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Abstract. Two mainstream approaches for solving inverse sample reconstruction problems in programmable
illumination computational microscopy rely on either deep models or physical models. Solutions based on
physical models possess strong generalization capabilities while struggling with global optimization of
inverse problems due to a lack of sufficient physical constraints. In contrast, deep-learning methods have
strong problem-solving abilities, but their generalization ability is often questioned because of the unclear
physical principles. In addition, conventional deep models are difficult to apply to some specific scenes
because of the difficulty in acquiring high-quality training data and their limited capacity to generalize
across different scenarios. To combine the advantages of deep models and physical models together, we
propose a hybrid framework consisting of three subneural networks (two deep-learning networks and one
physics-based network). We first obtain a result with rich semantic information through a light deep-
learning neural network and then use it as the initial value of the physical network to make its output
comply with physical process constraints. These two results are then used as the input of a fusion deep-
learning neural work that utilizes the paired features between the reconstruction results of two different
models to further enhance imaging quality. The proposed hybrid framework integrates the advantages of
both deep models and physical models and can quickly solve the computational reconstruction inverse
problem in programmable illumination computational microscopy and achieve better results. We verified
the feasibility and effectiveness of the proposed hybrid framework with theoretical analysis and actual
experiments on resolution targets and biological samples.

Keywords: deep learning; physics-based neural network; computational imaging; Fourier ptychographic microscopy.

Received Jan. 22, 2024; revised manuscript received May 26, 2024; accepted for publication Jun. 20, 2024; published online
Aug. 16, 2024.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.APN.3.5.056003]

1 Introduction
Fourier ptychographic microscopy (FPM) is a typical kind of
computational microscopy because of its characteristics of op-
timizing the hardware and algorithms simultaneously for better
advanced imaging results.1 It breaks through the limits of tradi-
tional optical systems, offering high-resolution imaging over a
wide field of view even with low numerical aperture (NA)

lenses.2,3 The affordability of FPM, combined with its elimina-
tion of phase measurement needs, has made it particularly at-
tractive in fields, such as digital pathology, surface analysis,
and stem cell research.4–7 Conventional high synthetic band-
width-product (SBP) imaging typically depends on lenses
with high NAs, necessitating detailed spatial scanning.7,8 This
approach is less suitable for in vivo imaging and often faces
challenges in maintaining focus during the mechanical scanning
process due to the lens’s limited depth of field.7,9 In stark con-
trast, FPM systems eschew complex mechanical structures in
favor of a more streamlined approach. It transforms a standard
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microscope by adding a programmable LED array, enabling the
capture of low-resolution images from various illumination
angles. The imaging process of FPM involves scanning the
specimen in the frequency domain and iteratively refining the
estimation of the sample’s complex amplitude based on the cap-
tured intensities. Ultimately, it achieves high SBP imaging with
an expanded depth of field.1

However, the original FPM method still has some shortcom-
ings. It entails sequentially taking low-resolution images from
various illumination angles, with a requirement to maintain at least
a 60% overlap in the Fourier space of the sample.8,10 This
significantly slows down the imaging speed. Fortunately, research-
ers have found ways to overcome these problems by accurately
modeling the physical processes of programmable illumination.
Tian et al. first introduced a random multiplexing method to speed
up the capture process.11 They later extended their method by
separating bright and dark fields,12 which further improved the im-
age quality. However, their approach did not fully consider how
varying characteristics of specimens might impact the illumination
model, leading to performance limitations. In addition, these
methods rely on finding analytical differentiation of imaging
parameters, a process that is particularly complex for factors such
as the sample’s defocus distance and variations in LED illumina-
tion intensity. Simultaneously optimizing multiple parameters also
adds to the complexity and challenges of their methods. Kellman
et al.13 developed an approach by creating a neural network that
aligns with physical properties, tailoring the illumination model to
samples with specific traits. This data-driven method allows for
the automatic calculation of numerical differentiation and lever-
ages training tools for optimal multiparameter solutions, akin to
training a neural network. However, it encounters obstacles in
areas where establishing a gold standard is challenging, such
as in diagnosing rare diseases. In addition, its adaptability to differ-
ent sample types is not always certain, potentially limiting its
wider application. Sun et al. suggested a physics-based method
to create adaptive illumination models for each sample without
needing extra data.9 While this method works well with 20 illu-
mination patterns, its effectiveness might diminish when attempt-
ing to reduce the number of illumination patterns to as few as 10.
The complexity of simultaneously using many LEDs poses a
challenge for data analysis, making it difficult to obtain good
results with existing optimization algorithms.

Contrasting with conventional methods that depend on de-
tailed physics models, deep learning (DL) leverages data to learn
and address inverse problems.14,15 This approach has notably
impacted fields such as natural language processing and com-
puter vision.16–18 In addition, its capability in tackling complex
imaging challenges is gaining recognition, as indicated by recent
research.14,19–23 In computational microscopy, there are two pri-
mary DL approaches for solving inverse problems: (1) end-to-
end solutions and (2) solutions based on deep image prior
(DIP).24 In the end-to-end approach, a neural network is trained
to transform input images into the desired output for a specific
microscopy reconstruction problem. Therefore, the closer the
training set’s distribution is to the experimentally collected
data, the better the network performs in imaging. For instance,
Nguyen et al.25 trained their network using single-frame data from
ongoing observations. This approach reduces the acquisition time
of low-resolution images and speeds up sample reconstruction
by decreasing the overlap rate requirements in Fourier space.
Cheng et al.26 took a slightly different approach, where the
sample fits a particular distribution. They achieved a high

space-bandwidth-time product in FPM with only a single acquis-
ition. However, these methods encounter challenges with rare
samples that lack enough data for effective network training.
Furthermore, if the actual sample being observed significantly
deviates from the training data, this can lead to inaccurate imag-
ing results. In contrast, DIP solutions integrate physical-model
and deep-model assumptions to guide the update of network
weights in a single imaging process without requiring additional
data. For instance, Situ et al.14 created PhysenNet, a network tail-
ored for single-beam phase imaging, utilizing the DIP method.
Coincidentally, Zhang et al.27 designed a network capable of re-
constructing images from data characterized by a low rate of over-
lapping apertures in FPM. Their approach operates independently
of external data, but it hinges on an accurate physical model and
requires dynamic adjustments to network parameters for each im-
age acquisition. These necessary adjustments can be both time-
consuming and demanding in terms of resources.

In multiplexed FPM, it is difficult to get good results using
only physical models, data-driven methods, or DIP methods, es-
pecially for schemes with a higher degree of programmable mul-
tiplexing illumination. However, our research achieved improved
results by combining the advantages of both physical and DL
models within a hybrid framework, as shown in Fig. 1. In general,
DL models are particularly adept at capturing the broader mean-
ing or semantic information in images, but they may not always
excel in detailing finer aspects. Therefore, we use a data-driven
deep convolution model to initially determine the complex am-
plitude of the sample. This information then assists the physics
model in reconstructing, thereby enriching the process with added
context and deeper semantic insights. The DL models and phys-
ics-based models in our framework analyze data differently, with
one focusing on the spatial domain and the other focusing on the
frequency domain, each with its strengths. We utilize another
deep model to leverage these differences, extracting and using
paired features from both models. This approach effectively re-
duces noise from the physics model output, significantly enhanc-
ing the overall quality of the final output. Our method effectively
merges the problem-solving capabilities of deep models with the
generalizing strengths of physical models. It also eases the chal-
lenge for neural networks to generalize finer details, particularly
in scenarios with limited sample data. Previous data-driven meth-
ods often struggle with imaging certain classes of samples, such
as the resolution target, where obtaining true values is challeng-
ing in actual experiments. In contrast, our proposed framework
can directly image resolution plates under real experimental con-
ditions, despite incorporating data-driven components. This dem-
onstrates the potential applicability of our framework in fields
where obtaining true sample values is difficult, such as digital
pathology, biology, and materials chemistry.

This paper is organized as follows. Section 2.1 expounds
upon the underlying principles of the multiplexed FPM, which
is programmable illumination. The details of our framework are
discussed in Sec. 2.2, while Sec. 2.3 presents the principle of the
data augmentation we conduct for rare samples. In Sec. 3, ex-
periments are conducted to validate the capability of our frame-
work to image with high reconstruction quality. Conclusions are
subsequently synthesized in Sec. 4.

2 Method
In FPM, the reconstruction with a limited number of low-
resolution (LR) images is a complex and challenging nonlinear
optimization task. For these kind of problems, data-driven
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methods tend to produce overly smooth results that lack detail
due to their generalization limits, despite containing significant
semantic information. Meanwhile, physics models often risk
getting stuck at local optima during the reconstruction phase,
leading to unsatisfactory results. This issue becomes more pro-
nounced when the number of LR images available is limited. To
address this, our framework integrates two DL modules and a
physics model module, encompassing a three-step process: end-
to-end image reconstruction, reconstruction using the physics
model, and enhancing image quality by leveraging paired fea-
tures from both methodologies. We first reconstruct the high-
resolution (HR) image by using an end-to-end neural network.
Then, the outcome is used to initialize the physics model’s
Fourier object layer, effectively infusing more semantic context
into the model. Nevertheless, despite the introduction of additional
information to enhance the physics model’s imaging quality, the
results still contain some periodic noise. To combat this issue, we
have integrated another DL module into our framework. This
module is tasked with harnessing and leveraging the paired fea-
tures to refine the final image quality further. For instance, as
shown in Fig. 2(b), periodic noises such as ringing and stripe
noises that lack clear semantic information can be easily identified
by comparing the outputs of the first step and the physics module.
Our framework is designed with the flexibility to swap out the
main components of both the DL modules and the physics-based
module with alternative structures or models if needed.

2.1 End-to-End Image Reconstruction Model

We opted for a U-Net network with an attention mechanism28 as
the core of our DL modules. Created for cell-related semantic
segmentation tasks,29 U-Net is known for its excellent perfor-
mance and straightforward design characteristics. This has
earned it widespread use in the biomedical realm,30 allowing
it to address complex optical challenges15,27 effectively. Unlike
most tasks related to natural or biomedical images, the FPM

reconstruction task usually requires multiple images as input.
As a result, we designed an extra head module to process these
images. We merge the collected LR images along their channel
dimension and resize them using a 1 × 1 convolution layer with
a pixel shuffle layer to prepare them for processing in the first
step, as shown in Fig. 2(a).

It is well known that the quality of the training data set
determines the performance of the neural network. However,
when it comes to rare samples, collecting enough high-quality
data is a significant challenge. For example, the resolution target
is a typical representative of rare samples. The most informative
part of it is limited and comprises just a small fraction of the
entire sample. This often results in networks overlooking these
crucial areas during training. Therefore, it is particularly impor-
tant to collect large amounts of data for training. However, cap-
turing data by taking multiple imaging processes of the same
resolution target is labor-intensive and consumes substantial re-
sources. In contrast, producing vast quantities of high-quality
data through simulations that accurately model the imaging pro-
cess proves to be a far superior approach. Nevertheless, blindly
augmenting data without considering sample characteristics
may not aid in training and could even be detrimental. It could
also reduce the model’s interpretability. To address this, we
adopted a data augmentation method that considers sample
characteristics. We start by separating the samples into the back-
ground and region of interest (ROI), as shown in Figs. 3(a1),
3(a2), and 3(a3). Then, we mix these ROI parts back into the
background in various rotated and flipped ways and at different
spots. The corresponding LR images are obtained by perform-
ing a forward propagation process of the physics model. We
categorize the samples based on how many detailed parts they
have, labeling them as either simple or complex, as shown in
Figs. 3(b) and 3(c). Under the training process, our model learns
to rebuild images from simple data sets first and then gets better
at picking up details with more complex ones. Notably, with the
framework we proposed, even if the neural network is only

Fig. 1 The imaging system we used and how our framework works. (a) The system we used in
experiments to verify the effectiveness of our framework. (b) The overview of the framework we
proposed, where PL refers to the physical layer in the physical model. (c) Reconstruction results of
10 LR target images captured using a 0.13NA objective.
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Fig. 2 The details of our framework. We describe the first step of the framework in (a), the second
step in (c), and the last step in (d). We show the noise introduced by the physical model (PM) and
an example output of the DL model in (b).
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trained on simulation data, it can still accurately reconstruct HR
images from actual, real-life experiments.

2.2 Physics Model

In the framework of FPM, the sample under observation is as-
sumed to be a two-dimensional flat thin layer. Its optical proper-
ties can be expressed by the complex transmission function
oðrÞ ¼ exp½iφðrÞ − μðrÞ�, where φðrÞ represents the phase
modulation distribution, and μðrÞ indicates the absorption dis-
tribution. For a typical FPM light source, usually a programable
LED array, illumination from each LED unit located at coordi-
nates (x; y) is treated as a spatially coherent local plane wave.
The outgoing wave passing through the sample can be described
as uðrÞ ¼ oðrÞ expðikm · rÞ. In this equation, km ¼ ðsin θxm∕
λ; sin θym∕λÞ indicates the frequency shift relative to the
sample’s spectrum center, where “ λ” denotes the wavelength,
and (θxm, θym) denotes the angle of incident wave illumination,
respectively. Compared with the conventional FPM framework,
in which one LED is lit up once, LED illumination multiplexing
is proved to be an efficient way to increase the imaging speed of
programmable illumination computational microscopy.9,12,13

When multiple LEDs at different positions are lit up simultane-
ously, the corresponding single-shot low-resolution image
captured by the camera can be described as the sum of the inten-
sities of illumination from each individual LED, as demon-
strated in Eq. (1). In this equation, “I” stands for the total
intensity, oðk − kmiÞ is used to describe the spectrum shift with
different illumination angles, PðkÞ represents the pupil function,
F represents the two-dimensional Fourier transformation, and
“n” signifies the number of LEDs illuminated simultaneously.
Obviously, Eq. (1) is a simplification, and we followed previous
work without considering many other influencing factors.11,13

For example, the residual interference between the LEDs is
not discussed. However, this level of simplification is sufficient
for our framework. We adopt the neural network model

introduced by Yang et al.15 to model the image process and re-
construct the HR image, as illustrated in Fig. 2(c),

Imultiple ¼
Xn

i¼1

½Fðoðk − kmiÞPðkÞÞ�2: (1)

Since the reconstruction process of FPM involves a nonlinear
phase-retrieval algorithm, it is impractical to explicitly obtain
the optimal multiplexed illumination model in each observation.
Therefore, in our previous work, we designed an unsupervised
adaptive illumination model generation method to get an
optimal illumination multiplexing strategy to some extent.9

Using LR images taken when the central light is on as a prior,
we generated an illumination model for multiplexed FPM.
This model was then applied to all the image acquisition parts
in our work. As shown in Fig. 4, the illumination model contains
a total of 10 illumination patterns, which is much less than
the sequential illumination model in a conventional FPM
framework.

2.3 DL Fusion Model

In the last step, we concatenate the outputs from both the DL
and physics models as input for the fusion model. We also in-
cluded a residual connection that merges the output from the
physics model with the fusion model’s results before final out-
put to boost the framework’s ability to generalize, as shown in
Fig. 2(d). In the training phase of the DL model and the iteration
of the physics model, mean absolute error is employed as the
loss function for both, as specified in Eq. (2). However, although
their optimization goals are the same, they often produce differ-
ent results, as shown in Fig. 2(b). The reason for these varied
outcomes lies in the fundamental structural variances between
the neural network and the physics model, which lead them
on distinct trajectories during the optimization process. Here,

Fig. 3 The overview of our proposed data augmentation methods. (a1) The ground truth of the
resolution target. (a2) The background we extract. (a3) The ROI of the resolution target. (b) An
example of simple samples. (c) An example of complex samples.
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we can describe the collection process of the LR image as
LR ¼ fpðHRÞ, and the reconstruction processes of the DL
model and the physics model as Eqs. (3) and (4), where fpðLRÞ
represents the forward propagation process of FPM, LR stands
for the collected low-resolution image, and HR represents the
true complex amplitude of the sample,

L1ðx; yÞ ¼
Xn

i¼1

1

n
jxi − yij; (2)

SRdl ¼ fðLRÞ ¼ f½fpðHRÞ�; (3)

SRpm ¼ gðLRÞ ¼ g½fpðHRÞ�: (4)

Equations (3) and (4) demonstrate how each reconstruction
method transforms the original complex amplitude of the sam-
ple into two distinct feature spaces, thereby generating two dif-
ferent modalities. Therefore, any specific area of the sample
can be described by the vector ðSRdl; SRpmÞ, which represents
the paired features contained in the two modalities (dl, deep-
learning; pm, physical model). It is important to note that
extracting information from paired features presents a challenge
when working with single-modality data.31

3 Experiments
This section focuses on the experimental setup and the results
our framework has delivered. We conducted the training and
inference of the network on an RTX3090 with a memory size
of 24 G. The superiority of our framework was qualitatively
and quantitatively analyzed on the USAF chart and biological
samples.

3.1 Experiments on USAF Chart

Following the method proposed in Sec. 2.3, we first created a
complex data set and a simple data set for the training of the
first DL module. Each data set contains 768 paired data, divided
into training, validation, and test sets in a 4:1:1 ratio. Each image
pair included an HR image (1024 × 1024) and 10 corresponding

LR images (512 × 512). Due to memory constraints and the
inherent workings of convolutional neural networks, we capped
the network’s output at a 256 × 256 size. Therefore, the obtained
data were evenly divided into 16 equally sized small blocks, re-
sulting in two data sets, each containing 768 × 16 groups of data.
We first trained a randomly initialized network for 200 epochs on
the simple data set and then continued training for 200 epochs on
the complex data set. At this point, we obtained the end-to-end
deep model for image reconstruction. Subsequently, we used the
model trained on the simple data set and the physics model to
reconstruct the simple training data set, thereby obtaining the
data set for training the fusion model. We avoided using the more
advanced model trained on the complex data set for this stage
because its high performance could make the fusion model
overly dependent on its results, which would impede the model’s
ability to learn and use paired features effectively.

To demonstrate that our proposed framework effectively
combines the powerful modeling capabilities of DL models with
the strong generalization ability of physical models, we used
models trained on simulated data for actual experimental data
reconstruction. Specifically, we kept the experimental parame-
ters consistent with the simulation process, placed the USAF
chart 97 mm from the LED array, and used 470 nm wavelength
light with a 20 nm bandwidth for illumination. We observed
with a lens with a 4× magnification and NA of 0.1NA and re-
corded LR images with a camera that boasts a dynamic range of
71.89 dB and a pixel size of 2.4 μm. As shown in Figs. 5(b) and
5(c), the data augmentation method we used prompted the
network to pay more attention to the ROI, achieving better
reconstruction performance. Figures 5(d) and 5(f) illustrate that
with the DL model added semantic insights, the physics model
achieved superior recovery results. In contrast with previous
work of multiplexed FPM, our framework achieved high-quality
Fourier ptychographic microscopy imaging with only 10 col-
lected LR images, as shown in Fig. 5(g). In addition, our method
offers better imaging quality for detailed features such as digits
8, 9, and 6, which are challenging for deep learning methods to
generalize, as shown in Figs. 5(i) and 5(j).

3.2 Experiments on Biological Samples

We conducted tests with biological samples to showcase the real-
world applicability and impressive generalization capabilities of

Fig. 4 The illumination model we generated. The gray circles represent the corresponding sample
spectrum range when different LED lights are on.
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our framework. For illumination, we used light with a wave-
length of 470 nm and a bandwidth of 20 nm, and we captured
LR images using a camera with a 6.5 μm pixel size. Our training
data set for the reconstruction network included various plant
sections, such as lotus stem, bamboo stem, and mint stem, while
we used broad bean stem sections for the fusion network

training, and privet leaf sections to evaluate the framework’s
performance. It is worth mentioning that we used completely
different biological samples for training and testing, closely
approximating real-world application scenarios. The ground-
truth images for the training set were created by reconstructing
121 LR images taken under various illumination angles with a

(a)

(b) (c) (d)

(f) (g)(e)

(h)

(k)

(l)

(i)

(j)

(m)

Fig. 5 Experiments results on the USAF chart. (a) The captured image illuminated by the middle
LED. (b) The low-resolution area without reconstruction. (c) The reconstruction result of the DL
model trained on a simple data set. (d) The reconstruction result of the DL model trained on the
complex data set. (e) The reconstruction result of the physical model (PM) initialized by the image
middle LED illuminated. (f) The reconstruction result of the PM initialized by the output of the DL
model trained on the complex data set. (g) The final reconstruction result of our framework. (h) The
ground truth (GT) reconstructed from 121 LR images captured sequentially. (i)–(m) Detailed out-
puts from different methods.

Fig. 6 (a) The captured image illuminated by the middle LED. (b) The LR image without
reconstruction. (c) The reconstruction result of the first DL model. (d) The reconstruction result
of the physical model (PM). (e) The final reconstruction result of our framework.
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physics model. The results, as shown in Fig. 6, illustrate that
even with only 10 captured images, our framework could recon-
struct the privet leaf section with remarkable clarity, underlining
its robust generalization and imaging prowess.

3.3 Ablation Experiments

Next, we conducted comprehensive ablation experiments to
confirm the effectiveness of our fusion model in leveraging
paired features from two modalities and enhancing final image
quality. We experimented with the broad bean slice data men-
tioned in Sec. 3.2 by changing the input combination of the
fusion model during testing and dividing the whole image into
441 smaller segments, allocating them in a 7:3 ratio between
training and testing sets (we skipped creating a validation set
as it did not require extra adjustments of hyperparameters).
Furthermore, we excluded blank areas by sorting each cut image
based on its contrast level to avoid extra interference.

The input combinations for model testing were set as
(DL_output, DL_output), (PM_output, PM_output), and (DL_
output, PM_output), with the results detailed in Table 1.
When only the reconstruction results of the DL model were used
as input, the final output of the fusion module was nearly con-
sistent with the performance of the physics model. This occurs
because without extra information, the model finds it challenging
to accurately reconstruct the finer details, and as a result, it tends
to adhere closely to the physical model’s output. This adherence
is due to the residual connections, as explained in Sec. 2.2. When
only the reconstruction results of the physics model were used as
input, the results improved. This is because, while learning pair-
wise features, the single-modal features are also learned by the
network. The best results came when we combined inputs from
both the DL and physics models. This clearly showed that our
framework could identify and utilize the paired features from the
results of different methods, leading to a more precise result.

When using DL for recovering blank regions in samples, we
observed the appearance of concentric rectangular noise in the
recovered areas. This pattern of noise is distinctly different from
the global, uniform noise typically seen in results from the phys-
ics model, as shown in Fig. 7. The concentric rectangular noise is
due to the convolutional neural network’s dependency on its
depth to gradually expand the receptive field’s boundaries, lead-
ing to noise accumulation at these edges. In contrast, the physics
model operates in the frequency domain, providing a consistently
global field of view across the image. As a result, the depth model
and the physics model can be viewed as analyzing and interpret-
ing the acquired data from different perspectives. The distinct
noise patterns in the results from the two reconstruction methods
align with the theory we discussed in Sec. 2.2. This observation
from our experiments validates the presence of paired features,
offering practical evidence of their existence. Through leveraging
paired features, our proposed architecture effectively preserves
detailed information while filtering out the noise observed in
the results mentioned above as shown in Fig. 7(d).

4 Conclusion and Discussion
In FPM, physics models can yield high-quality reconstruction
results for illumination multiplexing workflows. However, light-
ing up multiple LEDs in different locations at once complicates
the reconstruction process for physics models. End-to-end DL
methods are now increasingly used to solve optical inverse
problems, especially those with limited captured LR images,
such as multiplexed FPM. Nevertheless, these methods often
face limitations in their ability to generalize, restricting their
applicability in practical scenarios. In this paper, we proposed

Table 1 Comparison of results from different methods in ablation
experiments.

Method

Evaluation Metric (amplitude)

SSIM↑ PSNR↑ NIQE↓ LPIPS↓

Reconstruction
with DL model

0.532 17.4 50.4 0.195

Reconstruction
with PM

0.594 22.8 62.2 0.129

Reconstruction with our
framework (DL, DL)

0.587 22.3 70.0 0.124

Reconstruction with our
framework (PM, PM)

0.728 26.2 49.9 0.108

Reconstruction with our
framework (DL, PM)

0.740 26.8 48.8 0.108

PM, physics model

DL, deep-learning

SSIM, Structural Similarity Index Measure

PSNR, Peak Signal-to-Noise Ratio

NIQE, Naturalness Image Quality Evaluator

LPIPS, Learned Perceptual Image Patch Similarity

Fig. 7 The comparison of the outputs between the DL and phys-
ics model (PM). (a) The LR image without reconstruction.
(b) Reconstruction results of sample blank areas using the phys-
ics model. (c) Reconstruction results of sample blank areas using
the data-driven DL model. (d) The final reconstruction result of
our framework.
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a hybridization framework that integrated the generalization
strengths of physics models with the rapid reconstruction and
complex information processing abilities of deep models.
It also effectively utilized the paired features from different
reconstruction methods to further enhance imaging quality.
Furthermore, with the data enhancement method proposed,
we qualitatively analyze the imaging capabilities of our frame-
work in experiments using resolution target samples, which is
difficult for previous data-driven work. Our framework is also
well suited for areas with limited samples, such as studying
novel transparent materials or diagnosing rare diseases. To
prove its wide applicability, we have successfully trained and
tested it with different plant samples, a process that aligns
closely with the real-world tasks of botanists. By analyzing
the noise characteristics from different reconstruction methods,
we were able to confirm the presence of paired features. This
indicates that when physical constraints are not enough, results
from varying imaging techniques can be combined by the fusion
module to effectively improve imaging accuracy.

In contrast to the DIP method, our framework minimizes ad-
ditional optimization challenges while integrating extra con-
straints. This approach is particularly suitable for applications
such as whole slide imaging, which demand high temporal res-
olution, due to its strengths in high reconstruction speed and
clear interpretability. While our framework has only been dem-
onstrated in FPM with programmable illumination, its flexible
design makes it easily adaptable to other imaging tasks. In ad-
dition, it holds significant potential for addressing challenges in
various computational imaging domains. In our future work, we
aim to migrate this highly promising approach to popular re-
search areas, such as digital pathology diagnostics and tomog-
raphy imaging.

Code and Data Availability
We are diligently organizing, continuously updating, and main-
taining our code. Anyone can contact us via email at any time to
obtain the latest version of the code and data set. Email:
zhangshaohui@bit.edu.cn
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