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Abstract

Significance: Prostate cancer is the most common cancer among men. An accurate diagnosis of
its severity at detection plays a major role in improving their survival. Recently, machine learning
models using biomarkers identified from Raman micro-spectroscopy discriminated intraductal
carcinoma of the prostate (IDC-P) from cancer tissue with a ≥85% detection accuracy and differ-
entiated high-grade prostatic intraepithelial neoplasia (HGPIN) from IDC-P with a ≥97.8%
accuracy.
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Aim: To improve the classification performance of machine learning models identifying differ-
ent types of prostate cancer tissue using a new dimensional reduction technique.

Approach: A radial basis function (RBF) kernel support vector machine (SVM) model was
trained on Raman spectra of prostate tissue from a 272-patient cohort (Centre hospitalier de
l’Université de Montréal, CHUM) and tested on two independent cohorts of 76 patients
[University Health Network (UHN)] and 135 patients (Centre hospitalier universitaire de
Québec-Université Laval, CHUQc-UL). Two types of engineered features were used.
Individual intensity features, i.e., Raman signal intensity measured at particular wavelengths
and novel Raman spectra fitted peak features consisting of peak heights and widths.

Results: Combining engineered features improved classification performance for the three afore-
mentioned classification tasks. The improvements for IDC-P/cancer classification for the UHN and
CHUQc-UL testing sets in accuracy, sensitivity, specificity, and area under the curve (AUC) are
(numbers in parenthesis are associated with the CHUQc-UL testing set): þ4% (þ8%), þ7%

(þ9%), þ2% (6%), þ9 (þ9) with respect to the current best models. Discrimination between
HGPIN and IDC-P was also improved in both testing cohorts:þ2.2% (þ1.7%),þ4.5% (þ3.6%),
þ0% (þ0%), þ2.3 (þ0). While no global improvements were obtained for the normal versus
cancer classification task [þ0% (−2%), þ0% (−3%), þ2% (−2%), þ4 (þ3)], the AUC was
improved in both testing sets.

Conclusions: Combining individual intensity features and novel Raman fitted peak features,
improved the classification performance on two independent and multicenter testing sets in com-
parison to using only individual intensity features.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.26.11.116501]
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1 Introduction

Intraductal carcinoma of the prostate (IDC-P) is an aggressive variant of prostate cancer (PC)
recognized as a distinct entity in 2016 by the World Health Organization classification.1 Current
biomarkers used by pathologists for IDC-P identification, phosphatase and tensin homolog loss,
and ETS-related gene overexpression, have low sensitivity limiting their use. However, by
comparing PC and IDC-P Raman spectra, high sensitivity (≥85%) biomarkers were recently
identified in our previous work and led to the first machine learning model for the diagnosis
of IDC-P using Raman micro-spectroscopy (RμS).2 In this past study, Raman spectra from three
institutes were collected independently to distinguish various types of prostate cancer on com-
pletely independent testing sets. Employing Raman spectroscopy for the identification of various
pathologies is currently well-established.3

One of the main challenges of using machine learning algorithms on Raman spectra is to
create, extract, and select features. Most common techniques consist of using individual inten-
sities and various complex feature selection methods, such as recursive feature elimination,4 ant
colony optimization,5,6 and L0-SVM, or adaptive boosting,7 to rank them and select the most
relevant ones. While some of these methods are much more powerful than others when only a
few dozens of individual Raman intensities are considered, all methods provide a very similar
classification accuracy when the number of retained features is higher than 50.8 Linear discrimi-
nant analysis accompanied with principal component analysis (PCA) is the most common
dimensionality reduction technique used in Raman spectroscopy.9–14 However, our group
showed that Raman peak fitting features have better predictive performances than PCA for
cancer/benign brain tissue classification.15
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In our previous study, features consisted of individual intensities of Raman bands, and the
machine learning algorithm was a linear support vector machine (L1-SVM) for feature selection
and an SVM with a radial basis function kernel (RBF-SVM) for classification.

In this new analysis, the same dataset, features, and machine learning architecture were kept,
but a new set of features was added. Those features were obtained by fitting a Gaussian function
on Raman peaks and extracting their heights and widths. Individual intensities of Raman bands
can be any band within a Raman peak, whereas fitted heights capture only the maximum of
peaks, but they differ since they are much less prone to stochastic noise. The algorithm used
to extract these new features is an improved version of the Raman peak fitting algorithm used in
Ref. 15. This algorithm was initially designed to extract height and width features of Raman
peaks to improve the interpretability of Raman signal in brain tissue by fitting only Raman peaks
that are constantly present in the brain Raman literature.

This present study aims to demonstrate that these two sets of features are complementary and
thus improve the classifying results of three PC tissue classification tasks: benign versus cancer,
cancer versus IDC-P, and high-grade prostatic intraepithelial neoplasia (HGPIN) versus IDC-P,
where the cancer dataset does not contain any IDC-P spectra and the benign dataset does not
contain any HGPIN spectra. Major modifications to the algorithm consisted of implementing an
algorithm that the finds most common peaks without requiring a previously established list of
Raman peaks, and improving the algorithm that identifies inflection points of peaks to obtain
more accurate width of peaks especially in signal regions with stochastic noise.

2 Methodology

2.1 Patient Samples and Imaging Method

The dataset consisted of 483 PC patients from three different institutions: Centre hospitalier de
l’Université de Montréal (CHUM), University Health Network (UHN), and Centre hospitalier
universitaire de Québec-Université Laval (CHUQc-UL). The characteristics of the dataset are
shown in Table 1. Tumor stages defines where cancer is present in prostate tissue; there are
three tumors stages: pT2 (organ confined), pT3a (extraprostatic extension or microscopic inva-
sion of bladder neck), and pT3b (seminal vesicle muscle wall invasion). The Gleason score
details the arrangement and pattern of cancer cells. There are five patterns, and the Gleason
score is equal to the sum of the most and second most common pattern present prostate tissues.
Confocal RμS measurements on formalin-fixed paraffin embedded tissue microarrays (TMAs)
of PC and IDC-P tissue were acquired as described in our previous work.2 Briefly, sections from
the TMAs were transferred onto aluminum slides with low Raman activity (Miro5011, Anomet,
Brampton, Ontario) and dewaxed according to the CHUM standard clinical dewaxing protocol.
Raman acquisitions were made using a confocal Raman microscope (Renishaw, Gloucestershire)
equipped with a 785-nm line focus laser and a grating of 1200 lines/mm allowing acquisition of
Raman shifts between 602 and 1726 cm−1. For each TMA, five accumulations of 10 s each at a
150-mW laser output power were acquired using a 50× objective with a 0.75 numerical aperture.
There were always four spectra taken per TMA core at four different locations, whereas the
number of TMA cores per patient varied between institutions. The diameter of TMA cores
ranged between 0.6 to 1.2 mm and the probed region corresponded to a rectangular area of
24 μm22 (8 μm × 3 μm, approximately corresponding to single-cell analysis). IDC-P identifica-
tion was done by two independent pathologists. All Raman spectra files are available in the
Dryad Digital Repository database.16

2.2 Data Preprocessing

The following data preprocessing procedures are applied to obtain each spectrum: (1) summed
the five accumulations of 10 s each, (2) remove cosmic rays, (3) remove background signal
produced by the aluminum slides and tissue fluorescence using the rolling ball algorithm,17

(4) apply standard normal variate (SNV) normalization, (5) average the four spectra of each
TMA core resulting in between 1 and 3 spectra per patient. During background removal, the
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rolling ball algorithm distorts, due to border effects, Raman signals by creating peaks that are not
present in the raw spectra. To avoid these artifacts, regions between 602 and 669 cm−1, as well as
between 1707 and 1726 cm−1 were removed.

A limitation of the rolling ball algorithm comes from the presence of a finite size structuring
element within the algorithm. At the beginning and end of a spectrum, half of this structuring
element extends past the range of spectra and causes distortions in the extracted Raman signals
due to this border effect. The magnitude of this effect depends on the smoothness of the signal
baseline. In this particular dataset, the baseline shows a step non-smooth gradient at the begin-
ning of the signal, which increases the distortion, and a smooth baseline at higher wavelengths. It
was determined, empirically, that to remove any residue due to this effect, signal regions between
602 and 669 cm−1 as well as between 1707 and 1726 cm−1 had to be removed, i.e., a portion of
the beginning and end of each spectrum.

The next preprocessing step is to fit Gaussian functions over the most common Raman peaks
present in the dataset. Since the Gaussian function is strictly positive, the minimum value of
SNV normalized spectra was subtracted from the entire dataset to obtain only positive values.

Table 1 Patient clinicopathological characteristics separated by institution: CHUM, Centre
hospitalier de l’Université de Montréal; CHUQc-UL, Centre hospitalier universitaire de Québec–
Université Laval; IDC-P, intraductal carcinoma of the prostate; IQR, interquartile range; PSA,
prostate-specific antigen; TMA, tissue microarray; UHN, University Health Network.

Characteristic

Institution

Training Testing

CHUM UHN CHUQc-UL

Number of patients 272 76 135

Median age in years at radical prostatectomy (IQR) 62 (58-66) 61 (57-66) 62 (59-67)

Median pre-operative PSA in μg∕l (IQR) 7.4 (5.1-11.9) 6.9 (5.2-10.7) 6.6 (4.9-9.1)

Radical prostatectomy gleason score, n (%) 265 67 133

≤3þ 3 139 (52) 14 (21) 10 (8)

3þ 4 74 (28) 34 (51) 69 (52)

4þ 3 22 (8) 14 (21) 42 (32)

≥4þ 4 30 (11) 5 (7) 12 (9)

Pathological tumor stage, n (%) 270 72 134

pT2 185 (69) 32 (44) 77 (57)

pT3a 60 (22) 32 (44) 41 (31)

pT3b 25 (9) 8 (11) 16 (12)

Presence of IDC-P among patients 15 (6) 14 (18) 15 (11)

Number of TMA cores per patient 1 1-3 1-6

Number of spectra per core 4 4 4

Number of spectra per patient 4 4-12 4-24

Number of spectra benign/cancer 99/272 49/204 68/253

Number of spectra cancer/IDC-P 272/112 191/139 253/104

Number of spectra HGPIN/IDC-P 170/112 23/22 30/28
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The peak fitting algorithm, which is an improvement of the algorithm first used in Ref. 15,
considers a peak only when it appears in at least 50% of spectra at the same location or within
�2 cm−1 and if its height is above a threshold height previously determined empirically. For
every peak, both inflection points are determined as well as the height of the maximum and
its position. The distance between inflection points is used to compute an approximate standard
deviation (σ) and to determine the fitting domain for a nonlinear least-squares regression
algorithm.18 This standard deviation, and the maximum and position of the peak determine the
three starting points given to the regression algorithm to fit a Gaussian over the wavelength
domain of a peak to obtain fitted heights and widths (standard deviation, σ). These values are
then SNV normalized and used as features.

2.3 Statistical Analysis

A machine learning model with several hyperparameters was trained on the CHUM dataset and
tested on two independent hospital cohorts: CHUQc-UL and UHN. Patient clinicopathological
characteristics and number of spectra of each classification task are shown in Table 1. The model
uses two types of features: individual features; intensity set, and peak features; peak set. To
determine the features in each set, two separate feature selection algorithms are used. The
selected features are then combined in a single feature vector and passed to the RBF kernel
SVM classifier. Before training a model on the CHUM dataset, cross validation (CV) is required
to determine the optimal value of the hyperparameters. For each classification task, the CV iden-
tifies the set of hyperparameters, through a grid search, that maximizes the area under the curve
(AUC) of the receiver-operator-characteristic (ROC) curve of the CHUM dataset for three in-
dependent models: one model using only the intensity features, one using only the peak features,
and a combined model that used both feature sets; intensityþ peak. Figure 1 shows a schematic
workflow of the statistical analysis.

2.4 Feature Engineering and Feature Selection

Two different sets of SVN normalized features were used for classification. The first set, inten-
sity, consists of individual intensity values of single Raman bands. To extract the most relevant
intensities, an L1 regularization linear SVM with one hyperparameter (regularization parameter
Cintensity) is utilized for feature ranking. The linear SVM assigns coefficients to individual inten-
sity features, which are then used to rank them by importance. Features that are close to one
another, which are most likely correlated and contain the same information, are removed using
the hyperparameter nneighbor. Every feature that is�nneighbor cm−1 from the feature with the high-
est coefficient is removed. The feature set is then updated, and the same procedure is applied for
the feature with the second-highest coefficient and so forth. For example, if the intensity features
with the highest coefficient has a Raman shift of 780 cm−1 and nneighbor ¼ 5, intensity features
with a Raman shift between 775 and 785 cm−1 will be removed. This procedure also reduces the
dimensionality of the feature set.

The second set, peak, consists of Raman peaks fitted with a Gaussian distribution. The height
and the width of these Gaussian fitted peaks are used as features. A linear SVM with L1 regu-
larization (regularization parameter Cpeak) is used to rank these engineered features by
importance.

To further reduce the number of features within each feature set, the kintensity and kpeak features
with the highest ranked coefficient are used for modeling and the others are discarded. Both
kintensity and kpeak are hyperparameters determined during CV.

2.5 Modeling and Cross Validation

An RBF kernel SVMwas used as a classifier. This algorithm has two hyperparameters: CRBF and
γ. A grid search was performed using CV to optimize the following hyperparameters: CRBF,
Cintensity, Cpeak, γ, kintensity, kpeak, and nneighbor. Both kintensity and kpeak ranged from 5 to 100,
CRBF ranged from 0.001 to 1, γ ranged from 0.001 to 0.01, nneighbor from 0 to 10, and
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Cintensity and Cpeak from 1 × 10−6 to 1 × 10−4. The CV scheme performed was a five repeat five-
fold CV. The combination of hyperparameters generating the model with the highest AUC value
was chosen to train the model using the complete training set. The selected model was then
applied to the two independent testing sets.

3 Results

Raman spectra of the CHUM cohort were designated as the training set, due to its larger number
of patients compared to the other two cohorts and to obtain a sufficiently large dataset for training
purposes, and the CHUQc-UL and UHN cohorts as testing sets. The five highest ranked features
of both feature sets along with their associated main vibrational mode and molecule are dis-
cussed in the following subsections for each classification task. The Raman shift of each feature
and of its associated Raman peak, found in the literature, are both reported. Table 2 presents the
classification performances for all three classification tasks for both testing sets. The threshold

Fig. 1 Data acquisition and machine learning workflow. Annotated stained TMAs are used to
guide Raman microspectroscopy measurements. Data are split into training (CHUM) and testing
sets (UHN & CHUQc-UL). A double nested five-fold CV is performed to determine the hyperpara-
meters through a randomized grid search. Feature selections on peak and intensity features are
done separately using linear kernel L1 SVM. Classification models are RBF kernel SVMs that use
selected features. The hyperparameter set that yields the highest AUC on training data is used to
build the final model (green), which is evaluated on predicting outcome on the testing set (orange).
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corresponding to the point closest-to-(0,1) corner was selected for each ROC to obtain accuracy,
sensitivity, and specificity values reported in Table 2. In all cases, classification performances of
the combined model were always equal or higher than results obtained using only one feature
type. Furthermore, using the intensity model yielded higher classification performances than
using the peak model, except for the classification of cancer/IDC-P tissues for the CHUQc-
UL testing set. The intensity model results are superior compared to our previous study
(‘previous’ column) for the classification of cancer/IDC-P and HGPIN/IDC-P, whereas the oppo-
site was observed for the benign/cancer classification task.

The method developed in Ref. 19 for the comparison of ROCs was used to test if improve-
ments were statistically significant. A comparison between previous, intensity, and peak model
versus the combined model was performed for both testing sets. For each comparison, a p-value
was obtained. All model comparisons were statistically significant for the benign/cancer clas-
sification (p-value ≤0.05) except for the comparison of intensity and combined models for both
testing sets. The p-values were 0.3414 and 0.2696 for the UHN and CHUQc-UL testing set,
respectively. While they are not significant, if a 0.05 threshold is adopted, the combination of
intensity and peak features is still a non-negligible improvement. All model comparisons were
statistically significant for the cancer/IDC-P classification task except for the peak and combined
model comparison for the CHUQc-UL testing. The previous and combined model comparison
for the UNH testing was the only statistically significant improvement for the HGPIN/IDC-P
classification.

3.1 Benign/Cancer Classification

The selected hyperparameters, optimized by cross-validated grid-search, for the intensity, peak,
and intensityþ peak models are : kintensity ¼ ð15; NA; 16Þ, CL1

intensity ¼ ð1 × 10−4; NA; 1 × 10−4Þ,
nneighbor ¼ ð5; NA; 6Þ, kpeak ¼ ðNA; 6;8Þ with CL1

peak ¼ ðNA; 1 × 10−6; 5 × 10−5Þ, CRBF ¼
ð0.07; 0.2; 0.06Þ, and γRBF ¼ ð5 × 10−3; 5 × 10−4; 5 × 10−3Þ, where NA stands for Not
Applicable, e.g., the intensity model does not have a kpeak hyperparameter and is thus NA.
Combining the two feature types improved the classification metrics for the UHN and CHUQc-
UL testing sets and, in both cases, the intensitymodelwas superior to the peakmodel. The difference
in classification performance [accuracy, sensitivity, specificity, AUC] between the intensity and
intensityþ peak feature sets for both training setswas:þ1%,þ0%,þ4%,þ2. Performancemetrics
obtained using the combined model compared to our previous study changed according to the fol-
lowing: þ0% (−5%), þ0% (−7%), þ2% (þ1%), þ4 (þ6). While some classification metric
decreased, the AUC increased for both testing sets. The results for the training set are similar to the
results obtained on the testing sets, i.e., a slight decreased in accuracy (−2%), sensitivity (−1%),
specificity (−4%), and an increased in AUC (þ3) while retaining similar uncertainties.

The average Raman spectra for both benign and cancer prostate tissue and the five highest
ranked features of each feature set are shown in Fig. 2. The description of the five best features
for each the peak and the intensity models are presented in Table 3 along with their respective
molecular assignments.23 For the peak height feature set, four Raman peaks ranging from 719 to
1032 cm−1 were increased in the average spectrum of benign tissue. DNA, RNA, proteins, and
amino acids (i.e., tryptophan, proline, valine, and phenylalanine) were the main biochemical
components associated with these peaks. The only feature associated with an increase in cancer
tissue was the peak at 1294 cm−1, which was assigned to lipids. For the intensity feature set, a
unique peak (1250 cm−1) associated with the β-sheet secondary structure of proteins was more
intense in the Raman spectrum of cancer tissue. There were also 4 Raman peaks increased in
benign tissue, from 719 to 1003 cm−1 and their molecular assignments are mostly DNA, RNA,
proteins, and amino acids (i.e., tyrosine, proline, and phenylalanine).

3.2 Cancer/IDC-P Classification

The optimal hyperparameters to classify cancer from IDC-P tissue using the (intensity, peak, and
intensityþ peak) models are: kintensity ¼ ð77; NA; 76Þ with CL1

intensity ¼ ð1 × 10−3; NA; 5 × 10−6Þ,
nneighbor ¼ ð7; NA; 8Þ, kpeak ¼ ðNA; 74; 90Þ with CL1

peak ¼ ðNA; 1 × 10−2; 1 × 10−2Þ, CRBF ¼
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ð2; 2; 5Þ, and γRBFpeak ¼ ð0.01; 0.01; 0.01Þ where NA stands for Not Applicable. The performance
metrics of the combined model for the UHN (CHUQc-UL) testing set improved our previous
results by:þ4% (þ8%),þ7% (þ9%),þ2% (þ6%),þ9 (þ9). It also improved the results on the
CHUM training set by: 2%, 1%, 3%, 4.7 while also decreasing the standard deviation by: −1%,
−3%, −1%, 2.7.

Table 3 Highest ranked features used for the classification of benign and malignant prostate
tissue found using a linear SVM with L1 regularization, and their associated Raman peaks.
Tentative molecular assignment of prostate Raman peaks based on the literature. The Raman
shift of the features (feature column) and of its associated Raman peak (peak, center column)
are reported.2,9–12,20–22

Feature set

Feature
position
(cm−1)

Raman peak
position
(cm−1)

Tissue type
associated

with increase
Main vibrational

modes Main molecules

Peak height 721 719–726 Benign Ring breathing
mode, C─S

DNA/RNA (adenine), protein

Peak height 744 742–746 Benign Ring breathing
mode

DNA/RNA (bases, thymine),
protein (tryptophan)

Peak height 932 935–937 Benign C─C stretch Protein (proline, valine,
α-helix)

Peak height 1028 1031–1032 Benign C─H stretch Protein (phenylalanine)

Peak height 1294 1296–1305 Cancer Fatty acid Lipid

Intensity 737 719–726 Benign Ring breathing
mode, C─S

DNA/RNA backbone,
protein (tyrosine)

Intensity 827 827–828 Benign O─P─O stretch,
ring breathing

DNA/RNA backbone,
protein (tyrosine)

Intensity 841 853 Benign C─C stretch,
ring breathing

Protein (proline, tyrosine)

Intensity 1011 1000–1003 Benign Symmetric ring
breathing

Protein (phenylalanine)

Intensity 1219 1242–1250 Cancer Amide III Protein (β-sheet)

721 cm−1 744 cm−1 932 cm−1 1028 cm−1 1294 cm−1

737 cm−1 827 cm−1 841 cm−1 1011 cm−1 1219 cm−1
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Fig. 2 Average Raman spectra of cancer (red, n ¼ 272) and benign (black, n ¼ 99) tissue anno-
tated with the five highest ranked individual intensity features (purple) and the five highest ranked
peak features (teal, for height features).
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The description of the five highest ranked features for each the peak and the intensity models
are shown in Fig. 3 and Table 4 along with their respective molecular assignments. Within
the five highest ranked peak features, three Raman peaks were increased in the average spectrum
of IDC-P compared to cancer tissue. These peaks were mostly associated with amino acids:
825 cm−1 (tyrosine), 1170 cm−1 (tyrosine), and 932 cm−1 (proline and valine). Raman peaks

825 cm−1 932 cm−1 1001 cm−1 1170 cm−1 1666 cm−1

944 cm−1 1005 cm−1 1254 cm−1 1266 cm−1 1478 cm−1

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Raman shift (cm−1)

In
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ns
ity

(a
. u

.)

IDC−P  (n = 112)
Cancer (n = 272)

Fig. 3 Average Raman spectra of cancer (red, n ¼ 272) and IDC-P (black, n ¼ 112) tissue along
with the 5 highest ranked individual intensity features (purple) and the five highest ranked peak
features (teal showing height features; blue showing width features).

Table 4 Highest ranked features used to classify intraductal carcinoma of the prostate and inva-
sive prostate cancer tissue found using a linear SVM with L1 regularization, and their associated
Raman peaks. Tentative molecular assignment of prostate Raman peaks based on the literature.
The Raman shift of the features (feature column) and of its associated Raman peak (peak, center
column) are reported.2,9–12,20–22

Feature set

Feature
position
(cm−1)

Raman peak
position
(cm−1)

Tissue type
associated

with increase
Main vibrational

modes Main molecules

Peak width 825 827–831 IDC-P O─P─O stretch,
ring breathing

DNA/RNA backbone, protein
(tyrosine)

Peak height 932 935–937 IDC-P C─C stretch Protein (proline, valine, α-helix)

Peak width 1001 1000–1003 Cancer Symmetric ring
breathing

Protein (phenylalanine)

Peak width 1170 1171 IDC-P C─H bend Protein (tyrosine)

Peak width 1666 1657–1667 Cancer C═O stretch,
Amide I

Protein (α-helix), lipid (fatty acid),
DNA/RNA (thymine)

Intensity 944 935–937 IDC-P C─C stretch Protein (proline, valine, α-helix)

Intensity 1005 1000–1003 IDC-P Symmetric ring
breathing

Protein (phenylalanine)

Intensity 1254 1242–1250 IDC-P Amide III Protein (β-sheet

Intensity 1266 1263 IDC-P Amide III DNA/RNA (thymine, adenine),
protein (α-helix)

Intensity 1478 1484 Cancer Ring breathing
mode

DNA/RNA (adenine, guanine)
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assigned to phenylalanine (1001 cm−1), protein, lipids, DNA, and RNA (1666 cm−1) were
reduced in IDC-P. For the intensity feature set, the 1484 cm−1 Raman peak, assigned to the
nucleobases adenine and guanine, was the single decreased peak in the average spectrum of
IDC-P. The four other Raman peaks, ranging from 944 to 1266 cm−1, were identified mostly
in IDC-P. The biochemical constituents associated with these peaks were predominately linked
to proteins: α-helix and β-sheet secondary structures, proline, valine, and phenylalanine.

3.3 HGPIN/IDC-P Classification

By using only the individual intensity features a classification with 100% AUC was obtained for
both testing sets, and combining both feature sets also yielded the same result. The optimal
hyperparameters for all three data sets were kpeak ¼ 42withCL1

peak ¼ 1 × 10−4, kintensity ¼ 49with

CL1
intensity ¼ 1 × 10−4, CRBF ¼ 3, γRBFpeak ¼ 0.003, and nneighbor ¼ 4. The improvements in accuracy,

sensitivity, specificity, and AUC with respect to our previous study were: þ2.2% (þ1.7%),
þ4.5% (þ3.6%), þ0% (þ0%), þ2.3 (þ0) for the UHN (CHUQc-UL) testing set. Those results
were obtained while also improving the result on the training set (CHUM) by: þ2.5%, þ0.8%,
þ2.9%, and þ2.4%.

Following the classification of IDC-P and HGPIN, the five highest ranked features were
assigned to specific molecules (Fig. 4 and Table 5). Only one feature was found to be a dominant
contributor for identifying HGPIN using the peak height feature set. More specifically, the
937 cm−1 Raman peak was identified as α-helix secondary structure of proteins and two amino
acids, proline and valine. The other four features, from 1001 to 1238 cm−1, were all increased in
the average spectrum of IDC-P tissue and were assigned to the β-sheet secondary structure of
proteins, phenylalanine, tryptophan, and tyrosine. For the classification using the intensity fea-
ture set, two Raman peaks were increased in HGPIN tissue: phenylalanine (1032 cm−1); α-helix
secondary structure of proteins, fatty acid, and the nucleobase thymine (1667 cm−1). Raman
peaks at 1003 cm−1 (phenylalanine) and at 1250 cm−1 (β-sheet) were mostly found in IDC-
P tissue. The carotenoid biochemical component (1152 cm−1) was a main contributor to the
IDC-P classification in both feature sets.

4 Discussion

The key difference in this analysis was the combination of the intensity and peak features, which
improves the AUC of all three classification tasks. Combining both types of features had more

952 cm−1 1001 cm−1 1152 cm−1 1204 cm−11238 cm−1

1000 cm−1 1041 cm−1 1151 cm−1 1235 cm−1 1697 cm−1
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IDC−P   (n = 112)
HGPIN (n = 170)

Fig. 4 Average Raman spectra of HGPIN (red, n ¼ 170) and IDC-P (black, n ¼ 112) tissue along
with the five highest ranked individual intensity features (purple) and the five highest ranked
peak features (teal, for height features).
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impact on the classification of IDC-P versus cancer than on benign versus cancer but could not
be appropriately quantified for HGPIN versus IDC-P since using only one type of feature was
enough to obtain a perfect classification score.

While the accuracy, sensitivity, and specificity of these results are lower than those of our
previous study for the classification of benign and malignant prostate tissue, the AUC increased
by þ4% for the UHN testing set, and þ6% for the CHUQc-UL testing set. In comparison, for
both testing sets, the AUC increased by 9% for the classification of IDC-P versus cancer. One
hypothesis that could explain the higher AUC improvement for the classification of IDC-P ver-
sus cancer is the presence of four width features within the five highest ranked features in the
IDC-P/cancer classification task and their absence in benign/cancer task (see Tables 3 and 4,
respectively). In the results section (Sec. 3) of this analysis, peak centers of individual intensity
of Raman bands and heights were reported but also compared to the most important features
of our previous study. In this particular case, it is the first time the widths of Raman peaks are
identified as being useful for classification purposes in a machine learning setting. Therefore,
for now, this observation is only factual and there is no interpretation. Raman spectra datasets
on various tissues for various classification tasks are required to learn if the width of peaks are
also relevant features for other applications.

Comparing the highest ranked individual intensity features of each classification task with
the highest ranked features found in our previous study2 reveals that both analyses identified
similar features. The intensity features of the cancer/benign and IDC-P/cancer tasks are
present within the 10 highest ranked features of our previous analysis and they are also
assigned to the type of tissue. As for the HGPIN/IDC-P task, there are only two similar fea-
tures. However, since in both cases the classification performance is near perfect, the highest
ranked features are likely interchangeable due to the large spectral difference between the two
tissue types.

Table 5 Highest ranked features used to classify high-grade prostatic intraepithelial neoplasia
and IDC-P found using a linear SVM with L1 regularization, and their associated Raman peaks.
Tentative molecular assignment of prostate Raman peaks based on the literature. The Raman
shift of the features (feature column) and of its associated Raman peak (peak, center column)
are reported.2,9–12,20–22

Feature set

Feature
position
(cm−1)

Raman peak
position
(cm−1)

Tissue type
associated

with increase
Main vibrational

modes Main molecules

Peak height 952 935–937 HGPIN C─C stretch Protein (proline, valine, α-helix)

Peak height 1001 1000–1003 IDC-P Symmetric ring
breathing

Protein (phenylalanine)

Peak height 1152 1152 IDC-P C─N and C─C
stretch

Protein, carotenoid

Peak height 1204 1206–1207 IDC-P C − C6H5 stretch Protein (phenylalanine,
tryptophan, tyrosine)

Peak height 1238 1242–1250 IDC-P Amide III Protein (β-sheet)

Intensity 1000 1000–1003 IDC-P Symmetric ring
breathing

Protein (phenylalanine)

Intensity 1041 1031–1032 HGPIN C─H stretch Protein (phenylalanine)

Intensity 1151 1152 IDC-P C─N and C─C
stretch

Protein, carotenoid

Intensity 1235 1242–1250 IDC-P Amide III Protein (β-sheet)

Intensity 1697 1657–1667 HGPIN C═O stretch,
amide I

Protein (α-helix), lipid (fatty
acid), DNA/RNA (thymine)
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The results obtained in this analysis using only the individual intensity features also yielded
improved results compared to those obtained in our previous analysis for two classification
tasks: cancer/IDP-C and HGPIN/IDC-P.

This is likely the result of a combination of several differences such as using the SVN nor-
malized individual intensities as input for the SVM L1 feature selection algorithm instead of
using SNV normalized spectra as in the PLUS study. The addition of the nneighbor hyperparameter
might also have contributed to improving the classification results.

A probable limiting factor for the classification performance of benign/cancer could be the
presence of different tumor stages and Gleason scores distributions in the training and testing
dataset (see Table 1). For example, the training and testing sets contain 139 and 28 spectra with a
Gleason score of ≤3þ 3, respectively, and contain 22 and 56 spectra with a Gleason score of
4þ 3 for the training and testing set, respectively. These distribution imbalances, both Gleason
score wise and tumor stage wise could explain the lower AUC score for the classification of
benign versus cancer tissue in comparison to IDC-P versus cancer. A follow-up study is planned
to investigate this.

The most important difference with respect to our previous result is the identification of
Raman peak widths as important biomarkers for the classification of IDC-P and invasive prostate
cancer tissue. These results further reinforce the usefulness of the clinical implementation of
Raman microscopy. By exploring an exhaustive list of feature selection algorithms, models more
readily transferable to the clinical workplace with a total number of features of ten or less will be
studied.
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