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Abstract. Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal can-
cer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63
nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA
integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to
spectral variables in the selected regions of 792–805, 867–880, 996–1009, 1086–1099, 1288–1304, 1663–1670,
and 1742–1752 cm−1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-
one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than
that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a
sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA
diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer. © 2012 Society of Photo-

Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.12.125003]
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1 Introduction
Nasopharyngeal cancer (NPC) is a nonlymphomatous squa-
mous cell carcinoma that occurs in the epithelial lining of the
nasopharynx.1 The incidence of NPC occurs with much greater
frequency in southern China, northern Africa, and Alaska. It is
reported that the disease is the third most common malignancy
among men, with an incidence about 50 per 100,000 in the
Guangdong Province of China.2 At present, the clinical diagno-
sis of NPC mainly depends on white-light endoscope technique
and excisional biopsy. Endoscope technique relies on the obser-
vation of gross morphological changes of tissues, thus, it is dif-
ficult to identify the NPC in its early stages. Excisional biopsy
remains the gold standard approach for cancer diagnosis, but it
involves a high level of operational requirements for doctors and
causes a lot of discomfort or may even be impractical for high-
risk patients.3 Therefore, it is eminently desirable to develop a
nondestructive technique to detect NPC at an early stage.

In recent years, the Raman spectroscopy technique has
received a great deal of interest in cancer diagnosis.4,5 Raman
spectroscopy is a vibrational spectroscopic technique that can
provide specific spectroscopic fingerprint information about the
molecular composition, structure and content of constituents.6

Compared with other optical spectroscopic techniques, such as
the fluorescence spectroscopy and infrared absorption spectros-
copy, Raman spectroscopy has significant advantages. For

instance, there is no photobleaching in Raman scattering, and
Raman spectral peaks are narrow.7,8 Especially, when the
near-infrared excitation light is used, water exhibits very low
absorption and tissues reveal far less autofluorescence compared
with visible light excitation. This makes it easier to detect bio-
chemical components within a deeper layer of the tissue. Over
the past decade, Raman spectroscopy has been applied to classify
normal and malignant tissues of various body sites, including
the breast, bladder, lung, prostate, cervix, skin, and so on.4,9–15

These studies show that Raman spectral features could be used
to correlate with the molecular and structural changes associated
with carcinomatous transformations, demonstrating the feasibil-
ity of early cancer detection by Raman spectroscopy.

The differences of Raman spectra among different tissue
types are usually subtle because of obvious spectral overlapping.
Thus, powerful and robust spectral data processing and diagnos-
tic algorithms are required to extract significant Raman spectral
features associated with the histopathology. In recent years, mul-
tivariate statistical algorithms such as principal component
analysis (PCA), linear discriminant analysis (LDA) and partial
least squares discriminant analysis (PLS-DA) have been widely
applied for the classification of various tissues by Raman spec-
troscopy.4,16 These statistical methods improve the precision and
reliability of the procedure.17

PCA is a mathematical tool that reduces the dimensions of
the dataset by orthogonally projecting data onto a lower dimen-
sional linear space, such that the variance of the projected data is
maximized. Combined with LDA and support vector machines,
it has been applied to distinguish the biomedical Raman spec-
tra.18,19 PCA is efficient for data classification, but PCs have no
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definite physical meanings because they are extracted from a
linear combination of original variables. Furthermore, PCA is
generally calculated using the entire spectrum that contains
much redundant data and noise, which have no contribution
to the principal components and reduce the performance of the
PCA.20

Feature selection is another data reduction technique that
mines feature subsets from the original data space. The classi-
fication attributes of the subset are, as much as possible, to
remain consistent with the raw data. The main advantages of
feature selection are to decrease the number of variables to help
understand the discovered pattern by eliminating irrelevant
features from raw dataset, and to increase the accuracy of clas-
sification. To improve the ability of finding a meaningful low-
dimensional data structure in high-dimensional sample space,
several feature selection strategies such as filter, embedded and
wrapper have been developed according to different evaluation
criteria.21,22 The genetic algorithm (GA), based on Darwinian
evolution and Mendelian genetics, has emerged as an adaptive
heuristic search algorithm for efficient features selection.23

Compared with other search methods, GA is robust, parallel,
and has global search superiority. GA has displayed excellent
ability in feature selection in microarray analysis, mass spec-
trometry, sequence analysis, and so on.24–27 This study intro-
duces GA combined with LDA method to select characteristic
spectra for classification from Raman spectroscopy of NPC tis-
sues. Furthermore, to compare the performance of GA-LDA,
PCA-LDA algorithms are used to analyze the same Raman spec-
tra of NPC tissues. The main purpose of this study is to explore
the feasibility of classifying and diagnosing Raman spectra of
NPC tissues with GA-LDA algorithms, and to provide an intui-
tive reference for the clinical diagnosis of Raman spectroscopy.

2 Materials and Methods

2.1 Patients and Tissue Sample

A total of 63 nasopharyngeal tissues were collected from 63
patients (17 women and 46 men with a median age of 44.6
years) who underwent endoscopic biopsies. Prior to research,
all patients signed an informed consent to permit collection of
excision specimens. After biopsies, the samples were divided
into two parts, one for Raman measurements within 2 h and
another for histopathologic examination conducted by a specia-
list nasopharyngeal pathologist after being fixed in 10% forma-
lin solution. The results revealed that of the 63 nasopharyngeal
tissue samples, 46 were dysplasia, and 17 were normal. Figure 1
shows the comparison of haematoxylin and eosin (H&E) stained
tissue sections of normal and dysplastic nasopharyngeal tissues.

2.2 Instrumentation

The Raman spectroscopy was recorded with a confocal Raman
microscopy (Renishaw, inVia, United Kingdom) in the range of
720 to 1800 cm−1 with a spectral resolution about 1 cm−1 under
a 785 nm diode laser excitation. The spectra were collected in
back-scattered geometry using a Leica DM2500 microscope
equipped with objective 20×. The power of laser exposed on
sample was about 1 mw with a spot diameter about 5 μm. The
software packageWIRE 3.2 (Renishaw) was employed for spec-
tral acquisition and analysis. Each Raman spectra was acquired
twice with an integration time of 10 s. All data was collected
under the same conditions.

2.3 Data Preprocessing

The Raman spectra acquired from nasopharyngeal tissues
contained many autofluorescence and background noises.28

A fifth-order polynomial was employed to fit the broad tissue
autofluorescence background, and then this polynomial was
subtracted from original spectra. In order to compare the
changes of spectral shapes and relative peak intensities among
different nasopharyngeal tissue samples, an area normalized of
spectra was employed. Vancouver Raman algorithm was em-
ployed for spectra smoothing and baseline correction. It is an
automated autofluorescence background subtraction algorithm
based on modified multi-polynomial fitting by presetting of
the relevant parameters such as size of Boxcar smooth, order
of polynomial fit and stop criteria.29

2.4 Genetic Algorithm

GA is a cyclic process of iterative optimization.30 The candidate
solutions of the optimization problem are known as individuals
that are presented with a variable sequence called chromosome
or gene string. Chromosome is generally expressed as a simple
string or numeric string, a process known as encoding. The first
step of GA is to randomly generate a certain number of indi-
viduals to constitute a population. Then the individuals are
evaluated by the fitness function, which is a particular type of

Fig. 1 (a) HE staining of normal nasopharyngeal tissue: a case showing
nasopharyngeal pseudostratified ciliated columnar epithelium, no cell
atypia. Magnification, 200×. (b) HE staining of nasopharyngeal carci-
noma tissue: a case showing cancer cell nests (black line roped) with
obvious nuclear atypia and abundant cytoplasm. Magnification, 200×.
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objective function that is used to measure the optimization vari-
ables to be solved.31–33

The following step is to produce individuals of the next gen-
eration and to form a population. This process is done by select-
ing and breeding which consists of crossover and mutation.
Selection is carried out in accordance with the fitness value,
but it does not mean that the individual with high fitness
must be adopted. The principle of GA is that the individuals
of higher fitness have greater probabilities of being accepted.
A relatively optimal group can be assembled by initial data
through this selection process. Then, the selected individuals
go into the process of mating. Each two individuals produce
two new individuals to replace the originals by crossover. Non-
mating individuals remain unchanged. The chromosomes of
mating parents exchange to produce two new chromosomes
at a crossover point generated randomly on the chromosome.
The next step is a mutation to produce fresh offspring of indi-
viduals. After this process (selection, crossover, and mutation) is
finished, a new generation is created. Generation after genera-
tion, the overall fitness is increased. This process is constantly
repeated: each individual is evaluated by the fitness, two indi-
viduals mate, mutate, and produce the next generation until the
termination criteria is met.31

In this study, float point encoding is employed.34,35 The entire
spectrum which contained 1012 variables is divided into 253
segments, and each segment has four continuous data points.
Each individual consists of seven fragments corresponding to
28 data points. The initial individual is made of seven randomly
generated different integers less than 253. Parameters given for
the GA are 100 generations of runs, 20 individuals each genera-
tion, mutation probability of 5%, and crossover rate of 70%. The
individual is evaluated with LDA method. The standard of
evaluation is the integration area under the receiver operating
characteristic (ROC) curve.

LDA is a statistical technique used to group the features of
objects through projecting an original feature space to a lower
dimensional space with as little loss in discrimination as possi-
ble.16 A method of leave-one-out cross-validation is employed
to validate the classification performance. As such, one Raman
spectra is left out, and the LDA model is rebuilt with the remain-
ing Raman spectra to classify the withheld Raman spectra. This
process is repeated until all Raman spectra retained are discri-
minated. A technique of roulette wheel selection is used to
choose next-generation individuals. In this process, the fitness
of all individuals is first normalized to 1 by dividing the fitness
of each selection with the total fitness of all individuals. Then
the normalized fitness is accumulated one by one to form prob-
ability space. The higher individual fitness equals a higher prob-
ability space on the ‘wheel’ and therefore a higher chance of
selection. A random number less than 1 is generated when selec-
tion begins, and the individual whose probability space contains
the random number is chosen. During the GA iterations, the
most optimal individual with the best classification accuracy
is completely preserved until the emergence of new individual
with better fitness to replace it.

3 Results
Figure 2 shows the comparison of normalized average Raman
spectra −1 standard deviations of NPC and normal tissues in
the range from 720 to 1800 cm−1. Primary Raman peaks are
observed in both NPC and normal tissue at the following
peak positions with tentative assignments:4,36–43 788 cm−1

[vsðO─P─OÞ, cytosine, uracil ring breathing], 831 cm−1

[out of plane ring breathing tyrosine, O─P─O stretch],
855 cm−1 [νðC─CÞ ring of proline, ring breathing of tyrosine],
940 cm−1 [νðC─CÞ of proline, valine and protein backbone],
1004 cm−1 [νsðC─CÞ phenylalanine], 1033 cm−1 [C─H in
plane bending of phenylalanine], 1095 cm−1 [vs (PO2− ),
νðC─NÞ of protein], 1128 cm−1 [νðC─CÞ of lipids∕νðC─NÞ
of protein], 1158 cm−1 [C─C/C─N strething mode of proteins],
1208 cm−1 [νðC─C6H5Þ) L-tryptophan and phenylalanine],41

1339 cm−1 [CH3CH2 wagging of collagen and polynucleotide
chain], 1449 cm−1 [δðCH2Þ of proteins and lipids], 1660 cm−1

[amide I νðC═OÞ collagen, α-Helix∕νðC═CÞ of lipid]. The
strongest peaks are at 1004, 1339, 1449, and 1660 cm−1.
The spectral differences between NPC and normal tissues are
clearly displayed from the difference spectra of Fig. 2(c), imply-
ing the enormous potential to diagnose NPC with Raman
spectroscopy.

The GA-LDA algorithms are developed to search for the
significant Raman spectral features that are relevant to different
nasopharyngeal tissue pathologies. The algorithm parameters
are adjusted repeatedly to obtain the best subset of Raman vari-
ables for tissue differentiation. Figure 3 displays the best and
mean� 1SD area under ROC curve (AUC) of the individuals
in 50 generations with GA-LDA algorithms. There is a signifi-
cant increase of AUC by the GA-LDA algorithm. In order to

Fig. 2 Average Raman spectra of NPC tissue in the range from 720 to
1800 cm−1. The solid lines indicate the average spectra and the shaded
lines represent one standard deviation. (a) NPC tissue spectra, (b) normal
tissue spectra, (c) cancer-normal difference spectra (the difference
spectra intensity is enlarged five times for clear display).

Fig. 3 The mean area under ROC curve (AUC) of the individual �1 SD
versus the best performance individuals in 50 generations with GA-LDA
(20 individual, cross rate ¼ 0.7, mutation rate ¼ 0.05).
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pick out diagnostic feature information contained in Raman
spectra, the GA-LDA algorithms are repeated over 100 runs
for selecting seven spectral bands. Figure 4 is the cumulative
counts of Raman bands chosen with GA-LDA algorithms. It
reveals the most useful spectral feature located in the regions
of 792–805, 867–880, 996–1009, 1086–1099, 1288–1304,
1663–1670, and 1742–1752 cm−1. The corresponding tentative
assignments of significant Raman bands in nasopharyngeal tis-
sue are listed in Table 1.37,38,41–43 The intensity differences of
these Raman features between normal and cancerous tissues
are also verified to be significant (p < 0.005, unpaired Student’s
t-test, 2-sided, equal variances for classification and diagnosis
of nasopharyngeal tissues.

The scatter plot of the linear discriminant scores of normal
and NPC tissue using GA-LDA diagnostic model based on the
seven significant Raman bands together with the leave-one-out
cross-validation is displayed in Fig. 5. The dividing line pro-
duces diagnostic sensitivity of 69.2%, specificity of 100.0%
and overall accuracy of 76.9% for discriminating NPC from nor-
mal nasopharyngeal tissue. Hence, the results of classification
suggest that the GA-LDA algorithms develop a novel way to
diagnose NPC from normal nasopharyngeal tissues by searching
significant Raman features to build the discriminant model.

To further evaluate the performance of the diagnostic model
developed by GA-LDA algorithms, the ROC curve is generated

(Fig. 6) from the scatter plot in Fig. 5. The ROC curve is an
intuitive method of reflecting the relationship of sensitivity and
specificity. It is obtained by calculating the sensitivity and
specificity of different diagnostic thresholds. The integration
area under the ROC curves is positively correlated with the diag-
nostic accuracy. To comparatively assess the effective diagnostic
performances of GA-LDA algorithms, the ROC curve of PCA-
LDA algorithms are also generated. It is illustrated by the
improvement in the diagnostic sensitivities and specificities
that GA-LDA algorithms give more effective diagnostic perfor-
mances for differentiation of NPC from normal tissues. The inte-
gration areas under the ROC curves of GA-LDA algorithms and
PCA-LDA algorithms are 0.956 and 0.924, respectively. These
results further confirm that GA-LDA algorithms yield a better
diagnostic accuracy than the PCA-LDA algorithms.

4 Discussions
Raman spectroscopy is a unique noninvasive detection techni-
que that can produce abundant information about molecular
composition and structure of biological tissue. It may become
a promising clinical diagnostic tool by probing subtle molecular
changes relevant to tissue pathology. The Raman signal is very
weak, but with the development of confocal Raman microscopy
spectroscopy techniques, the development of Raman spectros-
copy in biomedical field is greatly enhanced.44–47 NPC is a
malignancy of the head and neck with a marked racial and geo-
graphic distribution. NPC detection in the early stage is often
difficult due to the nonspecific symptoms. Several groups
have been studying the diagnosis of NPC with Raman spectros-
copy technique. For example, Lau et al. implemented a preli-
minary study of normal and NPC tissue from six patients with
Raman spectroscopy, they found consistent differences in three
bands 1290–1320, 1420–1470, 1530–1580 cm−1.40 Feng et al.,
researched surface-enhanced Raman scattering of human naso-
pharyngeal tissue with gold nanoparticle. They found that
Raman spectral imaging based on three characteristic peaks at
962, 725, and 1366 cm−1, confirmed there were vigorous
metabolism and strong enzymatic activities in tumor tissues.41

This study demonstrates the great potential of Raman spectra
for probing the biochemical heterogeneities of nasopharyn-
geal cancerous tissues using gold nanoparticles. But there are

Fig. 4 The cumulative counts of Raman bands chosen with GA-LDA in
100 runs.

Table 1 Tentative assignment of significant Raman bands identified by GA-LDA algorithm.

Peak position
(cm−1) Vibrational assignments

Intensity change
(cancerous − normal) p-value

792–805 vsðO─P─OÞ ring breathing + 1.87E − 14

867–880 vðC─CÞ collagen − 4.12E − 8

996–1009 vsðC─CÞ Phenylalanine + 2.31E − 9

1086–1099 vs (PO−
2 ) nucleic acids + 1.09E − 6

1288–1304 δðCH2Þ, δðCH3CH2Þ lipid − 2.71E − 4

1663–1670 vðC═OÞ Amide I + 3.46E − 3

1742–1752 vðC═OÞ phospholipids − 1.42E − 3

Note: v-stretching mode; vs-Symmetric breathing; δ-bending mode. The mean intensity
changes (increase: +; decrease: −) and the P-values of unpaired two-sided Student’s t-test
on the Raman band intensities of normal and cancerous nasopharyngeal tissues.
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fluctuations depended on the excitation light intensity in the
Raman scattering signals at the tissue level. Later Feng et al.,
measured blood plasma surface-enhanced Raman spectroscopy
of NPC patients and normal volunteers. They successfully sepa-
rated the two groups’ spectra with sensitivity of 90.7% and
specificity of 100% by PCA-LDA technique.37

In this work, we have studied Raman spectral properties of
NPC and normal tissue with confocal Raman microscopy and
explored the potential to improve the diagnostic performance
with feature selection technique based on GA-LDA algorithms.
The distinct spectra differences of normal and NPC tissue are
observed from difference spectra in Fig. 2(c). It indicates that
there is a great potential of differentiating dysplasia from
normal nasopharyngeal tissue with Raman spectroscopy. The
main intensity differences are located at around 788 cm−1

[vsðO─P─OÞ, cytosine, uracil ring breathing], 1004 cm−1

[νsðC─CÞ phenylalanine], 1339 cm−1 [CH3CH2 wagging of
collagen and polynucleotide chain], 1449 cm−1 [δðCH2Þ of
proteins and lipids], 1660 cm−1 [amide I νðC═OÞ collagen,
α-Helix∕νðC═CÞ of lipid]. These results are basically in agree-
ment with the other reports about NPC.5,40,41 In the same range
of 950 to 1650 cm−1, our Raman spectral shape is the same to
the Lau et al.’s, results, but different with the Feng et al.’s. The

changes of Raman spectral shape are due to the use of surface
enhanced Raman spectroscopy technology which only enhances
some peaks.40,41

However, the Raman spectral pattern of normal and cancer
tissue is very similar. There is an urgent need to develop the
efficient diagnostic algorithms to interpret these tiny spectral
changes. To solve the above problems, we employ feature selec-
tion technique based on GA-LDA algorithm to correlate signif-
icant spectral bands with tissue pathology. The GA-LDA results
display that diagnostically important variables are limited to
several Raman spectral bands that are related to proteins, nucleic
acids and lipids. The important seven spectral bands are distrib-
uted in the regions around 792–805, 867–880, 996–1009,
1086–1099, 1288–1304, 1663–1670, and 1742–1752 cm−1.
These Raman bands mainly correlate with dysplasia progres-
sion. For instance, the Raman peak 867–880 cm−1 (C─C
stretching mode of collagen) is found to decrease significantly,
indicating that there is a relative reduction of collagen content in
cancer tissue. The main cause is that cancer cells spread to
underlying stromal layer and express a class of metalloprotease,
leading to an overall decrease of collagen content in cancer
tissue.48 The decrease of Raman bands 1288–1304 cm−1

(CH3CH2 bending of lipid) and 1742–1752 cm−1 (C═O
stretching of phospholipids) associated with lipids illustrates
that the proportion of fat content in the cancerous tissue is
greatly reduced. The likely reason is that amplified cancer cells
consume a lot of fat, resulting in decrease of lipid molecules.49,50

Nucleic acid-related Raman bands of 1086–1099 cm−1 (PO−
2

Symmetric breathing of nucleic acids) are significantly
enhanced, as cancer cells proliferate indefinitely, and DNA
replicates greatly, leading to increased content of cells DNA.41,42

In the Raman bands of 1086–1099 cm−1 and 1530–1560 cm−1,
our difference spectra are consistent with Lau et al.’s, results.
While in the Raman bands of 1420 and 1470 cm−1, our differ-
ence spectra are different from their results. This may be attrib-
uted to the measurement conditions and amount of sample. We
measured 63 patients with the beam spot diameter about 5 μm,
and Lau measured 6 patients with the beam spot diameter of
3.5 mm.

There are several indicators to evaluate the diagnostic cap-
abilities of a particular algorithm such as sensitivity, specificity,
accuracy and AUC, in which AUC can be a comprehensive
reflection of the diagnostic algorithm to identify the disease.
Other teams have also chosen accuracy as evaluation standard.51

In this study, AUC is adopted as the fitness function of GA
and has obtained better search results in Fig. 3. The best AUC
is 0.956, corresponding diagnostic accuracy 0.769. We also
attempt to use the diagnostic accuracy as fitness function to
search the characteristic Raman bands, and get the best AUC
0.944, accuracy 0.780. Although the results of the evaluation
functions are close, we believe that the AUC is more suitable
to assess the diagnostic model.

The diagnostic model built by GA-LDA technique searching
important Raman feature spectra of nasopharyngeal tissue pro-
duces a sensitivity of 69.2%, specificity of 100.0% and overall
accuracy of 76.9%. The area of 0.956 under the ROC curve
further affirms the efficient diagnostic performances of GA-
LDA-based algorithms for classification NPC from normal tis-
sue. To compare the performances of GA-LDA algorithms with
conventional multivariate statistical technique, PCA-LDA algo-
rithms are applied to classify the same Raman dataset. The
cumulative contribution rate in the first 20 PCs is 95.3% of

Fig. 5 Scatter plot of the linear discriminant scores of normal and
NPC tissue using GA-LDA. The separate line produces diagnostic
sensitivity of 69.2% (117∕169) and specificity of 100.0% (56∕56) for
discriminating NPC from normal nasopharyngeal tissue.

Fig. 6 Receiver operating characteristic (ROC) curves of Raman spectra
discrimination results from NPC and normal tissue with PCA-LDA and
GA-LDA algorithms together with the leave-one-out cross-validation
method. The integration area under the ROC curves for PCA-LDA and
GA-LDA are 0.924 and 0.956, respectively, illustrating the efficacy of
GA-LDA in NPC diagnosis with Raman spectroscopy.
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total variance, corresponding diagnostic accuracy of 73.3%,
sensitivity of 63.3% and specificity of 94.6% with unpaired
two-side t-test (p < 0.05) together with the leave-one-out cross-
validation. The integration area of ROC curve is 0.924 for PCA-
LDA algorithms as display in Fig. 6. Although PCA-LDA
algorithms yield good classification effects, it can’t explain the
contributions to discriminant results come from what biochem-
ical component associated with tissue malignancy because PCA
variables are extracted from entire Raman spectra of nasophar-
yngeal tissue. The GA-LDA algorithms provide a simplified
diagnostic model with improved diagnostic accuracy by the
selection of significant Raman feature bands related to biochem-
ical components such as proteins, nucleic acids and lipids. The
possible reason of GA-LDA algorithms improving diagnostic
performances is that GA is a heuristic optimization technique
that can search characteristic Raman spectra with distinct clas-
sification attributes.30 Other groups have also applied feature
selection technique based on GA with Raman spectroscopy for
the classification. For example, Duraipandian et al., use GA par-
tial least squares discriminant analysis and Raman spectroscopy
to identify biomolecular changes of cervical tissue associated
with dysplastic transformation. They achieved a diagnostic accu-
racy of 82.9%, sensitivity of 72.5% and specificity of 89.2% for
precancer detection.27 Lavine et al., successfully classified sev-
eral wood types by the application of GA to extract features of
woods’ Raman spectroscopy.52 All of above results demonstrate
that the GA-LDA algorithms are very attractive techniques that
are expected to provide a more accurate diagnostic model for
the clinical application of Raman spectroscopy.

5 Conclusion
In conclusion, an efficient diagnostic model based on GA-LDA
algorithms picking out the characteristic Raman bands asso-
ciated with biochemical components is developed and applied
to classify the NPC from normal tissue. An improved diagnostic
accuracy of 76.9%, sensitivity of 69.2% and specificity of
100.0% is obtained. Compared with the PCA-LDA algorithms,
the GA-LDA technique can build a simpler diagnostic model
with clearer physical meaning and higher diagnostic efficiency.
This work demonstrates that the Raman spectroscopy associated
with GA-LDA diagnostic algorithms has enormous potential
to detect and diagnose NPC.
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