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Abstract. Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring
deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be pre-
sented. We deduced the theoretical relationship between speckle contrast and exposure time and further sim-
plified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms
which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian dif-
fusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we
have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion
coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to
be equal to the inverse of correlation time of the speckle. © 2017Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.22.7.076016]
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1 Introduction
Laser speckle contrast imaging (LSCI)1–4 has emerged as a
powerful technique for visualizing blood flow in vivo5–8 with
high temporal and spatial resolution. LSCI is performed by
the illumination of the biological tissue with a coherent light
source and imaging of the reflected laser speckle with a camera.
The motion of the scattering particles results in blurring the
speckle within a finite integration time. The extent of this local-
ized spatial blurring is defined as the speckle contrast K, by cal-
culating the ratio of the standard deviation (σs) to the mean
intensity (hIi) within a local region9 in the speckle image,
i.e., K ¼ σs∕hIi.

Traditionally, under the condition of single scattering, the
models10 relating speckle contrast to exposure time are used
to extract blood flow information from the speckle contrast mea-
surements by calculating the correlation time of the speckle.
From dynamic light scattering (DLC)11 theory, this correlation
time is shown to be inversely proportional to the speed of
the scattering particles.12 Therefore, accurate estimation of
correlation time is especially important for quantitative flow
measurement. Many researchers13–16 attempt to improve the
instrumentation and theory of LSCI to extract reliable measure-
ment of correlation time from the speckle contrast. For example,
Parthasarathy et al.15 presented multiexposure speckle imaging
(MESI) to consider the effect of static scattering on the meas-
urement of correlation time and further to improve computa-
tional accuracy of correlation time in flow phantom and
in vivo.17,18

The primary limitation of LSCI is that it requires some
assumptions regarding single scattering and the form of the
velocity distribution (Lorentzian or Gaussian distribution)19

for estimating the correlation time. In fact in a larger diameter

vessel, where photons may experience multiple scattering20,21

events before arriving at the camera, the scattering angle infor-
mation and the polarization of scattered light are lost, and the
single scattering model breaks down. In this case, the technique
of diffuse correlation spectroscopy (DCS)22,23 can be applied
further for characterizing the dynamic properties of multiple
scattering media. The capability of DCS for measuring the
motion of the scattering particles depends on the measured
temporal autocorrelation function of the back-scattered speckle
patterns. Furthermore, some studies24,25 showed that the combi-
nation of DCS and LSCI, i.e., diffuse speckle contrast analysis
(DSCA), held potential for measuring the flow change in the
deep tissue. They used the linear relation between 1∕K2 and
dynamic parameters to consider 1∕K2 as an index of blood
flow. Similar to LSCI, it has been demonstrated that DSCA
has the advantage of simplifying the instrument in hardware
and computation process. However, unlike DCS, they did not
directly use a model to separate the effects of tissue geometry,
source–detector (SD) separation, and the baseline optical
properties26–28 of the underlying tissue to obtain the dynamic
parameters from the speckle contrast measurements, which lim-
ited DSCA to be a qualitative method.

In our previous work,29 we have developed an approximation
model of speckle contrast for flowmeasurement of turbid media.
For simplification, we did not consider the influence of the
absorption and assumed that the absorption coefficient is
zero. In fact, in addition to the motion of the scattering particles,
the presence of optical absorption also can influence the rate of
temporal speckle fluctuations and this assumption can result in
deviations in the calculated dynamic parameters.26 As we dis-
cuss in this paper, to accurately obtain dynamic parameters
from the measured speckle contrast at multiple exposure
times, we have developed a more thorough speckle contrast
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model to overcome this restriction. We further simplify it to a
linear approximation model which describes the linear relation
between 1∕K2 and exposure time, and the dynamic parameter
can be obtained from the slope (kslope) of this linear approxima-
tion. In fact, kslope is essentially equal to the inverse of the cor-
relation time of the speckle. Then, to validate the theoretical
model, we have performed experiments in the liquid phantoms.

This paper is structured as follows: in Sec. 2, we describe the
theoretical background of DSCA and deduce the theoretical
dependence of speckle contrast on the exposure time based
on the correlation diffusion equation (CDE). In addition, the
accuracy of the linear approximation model is tested in
Sec. 2. In Sec. 3, the experiments are conducted to demonstrate
the ability of the slope of this linear model to measure the
Brownian diffusion coefficient DB at different SD separations,
by a direct comparison of Einstein diffusion coefficient
DB-Einstein for the liquid phantoms. We show the experimental
results in Sec. 4. In Sec. 5, we discuss the influence of the
SD separation, optical property, and exposure time on the
speckle contrast model for DSCA. Furthermore, the accuracy
of the commonly used forms of speckle contrast model is dis-
cussed in Sec. 5. Finally, the conclusion about these results is
shown in Sec. 6.

2 Theory

2.1 Diffuse Speckle Contrast Analysis

The transport of electric field autocorrelation function
G1ðr; τÞ ¼ hEðr; tÞE�ðr; tþ τÞi in multiple scattering media
is governed by the CDE23,30
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where μ 0
s is the reduced scattering coefficient, μa is the absorp-

tion coefficient, k0 is the magnitude of the light wave vector in
the medium, αð0 − 1Þ accounts for the presence of static scat-
terers and is the fraction of moving scatterers to the total number
of scatterers in the medium, SðrÞ is the light-source distribution,
and hΔr2ðτÞi is the mean square displacement (MSD) of the
moving scatterers (i.e., red blood cells) in time τ. Usually,
MSD has been modeled as either unordered (Brownian) motion
with hΔr2ðτÞi ¼ 6DBτ, where DB is the particle diffusion coef-
ficient, or ordered flow with hΔr2ðτÞi ¼ v2τ2, where v is the
root-mean-square speed of the scatterers. Most studies show
that the Brownian motion model results in a better fit to the
experimental measurements than the random flow model. In
addition, other models31–33 have been used to consider the differ-
ent types of motion.

The solutions G1ðr; τÞ can be obtained analytically in stan-
dard geometries.22,23,30 For the semi-infinite geometry, the
Green’s function G1ðr; τÞ of Brownian motion at a distance r
from the source is given by
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where KðτÞ ¼ ½3μ 0
sμa þ 6μ 02

s k20αDBτ�1∕2, r1 ¼ ½r2 þ l2tr�1∕2,
r2 ¼ ½r2 þ ðltr þ 2zbÞ2�1∕2, ltr ¼ 1∕μ 0

s, r is the SD separation,
zb ¼ 2ð1 − ReffÞ∕3μ 0

sð1þ ReffÞ, and Reff is the effective reflec-
tion coefficient accounting for the index mismatch between the

tissue and surrounding medium.34 The normalized electric field
correlation function g1ðr; τÞ is shown as

EQ-TARGET;temp:intralink-;e003;326;730g1ðr; τÞ ¼ G1ðr; τÞ∕G1ðr; 0Þ: (3)

Traditionally, for DCS the motion of scattering particles can
be obtained in this geometry from the measured intensity auto-
correlation function g2ðr; τÞ of one single speckle by the Siegert
relation g2ðr; τÞ ¼ 1þ βjg1ðr; τÞj2, where β is a constant deter-
mined by experimental setup.35 Meanwhile, the motion of scat-
tering particles will also result in the reduction of the detected
laser speckle contrast for a given exposure time. The following
equation 24 shows the relationship between speckle contrast and
the autocorrelation function g1ðr; τÞ in terms of the exposure
time T

EQ-TARGET;temp:intralink-;e004;326;589K2ðTÞ ¼ 2β

T

Z
T

0

ð1 − τ∕TÞ½g1ðr; τÞ�2dτ: (4)

Usually, the form of speckle contrast depends on the form of
g1ðr; τÞ which is based on the number of scattering events and
the type of particle motion. Table 1 shows three analytical forms
of speckle contrast for three forms of g1ðr; τÞ that are commonly
used in LSCI literatures. Here, x ¼ T∕τc and τc is defined as the
correlation time at which the autocorrelation function is equal to
the value of 1∕e. For DSCA, we note that the combination of the
Green’s solution g1ðr; τÞ in Eq. (3) and the expression in Eq. (4)
can also be used to obtain dynamic property from the measure-
ments of speckle contrast at different SD separations or exposure
times.36,37 Therefore, it is necessary to derive, a general analyti-
cal expression of speckle contrast for the medium with an
absorption coefficient μa, a reduced scattering coefficient μ 0

s,
and a blood flow index αDB.

Substituting Eq. (3) into Eq. (4), the speckle contrast expres-
sion can be written as
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× ðK2
0 þ FτÞ1∕2�dτ; (5)

where K0 ¼ Kðτ ¼ 0Þ ¼ ½3μ 0
sμa�1∕2, F ¼ 6μ 02

s k20αDB, and
G0 ¼ 4πG1ðr; 0Þ∕3μ 0

s. K0 and G0 have units of cm−1, and F
has units of cm−2∕s. Equation (5) is a summation of speckle
contrast calculated by the form that is similar to the form
g1ðxÞ ¼ expð−x1∕2Þ in Table 1. The presence of optical prop-
erty (K0) makes this calculation process more complex. The
resulting equation, an expression for speckle contrast can be
given by

Table 1 Forms of K 2ðxÞ for three forms of commonly used g1ðxÞ.

g1ðx ¼ τ∕τcÞ K 2ðx ¼ T∕τcÞ
expð−xÞ βðe−2x − 1þ 2xÞ∕ð2x2Þ

expð− ffiffiffi
x

p Þ β½ð3þ 6
ffiffiffi
x

p þ 4xÞe−2
ffiffiffi
x

p
− 3þ 2x �∕ð2x2Þ

expð−x2Þ β½e−2x2 − 1þ ffiffiffiffiffiffi
2π

p
xerfð ffiffiffi

2
p

xÞ�∕ð2x2Þ
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Equation (6) is a general formula that describes the typical
behavior of speckle contrast K with respect to the exposure time
T and the SD separation r. For a given tissue, this equation pro-
vides us a physical model to obtain the dynamic property αDB
of the diffuse media from the measurements of speckle contrast
K by MESI. In the following section, we will use Eq. (6) to
calculate the corresponding speckle contrast as a function of
exposure time and the SD separation.

2.2 Linear Approximation for Diffuse Speckle
Contrast Analysis

The MESI uses the dependence of the speckle contrast on cam-
era exposure time via a mathematical model (Table 1) to obtain
blood flow changes by extracting the characteristic correlation
time of the speckles. With the analytical expression of Eq. (6),
the accurate estimation of particles’ Brownian motion can be
obtained from speckle contrast measurements at multiple expo-
sure times. However, the speckle contrast model of Eq. (6) in the
DSCA is so complicated that this nonlinear fitting may be very
time-consuming and even may result in nonconvergence for
some speckle contrast measurements in many practical condi-
tions. To make MESI work well in DSCA, we need to develop
a simpler mathematical model to provide comparable accurate
measurements of particles’ Brownian motion compared with
Eq. (6). In this section, we discuss the linear approximation,
i.e., the linear relation between 1∕K2 and exposure time T.

The inverse of speckle contrast can be written as
EQ-TARGET;temp:intralink-;e007;63;305
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where χ has units of cm−2 and γðTÞ has units of cm−4.
Rearranging Eq. (7), 1∕K2ðr; TÞ can be described by
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where λðTÞ is dimensionless. We note that λðTÞ decreases with
the increasing of exposure time T. λðTÞ has the maximum value

λðTÞmax ¼ 1 when the exposure time is equal to 0. On the other
hand, when the exposure time tends to be infinite, λðTÞ has the
minimum value and can be written as
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Xijð0Þ: (9)

Then 1∕K2ðr; TÞ is bounded by two lines with the same
slope (kslope ¼ F∕8βχ), i.e.,
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When the exposure time is larger than correlation time, the
change of λðTÞ due to the change of T is relatively smaller than
1∕K2ðr; TÞ in Eq. (10). Therefore, 1∕K2ðr; TÞ can be approx-
imatively described by a linear equation
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where bin is the intercept and is within the range determined by
Eq. (10). bin can be obtained from the linear fitting of the mea-
surements 1∕K2 at different exposure times. We note that the
slope kslope of this linear equation provides the ability to extract
the flow information αDB. Compared with Eq. (6), this linear
equation [Eq. (11)] has the advantage of simplicity. We next
quantify the range of exposure time for which this linear
approximation can be accurately employed.

The theoretical 1∕K2 values were calculated from the ana-
lytical solution of Eq. (6) at the SD separation r ¼ 1 cm as
shown in Fig. 1(a). Here we have used μa ¼ 0.1 cm−1,
μ 0
s ¼ 10 cm−1, αDB ¼ 2 × 10−8 cm2∕s, the medium refractive

index n ¼ 1.33, β ¼ 1, and λ ¼ 671 nm for the calculation.
Figure 1(a) shows the relation between 1∕K2 and T (ms in
units) can be described by the linear fitting 1∕K2 ¼ 28.65T þ
0.77 (R2 ¼ 1) for a wide range of exposure times. We calculated
the theoretical value of kslope and the range of bin by Eqs. (11)
and (9), i.e., kslope ¼ 28.70 ms−1 and 0.613 ≤ bin ≤ 1. We note
that good agreement between the linear fitting in Fig. 1(a) and
the theoretical value is found, and the difference of kslope is rel-
atively small. In addition, for more effectively observing this
linear fitting at small exposure times, Fig. 1(b) shows the com-
parison results of speckle contrast calculated by Eq. (6) and this
linear fitting (red line), respectively. The green lines in Fig. 1(b)
represent theoretical K2 from the linear equation with
bin ¼ 0.613 and bin ¼ 1, respectively. Note that a log time
scale in Fig. 1(b) has the same exposure time as a linear
time scale in Fig. 1(a), and is used to better observe the
shape of each curve. As shown in Fig. 1(b), when the exposure
time is smaller than the correlation time [τc ¼ 0.035 ms

obtained from g1ðr; τÞ], this linear fitting has some obvious dis-
crepancies. The shorter exposure time makes bin tend to be 1 and
the change in bin results in a larger fluctuation in K2

when T < τc.
We note that kslope ¼ 28.65 ms−1 and bin ¼ 0.77 in Fig. 1(a)

were obtained by fitting the theoretical 1∕K2 values at multiple
exposure times. In addition, the numerical slope values kslopeðTÞ
at different exposure times can be obtained by the relation
kslopeðTÞ ¼ ð1∕K2 − binÞ∕T in which the calculated 1∕K2 and
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bin ¼ 0.77 in Fig. 1(a) were used. Figure 1(b) plots the compari-
son results between these numerical values kslopeðTÞ (blue
square) and kslope ¼ 28.70 ms−1 (blue line) and shows that
the choice of the linear approximation model is accurate
when T > τc. In addition, we note that the theoretical kslope ¼
28.70 ms−1 is nearly equal to the inverse of the correlation time
1∕τc ¼ 28.60 ms−1. Theoretical demonstration of this equiva-
lence is described and given in Appendix A. Thus, the use of
this linear approximation can provide comparable accurate mea-
surements of flow information αDB from kslope.

3 Experimental Method

3.1 Tissue Simulating Phantoms

To demonstrate that we can use kslope to extract the dynamic
property of a diffusive medium, we have designed a phantom
experiment as shown in Fig. 2. Liquid phantom comprises
Intralipid (30%, Fresenius Kabi, China), India ink (Black
4001, Pelikan, Germany), and distilled water. The theory and
details of Intralipid including optical properties and particle
radius were described in Ref. 38. The Intralipid particles in
liquid phantom provided Brownian motion and the reduced scat-
tering coefficient μ 0

s of the phantom. India ink behaved as the
absorber and controlled the absorption coefficient μa of the
phantom. The optical properties of India ink show larger
brand-to-brand and batch-to-batch variations.39 However, the

ratio (μa∕μe) between the absorption and the extinction coeffi-
cient μe of India ink remains constant.39 Therefore, we have
measured the extinction coefficient of India ink used in this
paper at λ ¼ 671 nm by an experimental setup described in
Ref. 40. The extinction coefficient μe was obtained from the
collimated transmittance as a function of the ink concentration,
i.e., μe ¼ 524.6 mm−1. Using the constant ratio μa∕μe ¼ 0.839
in Ref. 39, we obtained the absorption coefficient
μa ¼ 440.1 mm−1. The absorption coefficient of distilled
water is taken from Ref. 41. The 30% Intralipid and India
ink were diluted by distilled water to obtain the desired
optical properties of the phantom with μ 0

s ¼ 10 cm−1 and
μa ¼ 0.1 cm−1.

A continuous laser source at 671 nm (CNI MRL-III-671,
100 mW) was coupled to a 200 μm multimodel optical fiber
and illuminated the surface of the phantom. The backscattering
speckle patterns were recorded by a 12-bit CCD camera (IMC-
140F, Imi Tech, Korea). A lens with f ¼ 50 mm and f∕# ¼ 8
was used to provide the field of view 1.4 cm × 1.2 cm, resulting
in a pixel diameter of 1.0 × 10−3 cm. The transparent container
filled by the liquid had the square cross section of 10 cm size.

3.2 Brownian Motion of the Particles in Phantoms

To verify the experimental results, we estimated the value of the
Brownian diffusion coefficient based on the Stokes–Einstein
formula as a comparison. The Intralipid particles in phantoms
provided Brownian motion and all Intralipid scatterers in the
phantom were considered dynamic with α ¼ 1. Then the effec-
tive Brownian diffusion coefficient should be equal to the
Einstein diffusion coefficient DB-Einstein

EQ-TARGET;temp:intralink-;e012;326;172DB-Einstein ¼
kBT
6πRη

; (12)

where kB is the Boltzmann constant, T is the temperature, R is
the radius of the particles, and η is the viscosity. The viscosity of
the phantom at 18°C was measured by a viscometer with a value
of 1.10� 0.031 cp (centipoise). The diameters of the particles
vary from 25 nm to hundreds of nm for the Intralipid and the
average radius of Intralipid particles was estimated as 87.1 nm
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Fig. 2 Schematic diagram of the experimental setup using the
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from Ref. 38. Then the Brownian diffusion coefficient can be
calculated by the measured viscosity and the particle radius,
i.e., DB-Einstein ¼ 2.22 × 10−8 cm2∕s.

3.3 Data Analysis

We further present an experiment where the Brownian diffusion
coefficients at different SD separations were obtained from the
speckle contrast measurements at different exposure times. We
have defined seven detector regions with a size of 15 × 15 pixels
(0.15 × 0.15 mm2) at different SD separations ranging from
0.6 to 1.8 cm. For each SD separation, the exposure time ranging
from 0.1 to 1 ms with a step size of 0.1 ms was used and
40 images were obtained for each exposure time. For each
image of each detector, we used a 7 × 7window size to calculate
the speckle contrast and further obtained a spatially averaged
speckle contrast over the detector region. Then these speckle
contrasts were temporally averaged over 40 images.
Meanwhile, for reducing the influence of the dark and shot
noise36,37,42 on the calculation of speckle contrast, we used
the method described in Ref. 36 to correct the influence of
the noise.

The Brownian diffusion coefficient DB was obtained by two
different ways. One was that a non-linear least squares fit written
by MATLAB (Lsqcurvefit with Levenberg–Marquardt algo-
rithm, Mathwork, Inc.) was performed to obtainDB by minimiz-
ing the difference between the measured speckle contrasts
versus multiple exposure times and the analytical solution of
Eq. (6) with known optical property. The other way was the lin-
ear fitting and DB was obtained from the slope of the linear fit-
ting. We note that β depending on experimental condition was
a priori estimated from the static speckle contrast, which made
the nonlinear fitting process computationally less intensive and
the linear fitting to have the ability to obtain DB from kslope.

4 Results

4.1 Validation with Theoretical Data

We tested linear approximation model using the theoretical data
(Fig. 3), as well as experimental data from the liquid phantom
(Figs. 4 and 5). The theoretical speckle contrast data were cal-
culated from analytical solution of Eq. (6) with β ¼ 0.124. The

parameters for the calculated data, such as optical properties,
β, Brownian diffusion coefficient DB, exposure time, and SD
separation etc., were the same as the experiment. Figure 3(a)
shows the theoretical 1∕K2 for seven SD separations plotted
as a function of exposure time. The linear fitting was then
applied to the theoretical speckle contrast at exposure times
ranging from 0.1 to 1 ms with a step size of 0.1 ms and the
goodness of fit was very high (the averaged R2 over seven
fits ¼ 0.9999). The obtained parameter DB-linear from kslope is
compared with the theoretical DB as shown in Fig. 3(b).
Good agreement between the calculated and actual DB is
found for seven SD separations and the relative error is no
more than 0.57%. In addition, the intercept bin of the linear fit-
ting at different SD separations is also shown in Fig. 3(b). The
black dashed lines represent the upper and lower bound of the
intercept, which were calculated from Eq. (10). We note that the
intercept bin decreases with the increasing of SD separation,
which is a consequence of the fact that when SD separation
increases, the autocorrelation function decays more quickly
and the correlation time decreases. In summary, these theoretical
results provide the evidence in favor of our linear approxima-
tion model.

4.2 Validation with Experimental Data

The speckle contrasts at different SD separations are plotted
against the exposure time as shown in Fig. 4(a). It can be
observed that for all exposure times, we have usable speckle
contrast measurements up to 1.0 cm. When the exposure
time is increased to 0.3 ms, the SD separation is extended to
1.8 cm. Meanwhile, the speckle contrast curves of larger SD
separation decay more quickly with exposure time. The speckle
contrast measurements of each SD separation were then fitted to
Eq. (6) using the nonlinear least square method and the esti-
mated value of β ¼ 0.124. Figure 4(a) clearly shows that the
speckle contrast model of Eq. (6) fits the experimental data
very well and the calculated Brownian diffusion coefficient
DB is shown in Fig. 4(b). The Brownian diffusion coefficient
DB is not expected to change along the SD separation.
Indeed, the Brownian diffusion coefficient DB shows good
stability with a mean DB of 2.14 × 10−8 cm2∕s and standard
deviation between SD separation of 0.079 × 10−8 cm2∕s,
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which is in agreement with the measured value
DB-Einstein ¼ 2.22 × 10−8 cm2∕s.

After showing that the speckle contrast model of Eq. (6) is
able to measure DB, we present the performance of the linear
approximation model in DSCA as shown in Fig. 5. Figure 5(a)

shows that the 1∕K2 measurements follow a linear relationship
with exposure time and the average R2 over seven fits is 0.995.
Then the Brownian diffusion coefficient DB-linear and bin were
calculated from the linear fitting by the estimated value of β
and Eq. (11). The Brownian diffusion coefficient DB-linear in
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Fig. 5(b) also shows good stability along SD separation and
has a mean of 2.12 × 10−8 cm2∕s. The standard deviation of
DB-linear between SD separations is 0.095 × 10−8 cm2∕s and the
mean standard deviation of DB-linear is 0.052 × 10−8 cm2∕s.
Figure 5(c) shows the comparison result of bin with the theoreti-
cal results in Fig. 3(b) [red line in Fig. 5(c)]. Both results are
again in agreement with the theoretical value. We note that
the percentage errors in estimates of bin increase with the
increasing of SD separation, which is due to the speckle contrast
sensitivity43,44 for exposure time at different SD separations. In
addition, we have quantified the difference between DB-linear
and DB obtained by the speckle contrast model of Eq. (6) in
Fig. 4(b). Figure 5(d) shows that this difference is relatively
small and the relative error is no more than 5% for different
SD separations. Thus, this linear approximation model can pro-
vide comparable accurate measurement of the Brownian diffu-
sion coefficient compared with the speckle contrast model
of Eq. (6).

5 Discussion
The DSCA has been employed extensively in the biomedical
optics24,25,45–47 because of its simplicity. In order to make the
recovery of flow information from speckle contrast measure-
ments, it is necessary to obtain the speckle contrast analytical
models that have been already well established in the LSCI.
In this work, we first deduced the theoretical behavior of speckle
contrast with respect to exposure time and SD separation as
shown in Eq. (6). The speckle contrast measurements were
then fitted to Eq. (6) to obtain a quantitative recovery of effective
dynamic parameter DB as shown in Fig. 4. Meanwhile, we have
demonstrated the accuracy of the linear relation between 1∕K2

and exposure time in both theory (Figs. 1 and 3) and experimen-
tal data (Fig. 5). The theoretical behavior of 1∕K2 with respect to
the exposure time can be essentially separated in two parts, one
with a fixed slope kslopeT and the other λðTÞ as shown in Eq. (8).
λðTÞ depends on the exposure time and decreases with the
increasing of the exposure time. Therefore, the theoretical
1∕K2 is bounded by two lines with the same slope kslope.
When the exposure time is larger than correlation time, the
change in λðTÞ is relatively smaller than 1∕K2 and then
1∕K2 can be approximatively described by a linear equation
of Eq. (11) within the range of two lines. To validate the

theoretical model, we have performed experiments in tissue
liquid phantoms. Our results show that it is possible to accu-
rately obtain the Brownian diffusion coefficient DB-linear at dif-
ferent SD separations from the slope kslope of this linear relation
by a direct comparison to the theoretical model of Eq. (6).
Furthermore, we have demonstrated that kslope is equal to the
inverse of correlation time (1∕τc) of the speckle as shown in
Appendix A. This agreement indicates that the Brownian diffu-
sion coefficient also can be rapidly recovered from the correla-
tion time of the measured g2ðr; τÞ curve by DCS. Meanwhile,
for actual applications, some important effects on the DSCA
need further to be discussed.

5.1 Dependence of Speckle Contrast on
Source–Detector Separation

We have used the dependence of speckle contrast on the expo-
sure time at a certain SD separation to obtain DB as mentioned
above. In fact, the measurement of DB also can be performed by
the speckle contrast measurements at multiple SD separations
for a fixed exposure time as shown in Fig. 6. The nonlinear
least square method is used in Fig. 6(a) to describe the depend-
ence of speckle contrast on SD separation by Eq. (6). It can be
observed that we use the exposure time in Fig. 6(b) at which we
have speckle contrast measurements up to 1.8 cm. The fitted DB
in Fig. 6(b) has a mean of 2.13 × 10−8 cm2∕s, which is again in
agreement with the value of DB-Einstein ¼ 2.22 × 10−8 cm2∕s.
Thus, the different fitting ways of Eq. (6), i.e., the dependence
of speckle contrast on multiple exposure time, or SD separa-
tions, are both valid to obtain DB for DSCA.

5.2 Influence of Optical Property on
DB Measurements

DSCA is not inherently able to measure DB without a priori
knowledge of the optical properties of the diffusive medium.
We have demonstrated that DB can be calculated from the cal-
culated kslope of the linear approximation model using the known
μ 0
s and μa. However, the inaccurate estimation of μ 0

s and μa will
result in the error in the calculated DB. Therefore, we need to
theoretically quantify the flow index DB errors due to the inac-
curate estimation of μ 0

s and μa. The percentage error is defined as
½ðinaccurate − trueÞ∕true� × 100%.DB-True calculated from kslope
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using the true value of μ 0
s-True and μa-True is considered as true

value. DB-Inac is considered as an inaccurate value which is cal-
culated from the inaccurate value of μ 0

s-Inac and μa-Inac. Then the
percentage errors for μ 0

s and μa are ½ðμ 0
s-Inac − μ 0

s-TrueÞ∕μ 0
s-True� ×

100% and ½ðμa-Inac − μa-TrueÞ∕μa-True� × 100%, respectively. The
percentage error of DB is written as

EQ-TARGET;temp:intralink-;e013;63;686Error inDB ¼
�
μ 0
s-True

μ 0
s-Inac

×
χðμ 0

s-Inac; μa-InacÞ
χðμ 0

s-True; μa-TrueÞ
− 1

�
× 100%:

(13)

Equation (13) shows that the laser wavelength and the
medium refractive index do not play a role in determining
the error of the calculated DB due to the variation of optical
property. We note that the authors26 have used liquid phantoms
with controlled variations of optical properties to isolate the in-
fluence of μ 0

s and μa on the accuracy of DB by the analysis of
g2ðr; τÞ curve in DCS. In fact, the influence of μ 0

s and μa on the
accuracy of DB depends on the correlation time τc of g2ðr; τÞ
curve. Theoretically, DSCA is obtained from g2ðr; τÞ by tempo-
ral integration and we have demonstrated that kslope is equal to
1∕τc in Appendix A. Therefore, the theoretical result of Eq. (13)
can be used to demonstrate the experimental results in Ref. 26.
Figure 7 shows the influence of the percentage errors for μ 0

s and
μa on the percentage DB error. The parameters used for the
calculation of Eq. (13), including μ 0

s-True from 0.05 to
0.2 cm−1, μa-True from 4 to 16 cm−1, SD separation 2.8 cm,
μ 0
s-Inac ¼ 10 cm−1, and μa-Inac ¼ 0.125 cm−1, are the same as

Ref. 26. As shown in Fig. 7, μ 0
s has a much greater influence

on the estimates of DB than μa. Underestimated μ 0
s or

μa − 37.5% results in DB error of þ112% or −17%, and over-
estimated μ 0

s or μa þ150% leads to−77% orþ39% regardless of
the wavelengths used, which are in good agreement with the
experimental results in Ref. 26. These theoretical results further
provide the evidence in favor of the works in Ref. 26. In addi-
tion, we note that the error in DB due to other ranges of optical
property at different SD separations can also be obtained
from Eq. (13).

5.3 Influence of Exposure Time on Diffuse Speckle
Contrast Analysis

Similar to LSCI, the exposure time also plays an important role
in DSCA. In this paper, the range of exposure time 0.1 to 1 ms

was used to obtain the Brownian diffusion coefficient, consid-
ering the sensitivity of speckle contrast and SNR. Unlike LCSI,
the use of multiple exposures does not capture the full shape of
1∕K2 with exposure time T for DSCA, especially for the expo-
sure time in which the speckles have not decorrelated.
Therefore, it is difficult to separate the value of β and DB by
performing the nonlinear fitting of the multiple-exposure mea-
surements to the speckle contrast model of Eq. (6). Here a priori
estimated β was used in this paper to reduce the computational
complexity of the fitting process. In fact, the exposure time can
be further reduced but this results in reducing SNR. These
effects need to be further discussed in the future. In addition,
the number of the exposure times needed for the convergence
of the linear model and the computational simplicity make
this linear model a relatively fast method.

5.4 Accuracy of Commonly Used Speckle Contrast
Models

As a comparison, we also show the accuracy of the most com-
monly used speckle contrast expressions in Table 1. As shown in
Fig. 8, the speckle contrast model calculated by exponential
form g1ðxÞ ¼ expð−xÞ provides a good match to the shape of
speckle contrast decay in the DSCA. The speckle contrast K2

in Fig. 8 is the same as Fig. 1(b). The differences among the
three models are more prominent at the lower exposure time.
The decay provided by the speckle contrast function calculated
by g1ðxÞ ¼ expð−x1∕2Þ appears too fast, while the decay pre-
dicted by g1ðxÞ ¼ expð−x2Þ shows too slow. We note that
the difference among the three models is mostly related to
the form of g1ðr; τÞ at the small delay-time. Meanwhile, we
can simplify the correlation function g1ðr; τÞ to exponential
at the small delay-time (see Appendix B), i.e.,

EQ-TARGET;temp:intralink-;e014;326;392g1ðr; τÞ ¼ exp

�
−

Fr21τ
2ðr1K0 þ 1Þ

�
: (14)

Therefore, the speckle contrast model calculated by exponen-
tial form has the smallest error for the three models and the
relative error of the fitted parameter τc for this model is
9.72%. However, compared with the speckle contrast model
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of Eq. (6), this model calculated by exponential form is not able
to accurately extract DB.

6 Conclusions
In summary, we have deduced and experimentally demonstrated
the ability of the speckle contrast model of Eq. (6) in DSCA to
quantitatively obtain dynamic parameters DB of diffuse
medium, using the dependence of speckle contrast on exposure
time and the SD separation. Furthermore, this speckle contrast
model can be simplified to be a linear approximation model and
the slope kslope of this linear relation is equal to the inverse of
correlation time of the speckles. Therefore, the Brownian diffu-
sion coefficient DB of the turbid media can be rapidly obtained
from the slope of this linear relation. The measurement of DB
from this linear model is more accurate compared with speckle
contrast model of Eq. (6). Meanwhile, utilizing the kslope expres-
sion, we also theoretically quantify the measured DB errors due
to the inaccurate estimation of the optical properties. These
results facilitate the quantitative flow measurement in DSCA.

Appendix A
To demonstrate kslope is equal to the inverse of correlation time
1∕τc, first note that the Green’s function g1ðr; τÞ is derived from

the radiative transfer equation using diffusion approximation.
Usually diffuse approximation is valid when the source–detector
separation r is much greater than the transport mean-free path,
i.e., r ≫ ltr. So r2 can be approximately given by

EQ-TARGET;temp:intralink-;e015;326;708r2 ¼ ½r21 þ 2z2�1∕2 ≈ r1 þ
z2

r1
;

1

r2
≈

1

r1

�
1 −

z2

r21

�
; (15)

where z ¼ ½2zbðzb þ ltrÞ�1∕2. The Green’s function G1ðr; τÞ of
Brownian motion is shown as

EQ-TARGET;temp:intralink-;e016;326;641G1ðr; τÞ ¼
3μ 0

s

4πr1

�
exp½−KðτÞr1� −

r1
r2

exp½−KðτÞr2�
�
;

(16)

where KðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0 þ Fτ
p

. Since the difference between r1 and
r2 is relatively small, Kðτ ¼ 1∕kslopeÞ can be written as

EQ-TARGET;temp:intralink-;e017;326;560K

�
τ ¼ 1

kslope

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0 þ 8χ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0 þ
4

G2
0

X2
i¼1

X2
j¼1

ð−1Þiþj

rirj
e−K0ðriþrjÞ 1þ K0ðri þ rjÞ

ðri þ rjÞ2

vuut

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0 þ
4½1þ K0ðr1 þ r2Þ�

G2
0ðr1 þ r2Þ2

X2
i¼1

X2
j¼1

ð−1Þiþj

rirj
e−K0ðriþrjÞ

vuut :

(17)

We note that G0 is defined as

EQ-TARGET;temp:intralink-;e018;326;407G2
0 ¼

�
4π

3μ 0
s
G1ðr; 0Þ

�
2

¼
X2
i¼1

X2
j¼1

ð−1Þiþj

rirj
e−K0ðriþrjÞ; (18)

which results in the expression for Kðτ ¼ 1∕kslopeÞ reducing to

EQ-TARGET;temp:intralink-;e019;326;345K

�
τ ¼ 1

kslope

�
¼ K0 þ

2

r1 þ r2
: (19)

Therefore, the autocorrelation function g1ðr; τÞ at τ ¼ 1∕kslope
can be approximately given by

EQ-TARGET;temp:intralink-;e020;63;201

g1

�
r;

1

kslope

�
¼

expð−K0r1Þ exp
�
−
r1 − r2
r1 þ r2

�
−
r1
r2

expð−K0r2Þ exp
�
−
r2 − r1
r1 þ r2

�

expð−K0r1Þ − r1
r2

expð−K0r2Þ
× expð−1Þ

≈ expð−1Þ: (20)

In addition, we also can obtain g1ðr; 1∕kslopeÞ by the means of
numerical computation as shown in Fig. 9. Both results have
demonstrated that kslope ¼ 1∕τc.

Appendix B
The semi-infinite solution of Green’s function g1ðr; τÞ can be
simplified to exponential at the small delay-time. As shown
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Fig. 9 Calculated ln½g1ðr ;1∕kslopeÞ� plotted as a function of SD sep-
aration r . g1ðr ; 1∕kslopeÞ is obtained by substituting the expression of
kslope to the autocorrelation function of Eq. (3). The difference
between kslope and 1∕τc decreases with the increasing of SD sepa-
ration. However, the difference is small enough and kslope is approx-
imately equal to 1∕τc . Here n ¼ 1.33, β ¼ 1, λ ¼ 671 nm,
μa ¼ 0.1 cm−1, and μ 0

s ¼ 10 cm−1.
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in Appendix A, the correlation function G1ðr; τÞ can be written
as
EQ-TARGET;temp:intralink-;e021;63;491

G1ðr; τÞ

¼ 3μ 0
s

4π

exp½−KðτÞr1�
r1

�
1 − exp

�
−
KðτÞz2
r1

��
1 −

z2

r21

��
:

(21)

When the time τ is small, Eq. (21) can be simplified to

EQ-TARGET;temp:intralink-;e022;63;400G1ðr; τÞ ≈
3μ 0

s

4π

z2 exp½−KðτÞr1�
r21

�
KðτÞ þ 1

r1

�
: (22)

So the electric field autocorrelation function g1ðr; τÞ at small
delay-time can be simplified to

EQ-TARGET;temp:intralink-;e023;63;332g1ðr; τÞ ¼
G1ðr; τÞ
G1ðr; 0Þ

≈ exp

�
−
Fr1τ
2K0

��
1þ Fr1τ

2K0ðr1K0 þ 1Þ
�
:

(23)

In the small delay-time exp½ Fr1τ
2K0ðr1K0þ1Þ� ≈ 1þ Fr1τ

2K0ðr1K0þ1Þ,
g1ðr; τÞ can be further simplified to be exponential

EQ-TARGET;temp:intralink-;e024;63;248g1ðr; τÞ ≈ exp

�
−

Fr21τ
2ðr1K0 þ 1Þ

�
: (24)

We note that this simplified Eq. (24) is different from the
result g1ðr; τÞ ≈ expð−Fr1τ∕2K0Þ in Ref. 48 which is
obtained from Eq. (23) in a more stringent limit, i.e.,
1þ Fr1τ∕½2K0ðr1K0 þ 1Þ� ≈ 1. This approximation g1ðr; τÞ ≈
expð−Fr1τ∕2K0Þ is valid only when the delay-time τ is very
small. Our result of Eq. (24) can provide comparatively accurate
approximation even in a larger range of delay-time as shown
in Fig. 10.
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