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Abstract. We adapt a graphics processing unit (GPU) to dynamic quantitative second-harmonic generation
imaging. We demonstrate the temporal advantage of the GPU-based approach by computing the number of
frames analyzed per second from SHG image videos showing varying fiber orientations. In comparison to
our previously reported CPU-based approach, our GPU-based image analysis results in ∼10× improvement
in computational time. This work can be adapted to other quantitative, nonlinear imaging techniques and pro-
vides a significant step toward obtaining quantitative information from fast in vivo biological processes. © 2014
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1 Introduction
Second-harmonic generation (SHG) imaging, based on the sec-
ond-order nonlinear optical process, in which a noncentrosym-
metric material (i.e., a material showing no center of inversion
symmetry) converts a portion of incident light to scattered light
at exactly twice the frequency, has developed into an important
nonlinear imaging technique over the past several years. Among
its benefits is its inherent ability to produce volumetric images of
biological tissues comprising collagen fibers1 without the need
for labeling with an exogenous contrast agent. We have previ-
ously demonstrated quantitative SHG (Q-SHG) imaging as an
effective and accurate modality to ascertain quantitative in-
formation from such collagen-based biological tissues.2–6 For
example, with respect to collagen fiber organization, the pre-
ferred orientation and orientation anisotropy have provided sig-
nificant information.2 Indeed, application of quantitative SHG
has resulted in assessment of microstructural information of
nonpregnant rat cervical tissue, healthy from injured horse ten-
dons,7 age-related changes in porcine cortical bone,8 and dis-
similarities in stromal collagen fiber organization in human
breast biopsy tissues at various pathological stages.5 Addi-
tionally, Q-SHG imaging has also been reported as a suitable
method for quantifying the change in dermal collagen fibers
in skin burns using a rat skin burn model.9 In spite of these
advancements, full applicability of Q-SHG imaging has been
confined to static imaging conditions, thereby leaving its utility
for dynamic biological processes largely unexplored. To address
this, we recently reported on the experimental and computational
requirements for carrying out Q-SHG imaging under dynamic
conditions,10 i.e., simultaneously computing and displaying quan-
titative information with image acquisition. We found that for a

512 × 512-pixel area, the preferred orientation of collagen fibers
in a tissue specimen captured by SHG imaging can be computed
within ∼950 ms using a standard multicore CPU.

Recently, graphics processing units (GPUs) have emerged as
alternate computation devices for faster processing compared to
standard CPUs. GPUs comprise several thousand times more
processing units or cores compared to conventional computer
CPUs, permitting all cores to be used to carry out the same
desired instructions in parallel. This facilitates its usage in vari-
ous computational imaging applications where processing time
is expensive. For example, GPU-based algorithms have been
used to develop spectral (Fourier) domain optical coherence
tomography11–14 techniques with a significant reduction in com-
putation time when compared to standard CPU-based algo-
rithms. Similar results have also been observed from using the
GPU for reconstruction of x-ray computed tomography images
of high contrast and precision15 as well as performing deconvo-
lution of three-dimensional confocal microscopic images.16

Additionally, GPUs have also been used to accelerate and opti-
mize Monte Carlo simulations,14,17 typically used to study the
theory of light transport through various media. As such, the
GPU would be extremely useful in obtaining quantitative infor-
mation at the time scales of some of the faster biological proc-
esses, such as the propagation of an action potential in neurons
occurring on the order of milliseconds, which has been success-
fully captured with SHG.18 The approach could also be useful
for situations where analysis of multiple, quantitative metrics are
incorporated with simultaneous image acquisition. In this work,
we incorporate an NVIDIA GPU to our image analysis system,
enabling parallel processing of our dynamic SHG image analy-
sis algorithm. As proof-of-concept, we present several synthetic
experiments in which we apply our GPU-based approach to
quantitatively analyze consecutive frames from several videos
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of 512 × 512-pixel SHG images. In general, the videos are of
varying arrangements of collagen fiber organization. We compare
the computation time obtained using GPU versus CPU. The paper
is organized as follows. Section 2 describes the experimental
methods and image analysis technique used. Section 3 presents
the results and discussion, while Sec. 4 provides the conclusion.

2 Methods

2.1 Image Analysis

We have previously provided a detailed description of our quan-
titative SHG image analysis carried out under dynamic condi-
tions, which can be found elsewhere.10 Briefly, after acquiring a
512 × 512 image, a Gaussian filter is applied and the image is
subsequently divided into a 16 × 16 grid, with each grid contain-
ing 32 × 32 pixels. For each grid, a preferred orientation is cal-
culated based on the computed intensity gradient for each pixel
within a grid. This information can then be used to estimate a
global preferred orientation for the whole image. The accuracy
of the calculated orientations is estimated by the circular vari-
ance,19–22 a detailed description of which is provided in the
Appendix. An intensity threshold is set to discriminate the back-
ground from the signal in a manner analogous to what we have
previously reported.2 This same threshold is used for calcula-
tions that are done both within a grid and for the global orien-
tation estimate. Finally, an image is displayed with a gridded
overlay, with arrows indicating preferred fiber orientation within
each grid and the computed average orientation and circular
variance being presented.

MATLAB® coupled with the compute unified device archi-
tecture (CUDA) parallel computing platform was used to

develop the code. The parallel instructions were written in the
C programming language, using the NVIDIA CUDA library
version 5.0, and implemented in the GPU while MATLAB®
was used as the host function to acquire the image, transfer
image data to and from the GPU, and subsequently display
the results. The hardware used for implementation consisted
of an NVIDIA GTX 590 GPU, running on a Windows 7,
Core i7-2600K Quad Core CPU running at 3.40 GHz clock
speed, 3.8 GHz of maximum Turbo frequency, and 24 GB of
DDR3-1066/1033 RAM. This same computer was used for
the comparisons where GPU-based calculations were compared
with CPU-based ones. A description of the GPU architecture
and the CUDA programming model can be found in the
CUDA Programming Guide 4.0.23 To facilitate its adaptation
in the GPU architecture, the image analysis procedure was di-
vided into three segments known as CUDA kernels as shown in
Fig. 1. In the first kernel, the acquired 512 × 512 image is di-
vided into a 43 × 43 image grid, each of which is 12 × 12 pixels

in size. For this kernel, the GPU grid contains 43 × 43 thread-
blocks, where each threadblock contains 16 × 16 threads. Each
threadblock is assigned to apply a Gaussian filter over one
image grid. As the pixels in the boundary of a grid require con-
tributions from neighboring pixels to apply the Gaussian filter,
the threadblocks contain one extra thread in each boundary. In
the second kernel, the filtered image is divided into a 16 × 16

grid of 32 × 32 pixels each, where the preferred orientation is
calculated for each individual grid. In both these two kernels,
individual GPU threadblocks are assigned to individual image
grids, where individual pixels inside the grids are computed
upon by individual threads in the threadblock; hence, parallel
operation of data points is achieved on two separate levels.

Fig. 1 Flow chart of the steps performed in the graphics processing unit (GPU)-based quantitative image
analysis modality.
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On the first level, all the threadblocks in the GPU multiproces-
sors carry out their computation in parallel, while on the second
level, the individual threads inside a threadblock also operate in
parallel. This essentially means that all pixels in a grid and all
grids in the image are computed simultaneously, thus signifi-
cantly reducing computation time. Finally, in the third kernel,
the preferred orientations from the individual grids are used
to calculate a global preferred orientation. As there are only
256 (16 × 16) preferred orientation values, a single GPU
threadblock of 256 threads is sufficient. After performing the
processing in the GPU, the image along with the quantitative

information is returned to the CPU. MATLAB® instructions
are used to display the preferred orientation in each block of
the 16 × 16 grid and a circular histogram showing the distribu-
tion of the preferred orientation values over the complete image.
Finally, the global preferred orientation and the associated cir-
cular variance are also displayed.

2.2 Experiment

Both the GPU-based and the CPU-based codes are applied on
consecutive frames of three videos comprising 512 × 512-pixel

Fig. 2 Representative frames from a video of second-harmonic generation (SHG) images of breast
biopsy tissues. (a) The first six consecutive frames in the video, showing fibers that are progressively
rotated by 20 deg with respect to the horizontal. The frames captured and analyzed by the GPU-based
and CPU-based image analysis are shown in (b) for 10 fps and in (c) for 29 fps. The scale bar corre-
sponds to 10 μm for all images. These results are also compiled in the videos (Video 1 MPEG, 4.2 MB
[URL: http://dx.doi.org/10.1117/1.JBO.19.9.096009.1] and Video 2 MPEG4, 7.3 MB [URL: http://
dx.doi.org/10.1117/1.JBO.19.9.096009.2]).
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SHG images. Information on the optical setup used to collect the
SHG images can be found elsewhere.7 In the first video, we have
consecutive frames showing SHG images of breast biopsy tissue
being rotated at increments of 20 deg (relative to the horizontal)
between each frame. The frame rate of the video is 10 frames per
second (fps) and contains 20 images running for a total duration
of 2 s. The contents of the second video are the same as the first
one, except that the frame rate of the video is set at 33 fps (note
that this is approximately the standard video rate), and it con-
tains 66 images running for 2 s. The third video is of SHG
images of various collagen-based biological tissues, namely por-
cine tendon, rat cervix, and breast biopsy tissues. The frame rate
is set at 10 fps, while the number of images and total run time is
set at 20 images and 2 s, respectively.

3 Results and Discussion
Figure 2 depicts the representative frames from the first video, as
well as the results obtained by operating the two different com-
putational modalities on it. Figure 2(a) shows the first six frames
of the video, while Fig. 2(b) shows the frames that are captured
and analyzed by the GPU-based and CPU-based codes in two
consecutive rows, respectively. It is clear from Fig. 2(b) that the
GPU-based code successfully captures and analyzes all six con-
secutive frames of the video. For the given video frame rate
(10 fps), this is consistent with the expected computation
time of ∼100 ms for each image. In comparison to this result,
the CPU-based code only acquires the first frame and fails to
capture any of the subsequent frames. From Video 1, it is also
observed that the CPU is successful in capturing the first and the

tenth frames of the video. This observation supports our previ-
ously reported fact that the computation time for a CPU-based
code is ∼950 ms for a 512 × 512-pixel image,10 indicating that
at 10 fps, it would fail to capture the next eight consecutive
frames. The same analytical steps were carried out for the sec-
ond sample video, the results of which are depicted in Fig. 2(c).
The two consecutive rows in Fig. 2(c) show the frames that are
captured by the GPU-based and CPU-based modalities, respec-
tively. It is observed from Fig. 2(c) that for the new video frame
rate of 33 fps, the GPU fails to capture two out of every three
frames of the video. It is also observed from the second row in
Fig. 2(c) that the CPU-based code could only analyze the first
frame in this case, too, and fails to capture any subsequent
frames shown in this figure. Video 2 reveals that the next
frame successfully captured by the CPU is frame 32.

Figure 3 shows the results obtained from analyzing consecu-
tive frames of a video comprising SHG images of a variety of
collagen-based tissues. Here, the goal is to evaluate the perfor-
mance of the GPU-based code when SHG images vary (in fiber
density, orientation, and organization) greatly between each
consecutive image. Again, we observe in Fig. 3(b) that the
GPU-based code captures and analyzes all consecutive frames
from the video irrespective of fiber orientation or density, while
in Fig. 3(c) and Video 3, we see that the CPU-based code could
only perform its analysis on the first and the eleventh frames.
Thus, the processing time for the GPU-based approach is not
influenced by fiber density and spatial organization.

Figure 4 compares the performance in processing time
between the GPU- and CPU-based approaches for each segment

Fig. 3 Representative frames from a video of SHG images of several collagen-based tissues (a). Frames
1, 3, and 4 are SHG images of human breast biopsy tissues, while frames 2 and 5 are of rat cervix and
porcine tendon tissues, respectively. (b) and (c) show the frames captured and analyzed by the GPU-
based and CPU-based codes, respectively. These results are also compiled in a video (Video 3 MPEG4,
5.3 MB) [URL: http://dx.doi.org/10.1117/1.JBO.19.9.096009.3]. The scale bar corresponds to 10 μm for
all images.
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of the analysis. To get an accurate estimate of the processing
times, the two modalities are used to analyze 20 SHG images
of size 512 × 512 pixels showing varying degrees of fiber
organization and density. The processing times for each step for
all the images are obtained and their average values are used in
this comparison. It is observed from Fig. 4 that the calculation of
the preferred orientation of individual image grids (kernel 2)
takes the longest amount of time for both approaches. As
such, to obtain a significant reduction in overall computation
time, it would be important to reduce the time required by kernel
2. Our GPU-based implementation achieves a time improve-
ment of ∼20× for kernel 2, reducing it from ∼520 ms used
by the CPU to ∼18 ms. Application of a Gaussian filter and cal-
culation of the global preferred orientation were performed ∼5×
and ∼35× faster, respectively. The time required to display the
results (not shown) is the same for both the modalities and it was
observed to be ∼50 ms. Overall, the GPU-based code performs
the analysis at an average of ∼10× faster than the CPU-based
code.

It is worth noting that although 512 × 512-pixel images were
used for the proof-of-concept, the GPU-based code can also be
used to analyze images of higher pixel density without any
modification. The image grid size and the number of thread-
blocks in the GPU would scale according to the image size.
Individual image grids and threadblocks would also contain
the same number of pixels and threads, respectively. How-
ever, this would not be possible in the current version of the
GPU due to limitations in the number of threadblocks and
grids that can operate in parallel. In certain cases, the individual
image grid sizes may need to be increased to facilitate clear visu-
alization. This would require each thread in a threadblock to
process more than one pixel. For example, if the image grid con-
tains 64 × 64 pixels, a threadblock of 32 × 32 threads would
assign one thread to analyze data obtained from four pixels.
Note that this would require an increased amount of memory
in the GPU, which is not supported in the current version of
the GPU that was used in this work. Apart from this, if any fur-
ther quantitative analysis is desired from the SHG images,

additional CUDA kernels can be constructed and conveniently
added to the existing code.

4 Conclusion
In this paper, we demonstrated GPU-based quantitative analysis
of SHG images. We showed that the preferred orientation of
collagen fibers can be determined in ∼100 ms, either at the
level of individual elements in a 16 × 16 grid or globally for
a 512 × 512-pixel image. As proof-of-concept, we have applied
this modality to analyze consecutive frames of two videos of 10
and 33 fps, respectively. In the first case, the GPU-based system
successfully captured and analyzed all the frames of the video,
while in the second case, it succeeded in capturing one
in every three frames. In contrast, the same analysis using a stan-
dard CPU failed to capture all but the first frame from both the
videos for the representative frames shown. Both approaches
were again compared for a video of SHG images from more
complex collagen-based structures, with the GPU-based method
clearly outperforming the standard method. This improvement
in processing time makes our approach attractive compared to
other nonlinear imaging modalities that are modified for quan-
titative analysis.

Appendix: Calculating Preferred Orientation
The estimation of the preferred orientation of an image grid is
carried out in the following steps:

1. In the first step, horizontal [dIxði;jÞ] and vertical
[dIyði;jÞ] intensity gradients are calculated for each
pixel. The method used is best demonstrated with
the help of a 3 × 3-pixel image block, schematically
displayed in Fig. 5. Based on the location of each
pixel within the image block, a centered, forward or
a backward difference method is used to calculate
the intensity gradient in the horizontal (x axis) and
the vertical (y axis) directions. The relevant equations
are given in Table 1, where i and j refer to the x- and y-
coordinates of the pixel location, respectively, while h
represents each pixel width. As an example, the inten-
sity gradient for the pixel located in (1,3) can be con-
sidered. In this case, the forward difference method is
used to calculate the intensity gradient in the horizon-
tal direction, utilizing the intensities of pixels 1 and
2—Ið1;3Þ and Ið2;3Þ. Using a similar reasoning, the
backward difference method is used to calculate the
intensity gradient in the vertical direction by using
the intensities of pixels located in (1,2) and (1,3).
But in the case of the pixel located in (2,2), the cen-
tered difference method was used to calculate intensity

Fig. 4 Image processing time required for the GPU-based analysis
compared with the CPU-based analysis for three different analysis
steps.

Fig. 5 Schematic diagram of a 3 × 3 pixel image block.
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gradient in both the horizontal and vertical directions.
Here, to calculate dIxð2;2Þ, we have utilized the inten-
sities Ið1;2Þ and Ið3;2Þ, while the intensities of pixels 2
and 8 were used for calculating the dIy for pixel 5.

2. The angular orientation, θ, of each pixel is calculated
using

θ deg ¼ tan−1
dIy
dIx

: (1)

3. The preferred orientation for each block is calculated
using the angular orientation of each of its constituent
pixels. The procedure is best explained with an exam-
ple. Here an image block of 5 pixels is considered with
arbitrary angular orientation values for each pixel. The
angular orientations are displayed in Table 2 and the
orientation is depicted graphically as orientation lines
in Fig. 6.

For clarity in visualization, any angular orientation in
the third and fourth quadrant is shifted to the first quad-
rant. In this example, the angular orientation of pixel 4
(−2.61 rad) is in the third quadrant, and thus, it is shifted
by π to the first quadrant. The new set of angular orien-
tation values are mentioned in Table 3 and graphically
displayed in Fig. 7.

Next, the angular domain of 0 to π is divided into six
equally spaced regions. Figure 7 shows the regional divi-
sions with dotted blue lines along with the original ori-
entation lines. The number of regions chosen is based on
the level of accuracy required in the calculation of cir-
cular variance. For each region, a separate set of angular
orientation data is obtained. Here, the lower of the two
orientation lines is denoted as the division line (θ) and
any pixel with its orientation below θ is shifted by π,

Table 1 Equations used for calculating intensity gradients of image pixels.

Gradients Centered difference Forward difference Backward difference

dIxði ;jÞ dIx ¼ ½Iðiþ1;jÞ − Iði−1;jÞ�∕2 h dIx ¼ ½Iðiþ1;jÞ − Iði ;jÞ�∕h dIx ¼ ½Iði ;jÞ − Iði−1;jÞ�∕h

dIyði ;jÞ dIy ¼ ½Iði ;jþ1Þ − Iði ;j−1Þ�∕2 h dIy ¼ ½Iði ;jþ1Þ − Iði ;jÞ�∕h dIy ¼ ½Iði ;jÞ − Iði ;j−1Þ�∕h

Table 2 Angular orientation of pixels in an image block.

Pixel number Angular orientation, θ (rad)

1 0.52

2 2.1

3 2.36

4 −2.61

5 1.92

Fig. 6 Angular orientation of the pixels in an image block, represented
in a Cartesian co-ordinate system.

Table 3 Angular orientation of pixels in the first and second
quadrants.

Pixel number Angular orientation, θ (rad)

1 0.52

2 2.1

3 2.36

4 0.52

5 1.92

Fig. 7 The angular orientation of all pixels after they are shifted to the
first and second quadrants. The angular domain of 0 to π is shown as
divided into six regions. See text for details.
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while any orientation value above (θ þ π) is shifted by
−π. It should be noted that this step does not change the
angular orientation, but rather expresses it in a different
angular domain. After this step, the changed set of angu-
lar orientations for all the regions is shown in Table 4. As
an example, for set 5, the division line is 2.10 rad. So, the
angular orientations of the first three pixels—0.52, 0.52,
and 1.92—are observed to fall below the division line
and were shifted by π to 3.66, 3.66, and 5.06. These
results are shown in Table 4 and Fig. 8.

4. In the next step, the circular variance is calculated. A
detailed discussion of this procedure is provided else-
where.19,20 Briefly, for each set, the angular orienta-
tions are expressed in the complex form, (Aeiθ). As
only the angular orientation is of importance, the
amplitude A is considered 1 for all cases.

eiθ ¼ cos θ þ i sin θ; (2)

X
eiθ ¼

X
cos θ þ i

X
sin θ: (3)

The circular variance is calculated using the follow-
ing equation:

C ¼ 1 − R; (4)

where

R ¼ 1

n
×
�X

cos2 θ þ
X

sin2 θ

�
: (5)

The circular variance for the six sets of angular ori-
entations in this example is shown in Table 5.

5. Finally, the mean angular orientation is individually
calculated for each set. All the mean orientation values
obtained for the different transformed sets correspond
to the same original set of angular orientations. How-
ever, the mean with the lowest circular variance is iden-
tified as the preferred orientation. It is seen in Table 5
that the third and fourth sets have the lowest variance in
this case. If the mean orientation for these two sets is
calculated, it is observed to be the same value of 2.71 rad
or ∼155 deg. This value is defined as the preferred ori-
entation for the given set of angular orientations.
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