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Abstract. Machine-learning techniques have gained popularity in nanophotonics research, being applied to
predict optical properties, and inversely design structures. However, one limitation is the cost of acquiring
training data, as complex structures require time-consuming simulations. To address this, researchers
have explored using transfer learning, where pretrained networks can facilitate convergence with fewer data
for related tasks, but application to more difficult tasks is still limited. In this work, a nested transfer learning
approach is proposed, training models to predict structures of increasing complexity, with transfer between
each model and few data used at each step. This allows modeling thin film stacks with higher optical
complexity than previously reported. For the forward model, a bidirectional recurrent neural network is
utilized, which excels in modeling sequential inputs. For the inverse model, a convolutional mixture density
network is employed. In both cases, a relaxed choice of materials at each layer is introduced, making the
approach more versatile. The final nested transfer models display high accuracy in retrieving complex
arbitrary spectra and matching idealized spectra for specific application-focused cases, such as selective
thermal emitters, while keeping data requirements modest. Our nested transfer learning approach represents
a promising avenue for addressing data acquisition challenges.
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1 Introduction
In recent years, machine-learning (ML)-based techniques have
surged in popularity as tools for addressing problems in optics
and photonics.1–3 Deep learning (DL), employing complex
many-layered neural networks, has become the predominant
type of algorithm employed. DL networks transform input val-
ues to output values via a number of intermediary hidden
layers.4,5 The weight connection values between these layers
are learned through exposure to labeled training data and com-
paring model predictions with the true values using an objective
loss function. Thus far, DL models have been applied for pre-
dicting properties of structured materials, such as their optical
response in the spectral or spatial domain, faster than simula-
tions can do.6–11 DL models are also applied in the inverse di-
rection, that is, taking a desired optical performance and

calculating the design of structures that would produce it.12–18

Successful examples of this inverse design approach include
multilayer structures,19–21 metasurfaces,22–27 optical cloaks,28–30

among many other photonic devices.31–35 In general, learning
the inverse mapping is far more complex than learning the for-
ward one. Despite this, strides have been made in developing
DL models that can accurately recreate arbitrary spectra, aiming
ultimately at addressing specific applications where an ideal op-
tical response contains complex and extreme features.17,36

One major limitation of DL-based inverse design, however, is
the exceptionally high cost of acquiring high-quality labeled
data. Most sufficiently complex structures require full-wave
simulations to predict optical responses. In some circumstances,
simulating even a single structure can take on the order of hours,
and one may need hundreds of thousands to millions of samples
to train a single model accurately, posing the largest bottleneck
for building and scaling nanophotonic inverse design models.
Moreover, for a given task, the model is trained with certain*Address all correspondence to Yuebing Zheng, zheng@austin.utexas.edu
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constraints and assumptions about the design being predicted,
such as a fixed material for the substrate or cladding of a meta-
surface and predefined geometries of the resonant elements.
Once trained, the model would only be able to give useful de-
sign suggestions for that specific set of limitations. Introducing
additional geometric parameters and including variables of dras-
tically different natures (e.g., indicators of material choices)
both raise the complexity of the task steeply.

One approach to addressing the above issue is the use of
transfer learning. For some types of structures, although tackling
a complete version with enough complexity for practical appli-
cations is exceedingly slow, simulating thousands of data points
for a simplified toy version with reduced degrees of freedom can

be relatively fast and manageable. Projecting this difference to
the training of DL models, rather than initializing the weight
values in a network randomly, the initial layers’ values are taken
from another network that has already been trained to predict a
similar, and in many cases, simpler task.37,38 In a sense, instead
of learning a complex task from scratch, the model needs to
learn just enough to account for the differences in the two data
sets. As such, transfer learning can potentially allow for faster
convergence to accurate predictions using fewer data. This relies
on the assumption that the features and relations learned for the
first task will also have high predictive power for the next
one. Previous work has shown the ability to transfer knowledge
between inverse39,40 and forward41–44 design models trained on

Fig. 1 (a) Schematic illustrating the principle of nested transfer. Left to right: Weights from the
previous model are taken after training (box with dashed lines) and used for initialization of
the weights of the next model (solid-colored lines between neurons), as the complexity of the out-
put gradually increases. (b) Diagram of a multilayer thin-film structure. The structure has a choice
of any of four materials at each layer, with the constraint that no two neighboring layers are the
same material. (c) Architecture of the mixed convolutional MDN used for the inverse design. There
are initial pairs of convolutional and max pooling layers leading to fully connected layers. The
output is split into categorical channels predicting the material choice at each layer and a final
MDN channel representing probability distributions of the layer thicknesses.
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different but similar structures, as well as between structures of
the same type but with different levels of complexity. While this
strategy can ease data requirements, the constraint that the target
and pretrained tasks need to be similar imposes some difficul-
ties. If the original and new domains have the same level of com-
plexity, this either means that both must be a simple task to
model, for which a high amount of data is already not needed,
or, if it is for a complex task, the first pretrained model will
likely already need a high amount of data. Many of the existing
cases of transfer learning for photonic design model tasks have
more limited ranges of possible designs, such as metasurfaces
with binary choices at each design variable45 or limited geomet-
ric shapes.46 For cases with increasing complexity, transfer
learning has been more limited, such as simpler forward mod-
eling for thin film structures with a small number of layers.41,43,44

A structure with higher degrees of freedom in layer numbers and
materials will be able to produce a wider range of optical behav-
iors and therefore be more flexible for practical applications.
Because of this, finding ways to utilize transfer learning for
more complex inverse modeling without high data requirements
is of particular interest.

In this work, we report a nested transfer learning approach
wherein models are trained to predict structures of gradually
increasing complexity, with transfer operations done between
each model [Fig. 1(a)]. This “nesting” strategy effectively al-
lows for a small amount of data per network and can model a
significantly higher level of optical complexity than in previ-
ously reported works. We demonstrate this on both forward
prediction and inverse design of multilayer thin film structures
[Fig. 1(b)]. Since both neural networks and thin film structures
use the term “layers” for their components, hereafter we refer
them to “network layers” and “structure layers,” respectively,
to distinguish them. For forward modeling, we build transfer
models up to 30 structure layers deep using a bidirectional re-
current neural network (RNN) architecture. For the inverse
model, we build up to 10 structure layers, using a convolu-
tional partial mixture density network (MDN) [Fig. 1(c)].
For each data set, the material used at each structure layer
is randomly selected from a prechosen list. We stress that
the high degree of freedom in the design variables represents
a significant challenge for modeling, surpassing those of pre-
viously reported thin-film inverse design tasks.36 Because pho-
tonic devices composed of building blocks in regular shapes
are typically described by a vector of discrete variables, the
degrees of complexity of their design process are somewhat
comparable. It is thus reasonable to assume that conclusions
drawn from the study of thin films are applicable to devices
showing a higher visual complexity, such as many metasurfa-
ces and photonic/plasmonic crystals. The combination of free
material choice at every layer, as well as fully continuous
thickness values within a wide range, results in a design-
to-response mapping that is highly sensitive to small changes.
Despite this, our nested transfer approach allows us to achieve
accurate retrieval without a significant increase in data require-
ments. We evaluate the forward and inverse models on arbi-
trary random spectra and can recreate closely matching
designs. For the inverse model, we implement a postprocessing
optimization method using the architecture to further improve
results. Finally, as a proof-of-concept demonstration of the
model’s ability to address realistic problems, we present a de-
sign of selective thermal emitter conceptually similar to multi-
layer metamaterials for thermophotovoltaics.47

2 Materials and Methods
For the forward model, we use a bidirectional RNN [Fig. 2(a)].
For an RNN, rather than information flowing strictly to the next
network layer as in a feedforward network, information can also
flow from one layer back to itself.48 A standard fully connected
network does not assume that relations between any given
features are more important than any others from initialization,
and input variables can be arranged in any order provided they
are consistent throughout the data set. In RNNs, neurons store
an internal state or memory that affects how they process sub-
sequent inputs. This allows them to handle inputs of arbitrary
length, processing them differently based on recent inputs
and learning context. Therefore, RNNs excel in handling se-
quential data such as time series forecasting and natural
language processing,49–51 where the order of inputs contains
critical information for making predictions. The reason for using
an RNN for the forward modeling here is that the input data
have features in common with the sequential data typically used
for RNNs. For thin-film stacks, light passes through the layers in
order, and therefore the final optical spectrum is heavily affected
by the interactions at the interface between neighboring layers,
based on the material properties and thickness of each. The data
for structure layers close to each other are more important than
layers further away in the structure. As such, the design varia-
bles are essentially a “sentence,” with the words made up of
material and thickness data instead of letters. One type of
RNN is a long-short term memory (LSTM) network. It uses
a series of gates that can differentially process inputs to decide
to what degree the new input should influence both the hidden
state and output. This enables better capturing of information
over longer sequence lengths and helps reduce the “vanishing
gradient” problem that can plague traditional RNNs.52,53 A bidi-
rectional LSTM extends the architecture to learn relations going
in both directions. This can yield better performance for data
where the inputs before and after both have high predictive
power, such as in natural language.54 Because light can be re-
flected into previous layers as it goes through the stack, infor-
mation about layers before and after a given layer is needed, and
thus a bidirectional approach is used. Though the connection and
operation of LSTM layers are more complex than fully connected
layers, the process of weight transfer is essentially the same.

The final network architecture for forward modeling uses
a series of bidirectional LSTM layers to initially process the in-
put data before connecting to fully connected layers to get the
final output. The full architecture is shown in Sec. S1 in the
Supplementary Material. The transfer occurs from six structure
layers all the way up to 30 structure layers, yielding accurate
predictions for a higher level of complexity than that previously
reported. For the loss function, we use the root mean squared
error (RMSE). A different data set is generated for each struc-
ture with a different number of layers. Large-sized data sets
are generated by calculating transmission and reflection using
Fresnel equations.55,56 Most previous demonstrations of ML
on thin-film optics have had fixed choices of materials at each
layer based on prior physics-based intuitions guided by the
researchers. This makes the modeling task much simpler, as
material choice interacts with other design variables at a very
fundamental level. Here, we also allow for free material choice
at all structure layers to demonstrate the ability to learn a more
complex mapping while using fewer overall data. Materials are
chosen randomly from one of four oxides: SiO2, TiO2, Al2O3,
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and Ta2O5. For all models demonstrated here, four possible ma-
terials are chosen during data generation, with the constraint
that no two neighboring structural layers are the same material.
For a 10-layer structure, this represents 4 × 39, or over 75,000
possible combinations for material choice alone. The structure is
placed on a semi-infinite glass substrate and surrounded by
air cladding. We calculate the reflectance spectrum between
400 and 2500 nm, with the wavelength range discretized into
300 points.

The inverse model, unlike the forward network, needs to pre-
dict both categorical variables, the material choice at each layer,
as well as continuous variables, the layer thicknesses. This com-
plicates the modeling significantly, and to deal with this, the
model branches into multiple outputs. The initial layers are three
pairs of convolutional and max pooling layers that first aim to
learn key spectral features such as the location and shape of
peaks. This is followed by a series of fully connected layers
to learn the relation and importance between these spectral fea-
tures. All the initial layers use the ReLU activation function. The
network then branches into nþ 1 sets of outputs for a structure
with n layers [Fig. 1(c)]. There are four output neurons for each
of the first n sets, representing the relative likelihood of each of
the four possible material choices for each structure layer. The
last set of the output, connected to an MDN layer, comprises a
series of neurons encoding parameters for several probability

distributions over the possible range of thicknesses. Each mix-
ture is parametrized by a mean μ and a variance σ, as well as a
mixing weight π. For the inverse modeling here, 32 mixtures
were used. The MDN is chosen for the layer thicknesses rather
than a typical fully connected layer for the final output due to its
demonstrated ability to converge accurately when processing
multimodal data.57 The final outputs model two types of data,
the categorical material choices and the continuous layer thick-
nesses, and so two different loss functions are used. The outputs
representing the material choices use categorical cross-entropy
as the loss function, as well as a SoftMax activation function so
that the four outputs sum to one. The values then can be inter-
preted as an estimated probability for each of the four choices.
The MDN output representing the continuous layer thicknesses
uses the negative log likelihood as its loss function, which mea-
sures how well the actual probability distribution of the data
matches the expected one produced by the model. No activation
function is used for the final MDN layer.

3 Results
For the forward model, transfer was tested at different condi-
tions to compare which gave the best results at 30 structure
layers. The data for two comparative studies are presented in
Sec. S2 in the Supplementary Material. It is concluded that

Fig. 2 (a) Diagram of a bidirectional RNN used for the forward model. (b) Training curves for
nested transfer forward prediction for thin-film structures of increasing complexity (see legends),
up to 30 layers. (c) Comparison of requested ground-truth spectrum (blue) and the spectrum pre-
dicted by the forward model (orange) for a randomly chosen case in the test data set.
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the step size of four and transferring all but the final network
layer of weights yielded the best results when the 30-structure
layer model converged, resulting in a final nested transfer pro-
tocol. For this, 26,000 samples are first generated for a six-layer
structure, of which 70% are used for training, and a model is
trained from scratch for 500 epochs. After training, a new
equal-sized data set is generated for a 10-layer structure and
is initialized with weights from the pretrained six-layer structure
model following the protocol, and this model is trained for the
same number of epochs, behaving similarly in reaching conver-
gence [Fig. 2(b)]. The transfer process is repeated, increasing
the size of the thin-film structure by four layers at a time, with
information accumulating with all the successive transfers.
Finally, a model for 30-layer structures is trained, which can
reach an RMSE on test data of 0.05, accurately reproducing ar-
bitrary spectra [Fig. 2(c)]. Across all models used in the final
nested transfer procedure, a total of 127,400 (i.e., 26,000 × 7×
70%) samples are used for training. Previous works have re-
ported on transfer learning for inverse design for thin-film op-
tics; however, their use of transfer was to better learn the simpler
forward model and used that forward model in conjunction with
other optimization techniques.43,44 Alternately, the transfer has
been used to more efficiently learn internal variables like mix-
ture density parameters for a single model.40 The results show-
cased here fully model both the forward and inverse directions,
and on top of that, deal with a larger number of structure layers,
more options of materials, and a broader band of wavelengths
while achieving comparable prediction accuracy. For other types
of optical structures, such as metasurfaces, transfer learning has
been used with full inverse design models, albeit with simple
constraints on the possible designs.39 We show that the nested
transfer method can model a significantly higher degree of com-
plexity than existing benchmarks while keeping data require-
ments modest. To demonstrate how much the addition of the
transfer protocol improves the training, we compare two mod-
els, with and without transfer, using different regression metrics.
The results are shown in Sec. S2 in the Supplementary Material.
These improvements afforded by nested transfer enable the po-
tential advantage of using the bidirectional RNN architecture for
the accurate retrieval of optical spectra with high complexity.

As the inverse modeling is considerably more complex than
the forward modeling, more data are needed. The increase in
optical complexity rises exponentially with the number of pos-
sible layers. We account for this, while still using fewer data, by
scaling the size of the data sets linearly with the number of
layers. We also start at a lower initial layer number to allow
for more consecutive transfer and learning of simple tasks.
Here, an initial two-layer data set and model are generated
and trained, respectively, before then transferring weights to
a three-layer case. The two-layer case trains with 20,000 sam-
ples in the data set, with 70% of the data used directly for
training and the remaining 30% used for validation. For the
three-layer case, the weights from the initial convolutional
and pooling layers are transferred, and a new data set is gener-
ated with 30,000 total samples. This process is then repeated for
each layer transfer up to 10 layers, which uses 70,000 samples
for training and 30,000 for validation, for a total data set size
of 100,000 samples. We find that, unlike in the simpler case
of forward transfer, increasing the structure layer number more
than one at a time can cause overfitting of the test data. This may
be due to the significantly higher complexity in the inverse mod-
eling typically requiring larger data sets to train from scratch.

The final configuration reached is transferring from two-
layers to three-layers, three-layers to four-layers, and so on, with
eight weight layers in the network transferred at each step.
Across all models, a total of 378,000 training samples are used.
The models are trained for 300 epochs, each using an Adam
optimizer with a learning rate of 0.01 and a scheduler reducing
the learning rate by 70% when the average loss across all out-
puts does not decrease for 10 consecutive epochs [Fig. 3(a)].
The loss functions are not easily interpretable, but we can es-
timate the accuracy of proposed designs by simulating them
and calculating the RMSE of the produced spectra compared
to the original ground truths. For the MDN’s output, we take
the mean of each of the distributions that gives the highest like-
lihood value for each parameter, as all distributions calculated
by the MDN for this data set tend to be unimodal or quasi-un-
imodal. For a 10-layer case, simply taking a single mean output
from the probability distributions for the layer thicknesses and
the highest probability values for the material choices of each
layer, we get a response RMSE of 0.15. A selected case from the
test data set is shown in Fig. 3(b), showing a decent agreement
on most features. The remaining discrepancy, most likely caused
by the naive sampling strategy, can be drastically reduced by
implementing a postprocessing procedure. For this, a forward
model needs to be trained to act as an estimator of the proposed
candidate designs’ viability. Using the same type of network
used in the forward nested transfer protocol, we train a model
for 10-layer forward prediction on the same data set for inverse
modeling. This model is trained for 500 epochs without any
prior transfer and can reach a test set RMSE below 0.01, yield-
ing accurate estimation of the optical responses of arbitrary can-
didate designs.

The postprocessing procedure involves sampling the MDN
output distributions for the design variables one at a time and
fixing the best estimated value before moving on to the next
variable. The full details for the procedure are given in
Sec. S3 in the Supplementary Material. A comparison of a ran-
dom requested spectrum, initial model suggestion design, and
the design after postprocessing is shown in Fig. 3(c), where even
though the initial design deviates wildly from the ground truth in
a relatively rare case, it is recovered through postprocessing. An
unexpected phenomenon observed for this data set is that the
retrieved designs do not necessarily stick to the 10-layer struc-
ture. It is not rare, as shown in Fig. 3(c), that two adjacent layers
take the same material, resulting in essentially a reduced layer
number. Other than the obvious cause that the distinctness con-
straint was only applied to data generation but not inverse de-
sign, another possible reason is the close refractive index values
of the chosen oxides. Although both issues can be avoided in the
implementation, the current model offers the flexibility in find-
ing equivalent designs with fewer physical layers, partially a
consequence of the weights transferred from the nine- and
eight-layer models. For the task under study, the large thickness
ranges and free material choice at each layer represent a signifi-
cant challenge for modeling, and the complete network can still
retrieve accurate solutions. In the selected case in Fig. 3(c), the
postprocessing gives a 77% reduction in the RMSE between the
requested and model-suggested spectra. We stress again that
previous works using transfer learning on thin-film structures
have primarily studied transfer between forward models and
at significantly lower layer numbers and modeling complexity
than we report here (see a comparison in Table S2 in the
Supplementary Material). We compare these models based on
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the maximum number of layers, number of material choices, and
length of the design vector to demonstrate the increased diffi-
culty of the modeling task. The modeling of both forward
and inverse directions with free material choice at each layer
gives our method more flexibility to tackle design requests
for complex real-world applications.

We demonstrate this flexibility of our nested transfer pro-
cedure on specific applications. We focus on the use of thin-film
structures for selective thermal emissions. Thin-film stacks can
be used as optical filters to enhance the transmission, reflection,
or absorption over large bandwidths and with a high contrast.36,56

At infrared wavelengths, these properties have well-established
connections to the thermal emissivity of materials.58–60 In prac-
tice, materials giving spectrally selective thermal emissions are
of great interest in enhancing the efficiency of photovoltaic (PV)
cells.47,61,62 Thin-film thermal emitters are typically placed on a
tungsten (W) substrate and use Was one of the materials as well.
We consider a 10-layer stack and a material library of W, SiO2,
TiO2, and Al2O3, placed on a semi-infinite W substrate and

illuminated at normal incidence [Fig. 4(a)]. The oxide layers
have a much wider possible thickness range, from 30 to 300 nm,
with the W layers range from 10 to 70 nm. Reflectance spectra
from 300 to 3000 nm are generated for the samples. The same
nested transfer process derived from previous testing is used,
with 20,000 samples initially on a two-layer data set and model.
This is successively transferred in single layer increments,
with the number of training samples scaling linearly with the
layer numbers until they reach 10 layers, which uses a total
of 100,000 samples, with each data set split into 70% training
and 30% validation. We test out the final model both in terms of
reproducing arbitrary spectra from the test data set [Fig. 4(b)],
as well as an unrealistic idealized spectral input for optimized
performance of thermophotovoltaics [Fig. 4(c)]. The input is
a steep sigmoid curve with its inflection point at the band
edge of a PV cell with 0.55 eV.62–64 Below this threshold wave-
length λPV, the thermal emitter targets near-unity emissivity to
approximate the blackbody radiation, whereas above λPV, the
emissivity needs to decline abruptly for better efficiency and

Fig. 3 (a) Training curves for nested transfer inverse design up to 10 layers. The categorical loss
(left panel) refers to the outputs representing the material choices at each layer, while the con-
tinuous loss (right panel) refers to the negative log likelihood for the MDN predicting the
thickness of each layer. (b) Comparison of requested ground-truth spectrum (blue) and the
design suggested by the model for a randomly chosen case in the test data set without postpro-
cessing. The model-suggested design is [Al2O3-84 nm, SiO2-85 nm, Al2O3-91 nm, SiO2-90 nm,
Al2O3-88 nm, SiO2-90 nm, Al2O3-90 nm, SiO2-88 nm, TiO2-77 nm, SiO2-92 nm]. (c) Comparison
between requested ground-truth spectrum (blue) and the spectra of the original design proposed
by the inverse model (orange) and of the design after postprocessing (green). The model design
after postprocessing is [SiO2-95 nm, Ta2O5-78 nm, SiO2-122 nm, SiO2-50 nm, Al2O3-50 nm,
Ta2O5-98 nm, Ta2O5-54 nm, Al2O3-119 nm, TiO2-90 nm, SiO2-94 nm].
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thermal stability. The reflectance spectra are converted to ab-
sorptivity, which is simply the inverse of the reflectance, since
there is no transmission through the structure, and the absorp-
tivity and thermal emissivity are identical due to Kirchhoff’s law
of thermal radiation. The same postprocessing procedure is used
here and greatly enhances the results. The extended wavelength
and thickness range represent a further increase in complexity
for the inverse modeling, and despite this, the nested transfer
procedure and postprocessing give accurate retrieval of arbitrary
spectra. Previous realizations of metamaterials for selective ther-
mal emission have employed periodic structures of alternating
W and HfO2 to produce desired spectra.47 Our model-suggested
spectrum is better able to maximize absorptivity below the
bandgap wavelength λPV, leading to an improved ultimate effi-
ciency exceeding 40% at 1000°C (1273 K), in comparison to
19% for a blackbody emitter.47,65 Previously, we have demon-
strated the ability to independently retrieve periodic solutions

using an MDN-based inverse design architecture with fixed
materials.36 When more material options are added to the library,
the design suggested by the model here is aperiodic, retaining
the alternating appearance of metal and dielectric layers but
allowing diverse arrangements of the oxides. It is also feasible
to request new designs if a different trade-off is made between
the absorptions above and below the PV’s band edge. By ex-
panding the choice of materials at each position, we find alter-
native solutions surpassing the existing designs in fulfilling the
application-specific spectral requirements, and the use of nested
transfer can make these more complex design spaces more fea-
sible to model with reasonable data set sizes.

4 Discussion
We propose a method of iterative nested transfer learning to
gradually build forward prediction and inverse design models

Fig. 4 (a) Diagram of thin-film structure used for selective thermal emission. (b) Comparison
between requested ground-truth spectrum and spectrum produced by model suggested design
for an arbitrary test data set sample. The model-suggested design is [HfO2-124 nm, SiO2-130 nm,
W-10 nm, HfO2-195 nm, SiO2-119 nm, HfO2-93 nm, W-10 nm, SiO2-196 nm, W-20 nm,
HfO2-280 nm]. (c) Comparison of idealized absorptivity spectrum (blue) and spectrum produced
by the inverse design model (orange). The red dotted line denotes the transition wavelength λPV
for a PV cell with a bandgap of 0.55 eV. The inset figure shows the blackbody radiation curve at
1000°C (1273 K), with the same λPV highlighted. The model suggested design is [SiO2-90 nm,
HfO2-54 nm, W-10 nm, SiO2-251 nm, W-10 nm, SiO2-97 nm, Al2O3-74 nm, HfO2-105 nm,
W-13 nm, SiO2-163 nm].
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of increasing complexity while using small data sets at each
step. The forward model can accurately reproduce arbitrary
spectra for 30-layer thin-film stacks. This approach is extended
to inverse design models which are built up from 2 to 10 layers
of thin-film stacks allowing a free material choice at each layer.
A postprocessing method using a pretrained forward network is
used to further reinforce the design accuracy. The forward
model uses a bidirectional RNN-based architecture, and the
inverse model uses a convolutional MDN architecture. The
complexity arising from the broad wavelength range and free
material choice represents some of the most challenging tasks
to model that have been demonstrated in DL-based inverse de-
sign. The accuracy of the forward model dealing with up to 30
structure layers with the same material choice is also among the
most complex modeling tasks previously shown. Despite the
high degree of complexity, the nested transfer method combined
with postprocessing allows for accurate recreations of arbitrary
spectra while keeping data requirements modest. Finally, the
same architecture and training approach are applied to a modi-
fied data set for predicting designs for selective thermal emitters,
generating close approximations of unrealistic idealized spectra
for thermophotovoltaic applications. While the results here are
restricted to thin-film stacks, this same approach of gradually
building complexity with transfer learning can be extended to
a wider variety of structures, where the computational require-
ments for generating a suitably large data set for the desired
degree of complexity may not be feasible. Even structures that
require full-wave simulations can quickly generate larger data
sets for simplified versions with reduced degrees of freedom
and continually use small data sets as the complexity and num-
ber of design variables increase. In another vein, other than
transferring information to cope with increasing layer numbers,
generalization of geometry to, e.g., multilayer core shells, has
proved viable.41 If the problem is formulated properly, it might
be possible as well to ease the augmentation of materials, ben-
efiting the search of all dimensions of the design space. The use
of RNNs in optical modeling, especially for structures and proc-
esses that can be described by sequential inputs/outputs, is also
worth further exploring. We foresee that this will enable high-
performance inverse design models to be built that previously
would have been computationally unfeasible, allowing for
new application-specific designs to be searched for.
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