random numbers, Alice and Bob record the joint outcomes of
the measurements Tδ to estimate the detection precision δ of the
system. Then the outcomes of measurement Tδ in Alice are re-
corded as the raw random bits, whereas the joint outcomes of the
measurements Dδ for Alice and Bob are utilized to certify the
entanglement of source and estimate the amount of randomness.

In the process of certification for the source, the NDC35 is
available as a nonlocal test of the time–energy entanglement,
where the dispersion effect can be nonlocally canceled when
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two time–energy entangled photons propagate in two media
with equal magnitudes and opposite dispersion signs, respec-
tively. We define the code distance associated with the outcomes
of measurement Dδ as a testing value d given by38

d ¼
ffiffiffi
2

π

r
σcoh;D
δ

; (9)

where σcoh;D is the correlation time of the photon pairs
when Alice and Bob both perform measurement Dδ, and
σcoh;D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2cor þ β2∕4σ2coh

p
for the ideal state. The source can

be certified to be time–energy entangled if d is less than the
classical bound determined by the actual experimental param-
eters (see Appendix A for details). A preset value d0 is selected
here that is not larger than the classical bound, and the protocol
is aborted when d > d0.

Since the source device is untrusted, the input state might be
controlled by an eavesdropper, Eve, who can obtain the side
information through system E. The amount of genuine random-
ness that can be extracted from Alice in measurement Tδ
is quantified by the conditional quantum min-entropy40 defined
asHminðTA

δ jEÞ ¼ −log2 PguessðTA
δ jEÞ, where PguessðTA

δ jEÞ is the
maximum probability that Eve guesses correctly the outcome of
Tδ conditional on her side information. In previous works, the
lower bound of conditional quantum min-entropy HminðTA

δ jEÞ
can be given by exploiting the EUR.41,42

In practical implementations, the finite measurement range
problem will significantly compromise the evaluation of secure
min-entropy. To further improve security, we explore the
extractable randomness lower bound with the modified EUR39

based on smooth entropy by taking into account the finite mea-
surement range. The ϵ-smooth conditional min- and max-
entropies are defined as

Hϵ
minðAjBÞρ ¼ max

ρ0∈BϵðρÞ
HminðAjBÞρ0 ; (10)

Hϵ
maxðAjBÞρ ¼ max

ρ0∈BϵðρÞ
HmaxðAjBÞρ0 ; (11)

where BϵðρÞ ¼ fρ0j 1
2
kρ − ρ0ktr ≤ ϵg is the set of operators

within an ϵ distance of ρ. Then the modified EUR is written as39

Hϵ
minðTA

δ jEÞρ ≥ Hϵ
lowðTA

δ jEÞρ
¼ −2 log2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðp∅

TA
δ
ðρÞ; ϵÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðp∅

DA
δ
ðρÞ; ϵÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f−ðp∅

DA
δ
ðρÞ; ϵÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c<ðTA

δ ; D
A
δ Þ

q � ffiffiffi
2

p
Hϵ

maxðDA<
δ jBÞρ

��
;

(12)

where

f�ðp∅
i ðρÞ; ϵÞ ¼ 2ϵ − ϵ2 þ 2p∅

i ðρÞϵ2 − 4p∅
i ðρÞϵ

� 2ð1 − ϵÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p∅
i ðρÞϵ½1 − p∅

i ðρÞ�ð2 − ϵÞ
q

þ p∅
i ðρÞ; (13)

and p∅
TA
δ
ðρÞ ¼ Tr½ρAT∅

A �, p∅
DA

δ
ðρÞ ¼ Tr½ρAD∅

A � are the null prob-
abilities for measurement T∅

A and D∅
A , respectively, which can

be written as

p∅
TA
δ
ðρÞ ¼ 1 − 1ffiffiffiffiffi

2π
p

σcoh

Z
Ndδ∕2

−Ndδ∕2
e
− t2

A
2σ2

cohdtA; (14)

p∅
DA

δ
ðρÞ ¼ 1 − 1ffiffiffiffiffi

2π
p

σcoh0

Z
Ndδ∕2

−Ndδ∕2
e
− t2

A
2σ2

coh0 dtA; (15)

where σcoh0 is the standard deviation of arrival-time distribution
photon A after propagating through the dispersive medium.

Additionally, c<ðTA
δ ; D

A
δ Þ in Eq. (12) is the maximum over-

lap for the POVMs TA
δ and DA

δ , excluding the null measurement
POVM elements, satisfying39

c<ðTA
δ ; D

A
δ Þ ¼ max

TA
δ ;D

A
δ≠∅

����
ffiffiffiffiffiffi
TA
δ

q ffiffiffiffiffiffiffi
DA

δ

q ����2
∞
; (16)

where k · k∞ denotes the maximum singular value. c<ðTA
δ ; D

A
δ Þ

can be the upper bound by the cðTA
δ ; D

A
δ Þ ¼

maxTA
δ ;D

A
δ
k

ffiffiffiffiffiffi
TA
δ

p ffiffiffiffiffiffiffi
DA

δ

p
k2 because the sets of POVMs over which

the former is maximized are subsets of the sets over which the
latter is maximized. Thus we obtain

c<ðTA
δ ; D

A
δ Þ ≤ cðTA

δ ; D
A
δ Þ ¼

δ2

4π2β
; (17)

where β ¼ jβAj (see Appendix B for details). The smooth condi-
tional max-entropy Hϵ

maxðDA<
δ jBÞρ in Eq. (12) represents Bob’s

lack of knowledge about the measurement results of DA
δ after

Alice discards the null measurements, which can be bounded
by43

Hϵ
maxðDA<

δ jBÞρ ≤ log2 γðd0 þ ΔÞ; (18)

where function γð·Þ is formulated as

γðxÞ ¼
�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ��
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p − 1

�
x
; (19)

and the statistical fluctuations Δ can be written as

Δ¼ Nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qðq− 1ÞNA
T
ln

�
ϵ∕4− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
1− ð1−p∅

TA
δ
ðρÞÞNA

T

�r �s
;

(20)

where NA
T is the total number of detections for TA

δ in a process-
ing unit.

Finally, we extract the secure random bits from the raw
random bits by the Toeplitz-hashing extractor and claim that
our QRNG scheme successfully generates a string of genuine
random bits if all statistical tests are passed.
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3 Experimental Demonstration
The experimental setup comprises an entanglement source and
measurement devices, as shown in Fig. 1. The pump light is a
pulsed laser with a repetition rate of 10 MHz and a measured
coherence time of 2.1 ns, which is extracted from a continuous-
wave laser at 774.9 nm through a lithium niobate electro-optic
modulator. It is adjusted to horizontal polarization by a polari-
zation controller, then coupled into a 5-cm Ti-diffused periodi-
cally poled lithium niobate (Ti:PPLN) waveguide with a poling
period of 9.2 μm. The time–energy entangled photon pairs are
produced via the type-II SPDC process. After blocking out the
pump by a long-pass filter and a 3-nm bandpass filter centered at
1550 nm, the output orthogonally polarized entangled photon
pairs are spatially separated by a polarization beam splitter
(PBS) and distributed to Alice and Bob, respectively. The wave-
length-degenerate photon pairs are centered at 1549.8 nm with
0.7 nm full width at half-maximum (FWHM). The overall de-
tection efficiencies are 20.5% for the photon to Alice and 20%
for the photon to Bob, respectively. When the pump power
coupled into the waveguide is 1 mW, the single-photon counting
rates measured by superconducting nanowire single-photon de-
tectors (SNSPDs) at Alice and Bob are 5 and 4.85 MHz, respec-
tively, with the dark counting rate observed around 500 Hz and
thus are ignored. The two-photon coincidence counting rate ob-
tained by the time-to-digital converter (TDC) (PicoHarp-300) is
1 MHz. Thus the proportion of genuine entangled photons in
Alice’s detection can be estimated to be 97%.

Alice and Bob both randomly perform measurement Tδ or
Dδ by a passive 90∶10 beam splitter, i.e., q ¼ 0.9 in protocol.
Explicitly, the measurement Tδ is implemented by directly
measuring the arrival time at the SNSPD, while for the measure-
ment Dδ, arrival time detection is performed after the photons
to Alice (Bob) propagate through a dispersion module com-
posed of an optical circulator and a chirped (antichirped)
Bragg grating with a GVD coefficient of −1440 ps2 (1440 ps2).
The arrival time is detected by the SNSPDs, then recorded by
the TDCs with the total time jitters estimated approximately as

σj ∼ 34 ps (1 standard deviation). The outcome rate of measure-
ment Tδ in Alice is nAT ¼ 4.5 MHz.

To explore the performance of the source and certify the
security of the scheme, we plot the coincidence curves of four
combinations for two observers’ measurements, as illustrated in
Fig. 2. If Alice and Bob both make measurement Tδ, the FWHM
of the coincidence peak is ΔT ¼ 120 ps, as shown in Fig. 2(a),
and thus the detection precision is calculated to be δ ¼
ΔT∕

ffiffiffi
2

p ¼ 84 ps based on the assumption that the resolution
of all detectors is identical. If the measurements performed
by Alice and Bob are different, coincidence peaks are broadened
to 750 ps in Fig. 2(b) and 760 ps in Fig. 2(c) due to the
dispersion effect. The slight difference between two peaks is
caused by the slight difference in magnitude of GVD coeffi-
cients in Alice and Bob. If two observers both choose measure-
ment Dδ, as shown in Fig. 2(d), the peak recovers with a narrow
FWHM of ΔD ¼ 160 ps, as shown in Fig. 2(d), corresponding
to σD ¼ 68 ps [σD ¼ ΔD∕ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p Þ for Gaussian function]
due to the NDC effect. In this case, the testing value d is calcu-
lated to be 0.64 according to Eq. (9), which is much smaller than
the classical bound dc ¼ 1.35 (see Appendix C).

The preset value d0 is set to be 0.64, since it is the upper
bound in the vast majority of the measurement runs in our ex-
periment. If d ≤ d0 from the experimentally observed results,
the protocol is passed, implying that we can evaluate and extract
true randomness from the raw random bits to generate genuine
random numbers.

4 Randomness Evaluation and Extraction
From the above results, we could calculate the randomness
from the raw random bits according to Eqs. (12)–(20).
The null probabilities p∅

TA
δ
ðρÞ ¼ 1 − ferrð0.0140NdÞ and

p∅
DA

δ
ðρÞ ¼ 1 − ferrð0.0138NdÞ can be obtained with σcoh ¼ 2.1

and σcoh0 ¼ 2.15 ns in our experiment, where ferr is the error
function.44 The statistical fluctuation Δ defined in Eq. (20) is
obtained by setting the smooth entropy parameter ϵ ¼ 10−10,

Fig. 1 Experimental setup of the source-DI QRNG. (a) Entanglement source: the time–energy
entangled photon pairs are generated from the Ti:PPLN waveguide pumped by a pulsed laser
with a duration of 5 ns, which are separated by a PBS. (b) Measurement device: photons are
passively selected for measurement T δ or Dδ by a 90:10 beam splitter (BS) after being coupled
to fiber in Alice and Bob sides. PC, polarization controller; FI, filter; C-BG, chirped Bragg grating;
OC, optical circulator; SNSPD, superconducting nanowire single-photon detector; and TDC, time-
to-digital converter.
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where the total count NA
T is deduced by the count rate n

A
T and the

cumulative time τ as NA
T ¼ nATτð1 − p∅

TA
δ
ðρÞÞ.

We plot the smooth min-entropyHϵ
lowðTA

δ jEÞρ with respect to
NA

T and Nd, as shown in Fig. 3. It can be seen that Hϵ
lowðTA

δ jEÞρ
increases with NA

T , while for a given N
A
T , with the increasing Nd,

Hϵ
lowðTA

δ jEÞρ first keeps growing due to increasing measurement

range and then declines for larger statistical fluctuation, where
the maximum value can be obtained by optimizing Nd. The
maximal entropy values are obtained to be 0.778, 0.877,
0.903, and 0.913 for four processing units with frame size
Nd ¼ 232, 246, 250, and 256, respectively.

As a trade-off between the entropy bound and practicality,
the processing unit is set as NA

T ¼ 4.5 × 108, corresponding
to the highest min-conditional entropy of 0.917 bit per count
with Nd ¼ 256, p∅

TA
δ
ðρÞ ¼ 4 × 10−7, p∅

DA
δ
ðρÞ ¼ 6 × 10−7, and

Fig. 3 Smooth entropy Hϵ
lowðTA

δ jEÞρ with respect to the frame
size Nd for different processing units NA

T . The dotted lines re-
present the entropy evaluated from the experimental data. The
red triangles represent optimal results.

Delay (ns) Delay (ns)

Delay (ns)Delay (ns)

(a) (b)

(c) (d)

Fig. 2 Photon coincidence counts (CCs) recorded for four measurement combinations of two
observers (denoted as A and B) in 10 s.

Fig. 4 Autocorrelation coefficients of raw random data and final
random data.
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τ ¼ 100 s. Considering the proportion of genuine entangled
photons of the SPDC is measured to be 97%, we can extract
0.900-bit genuine randomness per log2ð256Þ-bit sample.
Hence, we generate a Toeplitz matrix with a scale of 80;000 ×
9000 to extract genuine random numbers. As the outcomes rate
is nAT ¼ 4.5 Mcounts∕s, the final generation rate of random
numbers is 4 Mbps.

To test the quality of random numbers, we perform an auto-
correlation coefficient test between the raw and final random
data, where the raw data and final random data satisfy the
Gaussian distribution and uniform distribution, respectively.
As shown in Fig. 4, the final autocorrelation coefficients are be-
low 0.001 within the 200-bit delay, which are significantly
lower than the raw data. Furthermore, we perform a standard
NIST test suite using 1000 samples of 1 Mb; the significant level
is set as α ¼ 0.01. The NIST test is passed if P values are higher

than 0.01 and the proportion value within the confidence inter-
val of ð1 − αÞ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − αÞα∕np ¼ 0.99� 0.00944 for all tests.
As shown in Fig. 5, the random bits in our scheme pass all
15 tests.

5 Conclusions and Discussions
In conclusion, we have proposed and experimentally demon-
strated a scheme for a source-DI QRNG, where the random bits
are generated by measuring the arrival time of single photons
from an untrusted time–energy entangled photon pair source.
The NDC effect is employed to testify the entanglement source
and thus guarantee the security of true random number acquis-
ition. With a high-quality PPLN waveguide SPDC source, we
realized a fast generation of true random numbers with a gen-
eration rate of 4 Mbps, which were extracted by utilizing the
modified EUR. In Table 1, we list several semi-DI QRNGs
as a comparison. It shows that our work achieves a trade-off
among security, speed, and practicality.

The generation rate of our protocol can be further increased
to Gbps provided we use state-of-the-art single-photon detec-
tors. For instance, the single-photon detector45 with a temporal
resolution of 29 ps could theoretically achieve optimal
Hϵ

lowðTA
δ jEÞρ ¼ 2.66; combining with its maximum count rate

of 2 GHz, the random number generation rate can reach
5.16 Gbps. Moreover, the source-DI QRNG we realized is based
on the PPLN waveguide SPDC source, which may be further
developed to be an integrated chip-scale device by exploring
on-chip photon generation, manipulation, and detection tech-
niques. We hope our approach can stimulate more such inves-
tigations.

Furthermore, our scheme provides a secure certification
for quantum information and quantum communication tasks
with an untrusted source based on dispersion cancellation.
Recently, the work on the QKD protocol where the source is
trusted but imperfect was proposed.36 Our approach offers a
way to certify the untrusted source via dispersion cancellation
for this protocol, which enables us to access the source-DI
QKD tasks.

Fig. 5 Results of NIST statistical test suite.

Table 1 Features of our protocol as compared to the features of existing semi-DI QRNG protocols.

Refs.
Uncharacterized

Source
Uncharacterized
Measurement

Finite-size
Analysis

Finite Measurement Ranges
Considereda

Generation
Rate

15 ×
p

× — 5.7 kbps

17 ×
p p

× 47.8 Mbps

20
p

×
p

— 1 Mbps

21
p

×
p

× 8.05 Gbps

24
p

×b
p

— 1 Mbps

25
p

c
p p

— 23 bps

27
p

d
p p

— 1.25 Mbps

31
p

×
p

× 17 Gbps

This
work

p
×

p p
4 Mbps

aThe measurements are discrete systems.
bWithout a detailed characterization.
cWith additional assumption on the dimension of input states.
dWith additional assumption on the input energy.
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6 Appendix A: The Definition of Testing
Value

In this section, we provide the proof that the testing value d de-
fined in Eq. (9) as the code distance for systems A and B in Dδ
basis can be used to certify the time–energy entanglement for
the ideal state in Eq. (1).

Let us consider the case that systems A and B are two sepa-
rable photons or classical pulses. The spectrum and temporal
functions of the photon A can be written as, respectively,

ϕc
AðωÞ ∝ e

−ω2

4σ2ν ; (21)

ψc
AðtÞ ∝ e

− t2

4σ2t ; (22)

where σν is the spectrum bandwidth (1 standard deviation) of the
photon, and σt is the temporal bandwidth. Meanwhile, ϕc

BðωÞ
and ψc

BðtÞ for photon B are defined similarly with photon A.
After two photons propagate through the dispersive medium,
the intensity detected at Alice and Bob can be written as

IAðtAÞ ¼
����
Z

dωAffiffiffiffiffi
2π

p ϕc
AðωAÞeiðωAtAþβω2

A∕2Þ
����2;

IBðtBÞ ¼
����
Z

dωBffiffiffiffiffi
2π

p ϕc
BðωBÞeiðωBtBþβω2

B∕2Þ
����2: (23)

The joint detection probability that Alice’s detector clicks at
time tA and Bob’s clicks at time tB simultaneously is
PðtA; tBÞ ¼ IAðtAÞIBðtBÞ, and the overall probability PðΓÞ of
detecting two photons at a time lag Γ ¼ tA − tB can be calcu-
lated as

PðΓÞ ¼
Z

IAðtAÞIBðtBÞdtA ∝ e
− Γ2

2σ2cor;c ; (24)

where the correlation time thus given by

σ2cor;c ¼ σ2cor þ 2β2σ2ν; (25)

and σcor ¼
ffiffiffi
2

p
σt is the origin correlation time.

It has been proved that the origin correlation time σcor and
standard deviation in the spectrum intensity of the sum of
frequency ΔðωA þ ωBÞ for two separable photons satisfy the
following inequality:46,47

σcorΔðωA þ ωBÞ ≥ 1; (26)

where ΔðωA þ ωBÞ can be calculated to be
ffiffiffi
2

p
σν. Hence, sub-

stituting this inequality into Eq. (25), we can obtain

σ2cor;c ≥ σ2cor þ
β2

σ2cor
; (27)

which defines the minimum broadening of temporal correlations
between two separable photons after they propagate through
two dispersive media with equal and opposite dispersion. By
normalizing the correlation time σcor;c into the detection

precision δ, the testing value d for a pair of separable photons
can be written as

d ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2cor
πδ2

þ 2β2

πδ2σ2cor

s
: (28)

A violation of this inequality implies the presence of entan-
glement, which is able to be used as a witness for the certifica-
tion of time–energy entanglement. We denote the right-hand
side of Eq. (28) as the classical bound dc.

Let us now consider the case that the source device distrib-
utes the entangled photon pairs with the state given by Eq. (1) to
Alice and Bob, and they both choose measurement Dδ, i.e., the
arrival time after two photons traveled through the dispersive
elements. The joint detection rate between two detectors is pro-
portional to the Glauber second-order correlation function,

Gð2ÞðtA; tBÞ ¼ jhYA
t ðtAÞYB

t ðtBÞjΨω
ABij2 ¼ jψDðtA; tBÞj2; (29)

where the joint time function becomes

ψDðtA; tBÞ ¼
1

2π

ZZ
ϕABðωA;ωBÞei

β
2
ðω2

A−ω2
BÞ−iðωAtAþωBtBÞdωA dωB:

(30)

Then the correlation time of outcomes in measurement Dδ
can be calculated as

σ2cor;D ¼
ZZ

ðtA − tBÞ2jψDðtA; tBÞj2dtA dtB

¼
ZZ

ðtA − tBÞ2jψABðtA; tBÞj2dtA dtB

þ β2
ZZ

ðωA þ ωBÞ2jϕABðωA;ωBÞj2dωA dωB

¼ σ2cor þ β2σ2ω; (31)

and σω ¼ 1∕ð2σcohÞ is the pump spectrum bandwidth. Thus the
theoretical d for the ideal state given by Eq. (1) is achieved by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2cor
πδ2

þ β2

2πσ2cohδ
2

s
: (32)

In the limit of large coherence time σcoh, the testing value d
reduces to

d ¼
ffiffiffiffiffiffiffiffiffiffi
2σ2cor
πδ2

s
; (33)

which is obviously smaller than the classical bound dc.

7 Appendix B: The Maximum Overlap of TA
δ

and DA
δ

We recall the measurements TA
δ ¼ fTA

k g and DA
δ ¼ fDA

k g,
which can be expressed as
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TA
k ¼

Z ðkþ1Þδ

kδ
jXtiAhXtjAdt; DA

k ¼
Z ðkþ1Þδ

kδ
jYtiAhYtjAdt; (34)

where jXtiA ¼ a†ðtÞj0i satisfies the orthonormality condition
hXt1 jXt2i ¼ δðt1 − t2Þ. Note that the measurements DA

δ and
TA
δ can be transformed by the dispersion operator U36 as

DA
δ ¼ UTA

δU
†; (35)

where

U ¼ 1ffiffiffiffiffiffiffiffi
2πβ

p
Z þ∞

−∞
dt1

Z þ∞

−∞
dt2e−iðt1−t2Þ

2∕2βjXt1iAhXt2 jA: (36)

The associated observables of TA
δ and DA

δ can be, respec-
tively, written as

OA
T ¼

Z þ∞

−∞
dttjXtiAhXtjA;

OA
D ¼ 1

2πβ

Z þ∞

−∞
dt
Z þ∞

−∞
dt1

Z þ∞

−∞
× dt2te−iðt

2
1
−t2

2
Þ∕2βþiðt1−t2Þt∕βjXt1iAhXt2 jA: (37)

Based on the derivation in Ref. 38, the observable OA
D can be

further simplified as

OA
D ¼

Z þ∞

−∞
dttjXtiAhXtjA þ β

i

Z þ∞

−∞
dtjXtiA

∂
∂t hXtjA;

¼ OA
T þ 2πβOA

ω; (38)

where OA
ω ¼ Rþ∞−∞ dω

2π ωjωiAhωjA is the observable of frequency.
According to the commutation relation ½OA

T;O
A
ω� ¼ i,48 we can

derive the commutation relation of OA
T and OA

D as follows:

½OA
T;O

A
D� ¼ i2πβ: (39)

Using the overlap result for maximally incompatible observ-
ables,38,49 we can obtain

cðTA
δ ; D

A
δ Þ ¼

δ2

4π2β
: (40)

8 Appendix C: The Classical Bound of
Experimental Testing Value

In our source-DI QRNG framework, the security of the scheme
relies on the observation of d in experiment. To certify the en-
tanglement, we need to calculate the classical bound of testing
value in our experiment.

Taking into account the time jitter of our detection systems in
practice, the correlation time in Eq. (27) can be rewritten in a
modified form,

σ2cor;c ≥ 2σ2j þ σ2cor þ
β2

σ2cor
: (41)

Recall that we measured the coincidence distribution and
obtained σ0 ¼ ΔT∕ð2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p Þ with β ¼ 0 in Fig. 2(a), i.e.,

σ20 ¼ 2σ2j þ σ2cor. Then combining the GVD coefficient β in
our system, we can calculate the modified correlation time
σcor;c ≥ 100 ps and the corresponding classical bound
dc ¼ 1.35.
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