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ABSTRACT. Significance: Retinopathy of prematurity (ROP) poses a significant global threat to
childhood vision, necessitating effective screening strategies. This study addresses
the impact of color channels in fundus imaging on ROP diagnosis, emphasizing
the efficacy and safety of utilizing longer wavelengths, such as red or green for
enhanced depth information and improved diagnostic capabilities.

Aim: This study aims to assess the spectral effectiveness in color fundus photog-
raphy for the deep learning classification of ROP.

Approach: A convolutional neural network end-to-end classifier was utilized for
deep learning classification of normal, stage 1, stage 2, and stage 3 ROP fundus
images. The classification performances with individual-color-channel inputs, i.e.,
red, green, and blue, and multi-color-channel fusion architectures, including
early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared.

Results: For individual-color-channel inputs, similar performance was observed for
green channel (88.00% accuracy, 76.00% sensitivity, and 92.00% specificity) and
red channel (87.25% accuracy, 74.50% sensitivity, and 91.50% specificity), which is
substantially outperforming the blue channel (78.25% accuracy, 56.50% sensitivity,
and 85.50% specificity). For multi-color-channel fusion options, the early-fusion and
intermediate-fusion architecture showed almost the same performance when com-
pared to the green/red channel input, and they outperformed the late-fusion
architecture.

Conclusions: This study reveals that the classification of ROP stages can be effec-
tively achieved using either the green or red image alone. This finding enables the
exclusion of blue images, acknowledged for their increased susceptibility to light
toxicity.
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1 Introduction
Retinopathy of prematurity (ROP) occurs in premature infants due to underdeveloped retinal
vasculature at birth,1 causing abnormal blood vessel growth at the boundary of partially vascu-
larized and avascular retinal areas.2,3 ROP is the leading preventable cause of childhood blindness
worldwide.4,5 The severity of ROP is classified into five stages, corresponding to mild to severe
stages.6 Appropriate detection and accurate ROP diagnosis in premature infants is crucial to
prevent irreversible vision loss and associated visual developmental complications such as astig-
matism, myopia, glaucoma, cataracts, anisometropia, amblyopia, strabismus, and retinal
detachment.7,8

Color fundus photography is widely used for ROP screening and diagnosis.9 It involves
white light illumination for color fundus imaging. However, long-term exposure of a bright,
white light to the examined eye can be stressful for the patient. Moreover, blue spectrum of the
white light poses a particular concern for the retina due to its capacity to induce photochemical
damage to the cells and structures within the eye.10,11 As illustrated in Fig. 1, when applying a
thermal hazard weighting function, the risk of injury appears comparable across blue, green, and
red wavelengths. However, when evaluating photochemical hazards, the risk of injury is notably
higher for shorter wavelengths, in comparison to longer wavelengths.12 In principle, longer
wavelength light, such as red and near infrared light, has better illumination efficiency for fundus
imaging compared to shorter wavelength light, such as blue color.13–15 Longer wavelengths can
penetrate deeper into the ocular tissues due to reduced scattering and absorption coefficients
compared to shorter wavelength green and blue light. The wavelength dependent light efficiency
can reasonably explain why clinical fundus images are typically red oriented. Multi-spectral
fundus photography has revealed that blue and green fundus images are predominantly reflecting
retinal layer structure, while red fundus image consists of the information from both retinal and
choroidal layers.16,17 In other words, the red image has the potential to convey depth information
of the chorioretinal system more effectively than green and blue images. Hence, it is intriguing to
explore whether red fundus images can offer adequate information for ROP screening and
diagnosis.

Furthermore, the traditional trans-pupillary white light imaging in pediatric fundus assess-
ments faces another challenge, i.e., a limited field of view,18 which can lead to extended exami-
nation time and difficulty in evaluating the periphery of the retina. The trans pars plana approach
has been suggested as a solution, offering an ultra-wide field of view.19 The disparate penetration
of different white light wavelengths through the sclera, retina, and choroid15 has led to the pro-
posal of narrow-bandwidth multispectral imaging as a superior alternative to broad-spectrum
white light. With the increasing adoption of widefield multispectral imaging in pediatric fundus
evaluations, it is crucial to determine the effectiveness of specific illumination bands in detecting

Fig. 1 Wavelength-dependent hazard weighting functions based on ISO 15004-2:2007 for
aphakic photochemical and thermal hazard factors.
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retinal pathologies within this demographic. Given the limited multispectral datasets available for
ROP patients, we have segmented existing white light ROP fundus images into their constituent
color channels to evaluate whether certain spectra significantly influence the efficacy of classi-
fication algorithms. This research is intended to enhance our comprehension of the diagnostic
capabilities across various spectral domains, which could inform the selection of optimal wave-
lengths for future multispectral fundus imaging studies in the pediatric population.

Deep learning, a subset of machine learning, utilizes neural networks for knowledge acquis-
ition from data and performs tasks, such as image classification, segmentation, and detection. It
has shown significant advancements in various medical imaging applications.20–24 Previous ROP
classification studies mainly focused on direct use of color fundus images,25–29 with a limited
exploration of the green channel.30,31 The potential of the red channel for deep learning ROP
classification remains unexplored. Considering that the red channel captures information from
both the retina and choroid, providing enhanced depth details, we hypothesize that using the red
channel alone may offer sufficient information for effective deep learning ROP screening. This
study systematically evaluates the impact of individual-color-channel inputs and multi-color-
channel fusion options on deep learning ROP classification. In this study, we provide a com-
prehensive contribution, including a systematic evaluation of the impact of individual color chan-
nels on deep learning for ROP classification. Additionally, we assess the efficacy of combining
different color channels in fundus imaging by employing fusion strategies within deep learning
frameworks.

2 Methods

2.1 Data Acquisition and Pre-processing
This study was conducted in accordance with the ethical standards outlined in the Declaration of
Helsinki and was approved by the institutional review board of the University of Illinois Chicago.
We utilized a dataset comprising 200 color fundus images, distributed among four cohorts (nor-
mal, stage 1 ROP, stage 2 ROP, and stage 3 ROP), with 50 images in each category. This dataset
consisted of 158 distinct subjects, contributing images from a total of 200 eyes. These images
were from the dataset developed by the imaging and informatics for ROP consortium (i-ROP).
All images were obtained using the RetCam imaging system, with white and blue LED light
sources. The spectral response of the blue, green, and red channels ranges from 400 to
500 nm, 500 to 600 nm, and 600 to 700 nm, respectively.32,33 The dimensions of the original
color images were 1600 × 1200 × 3 for 37 images and 640 × 480 × 3 for 163 images. As illus-
trated in Fig. 2(a), images of the red channel [Fig. 2(a2)], the green channel [Fig. 2(a3)], and the
blue channel [Fig. 2(a4)] were separated from each color fundus image [Fig. 2(a1)] for evaluating
the effects of individual-color-channel images on deep learning ROP classification. Moreover,
the contrast limited adaptive histogram equalization (CLAHE) technique34 was utilized to
enhance image contrast. Each image is divided into 8 × 8 sub-frames, with a contrast

Fig. 2 (a) Representative ROP images of color fundus (a1), red (a2), green (a3), and blue (a4)
channels of a stage 3 patient. (b) Representative preprocessed ROP images of color fundus (b1),
red (b2), green (b3), and blue (b4) of a stage 3 patient.
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enhancement limit of 0.01, a distribution of uniform, and the number of bins set to 256. CLAHE
operates by dividing the image into smaller blocks and then applies histogram equalization to
each block, limiting the contrast enhancement within a specific block to avoid overamplification
of noise. This adaptive approach is particularly effective in enhancing local contrast, which is
vital for robust image analysis and classification. Figure 2(b) shows CLAHE-enhanced version of
the raw images in Fig. 2(a). The arrows in Fig. 2 demonstrate the fibrovascular ridge region, the
critical area observed in ROP.

2.2 CNN Architecture and Implementation Procedures
All images were normalized to the dimension of 640 × 480 × 3 and subsequent division by 255
to ensure that pixel values were constrained between 0 and 1 prior to being supplied to the model.
The base architecture selected for this study was EfficientNetV2S.35 As illustrated in Fig. 3, the
convolutional neural network (CNN)-based end-to-end classifier for ROP stage classification can
be segmented into two parts: features are extracted from the ROP fundus images in the first part,
and these features are employed in the second part to classify the images into their respective
groups. Two dense layers were utilized, with the first layer comprising 1000 nodes and the sec-
ond layer consisting of 4 nodes. Transfer learning was employed to address the limited dataset
size of available ROP fundus images.36 Transfer learning, a training approach, utilizes certain
weights from a pretrained CNN to retrain specific layers of the network. After transferring the
pre-trained weights, fine-tuning was applied with the available ROP dataset, refining the CNN-
based end-to-end classifier further. For all experiments except for the late-fusion, the pretrained
weights from the ImageNet dataset were transferred to the EfficientNetV2S base model.37 In the
late-fusion experiment, the pretrained weights from the individual-color-channel inputs, were
utilized to mitigate overfitting and advance generalizability, data augmentation operations,
encompassing random rotation, brightness adjustment, horizontal and vertical flipping, zooming,
and scaling, were applied. Additionally, a dropout layer with a dropout rate of 10% was
employed in the model to prevent overfitting. The training was done for 200 epochs, adopting
a learning rate of 0.00001, employing Adam as the optimizer, utilizing categorical cross entropy
as the loss function, maintaining a batch size of 32, and incorporating early stopping as a callback
function. Early stopping monitors validation accuracy and halts training if it does not improve or
worsens for 70 consecutive epochs, reverting to the best observed weights. Given the constrained
dataset size, a fivefold cross-validation approach was implemented. Each fold involved training
the network with 80% of the images, while the remaining 20 percent were reserved for validation.
This approach enabled an evaluation of the model’s performance across a diverse array of images
and provided an estimation of the model’s generalizability to novel data.

The model was implemented using Python v3.8 software with the Keras 2.9.0 and
TensorFlow 2.9.1 open-source platform backend. Training was performed on a Linux Ubuntu
computer with an NVIDIA RTX A6000 graphics processing unit.

2.3 Deep Learning ROP Classification with Individual-Color-Channel Images
Figure 4(a) illustrates deep learning ROP classification with individual-color-channel inputs.
The individual-color-channel input architectures are defined as red-channel [Fig. 4(a1)],
green-channel [Fig. 4(a2)], and blue-channel [Fig. 4(a3)], based on the utilized input channel.
This facilitated the determination of the most informative channel for ROP stage classification
and facilitated a comparison of the model’s performance across various fusion alternatives.

Fig. 3 CNN-based end-to-end classifier for ROP classification.
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2.4 Deep Learning ROP Classification with Multi-Color-Channel Fusions

2.4.1 Early-fusion

Early-fusion involves concatenating the data from the red, green, and blue channels of ROP
fundus images and presenting them to the model as three separate input channels
[Fig. 4(b1)]. By combining the data from different channels at the input level, the model can
learn to integrate and exploit the complementary information from the different channels to
improve the classification performance.

2.4.2 Intermediate-fusion

Intermediate-fusion combines features derived from the red, green, and blue channels for fol-
lowing processing and classification [Fig. 4(b2)]. Each channel ROP fundus image is first proc-
essed separately through a feature extraction module. The outputs of the feature extraction
modules are then concatenated and fed into the classification module to produce the final
prediction.

2.4.3 Late-fusion

Late-fusion combines the red, green, and blue channels after all processing has been completed.
As demonstrated in Fig. 4(b3), this involves the extraction of features and subsequent individual
classification for each channel, utilizing the fully processed data from each respective input. The
outcomes of the classification modules for the three channels are then combined using a global
averaging layer. This layer functions by computing the average of the corresponding feature
maps across all three channels. The ultimate prediction is determined based on the integrated
outputs derived from all three channels.

Initially, the pretrained weights from distinct individual-color-channel inputs [Figs. 4(a1)–
4(a3)], were utilized. In other words, each channel was individually trained, and the weights
from each model were subsequently used to load onto each branch of the late fusion model.
Hence, the initial weights for late fusion were derived from the individual-color-channel inputs
rather than being transferred from the pretrained weights of the ImageNet dataset to the
EfficientNetV2S base model. This strategy was adopted due to the model’s inability to converge
effectively. Given the scale of the model in late-fusion and the extensive number of parameters to
be trained, the model could not be adequately trained with a small dataset without risking
overfitting.

Fig. 4 (a) ROP stage classification with red-channel (a1), green-channel (a2), and blue-channel
(a3) architectures. (b) ROP stage classification with early-fusion (b1), intermediate-fusion (b2), and
late-fusion (b3) architectures.
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2.5 Evaluation Metrics of Deep Learning Performance
In this study, the assessment of deep learning model performance and the quantification of accu-
racy and effectiveness relied on receiver operating characteristic (ROC) curve, area under the
curve (AUC), accuracy, sensitivity, and specificity. ROC curve plots the true positive rate (sen-
sitivity) against the false positive rate (1-specificity) at varying classification thresholds. AUC
signifies the entire area beneath the ROC curve. A model achieving an AUC of 1 signifies a
perfect classifier, whereas an AUC of 0.5 indicates no better performance than random chance.
Accuracy serves as an indicator of the overall model performance. Sensitivity measures the pro-
portion of true positives correctly identified, while specificity measures the proportion of true
negatives correctly identified. These metrics are formally defined as follows:

EQ-TARGET;temp:intralink-;e001;114;616Sensitivity ¼ TP

TPþ FN
; (1)

EQ-TARGET;temp:intralink-;e002;114;570Specificity ¼ TN

TNþ FP
; (2)

EQ-TARGET;temp:intralink-;e003;114;542Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
; (3)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives,
and false negatives, respectively.

2.6 Class Activation Map
The gradient-weighted class activation mapping (Grad-CAM)38 was utilized to identify the cru-
cial ROP fundus regions that were most important for the classification decision. The process
involved the input image being passed into the pretrained CNN, enabling the extraction of gra-
dient information flowing into the final convolutional layer. Subsequently, this gradient infor-
mation was employed to generate a class activation map, providing a detailed representation of
the significant regions within the ROP fundus image. This resulting class activation map was
overlaid onto the original input image, resulting in the creation of a heatmap visualization. This
visualization effectively highlighted and emphasized the regions of the image that held the most
substantial influence over the classification decision.

3 Results
We evaluated the deep learning performance for ROP stage classification using both
individual-color-channel inputs and multi-color-channel fusion architectures. The confusion
matrices in Fig. 5 illustrate the results for individual-color-channel inputs, i.e., utilizing the red,
green, and blue channels [Figs. 5(a)–5(c)], as well as for multi-color-channel fusion options
[Figs. 5(d)–5(f)].

Table 1 summarizes the cross-validation performances for both individual-color-channel
inputs and multi-color-channel fusion architectures. For individual fundus channel input,
Green-channel provided the best performance, with the highest accuracy (88.00%), sensitivity
(76.00%), and specificity (92.00%). The red-channel achieved a slightly lower performance com-
pared to the Green-channel with accuracy (87.25%), sensitivity (74.50%), and specificity
(91.50%). However, these metrics were notably superior compared to the Blue-channel with
accuracy (78.25%), sensitivity (56.50%), and specificity (85.50%). For multi-color-channel
fusion options, the early-fusion and the intermediate-fusion architecture showed almost the same
performance as green-channel. The late-fusion architecture demonstrated a performance inferior
to early-fusion and intermediate-fusion.

Figure 6 illustrates ROC curves of different groups in different architectures. The ROC
curves were generated using a one-versus-all approach for each group, aimed at evaluating the
classification performance in distinguishing each specific stage from the combined other stages.
Each architecture shows the mean value of the AUCs with standard deviations. The average
represents the mean value across all four groups. The overall AUC for red-channel, green-
channel, blue-channel, early-fusion, intermediate-fusion, and late-fusion are 0.860, 0.878,
0.728, 0.869, 0.894, and 0.864, respectively. Among all architectures, the intermediate-fusion
architecture has the highest AUC value. For individual-color-channel inputs, the red-channel
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and green-channel and blue-channel obtained higher AUC values of the normal group than the
stage 1, stage 2, and stage 3 groups. For multi-color-channel fusion options, the early-fusion and
the intermediate-fusion obtained higher AUC values of the normal group than the stage 1,
stage 2, and stage 3 groups, whereas the late-fusion achieved a higher AUC value of the stage
3 group than the normal, stage 1, and stage 2 groups. In Fig. 6(c), the AUC for stage 2 is 0.566,
which shows the Blue-channel is not confident in the prediction of this stage.

To further explore the impact of different channel fusions on ROP stage classification,
experiments were conducted using intermediate fusion with only the red and green channels
as inputs, excluding the blue channel. The cross-validation performances are summarized in
Table 2. A slight improvement in performance was observed compared to using all three chan-
nels. This enhancement suggests that the red and green channels provide sufficient and poten-
tially more relevant information for the ROP stage classification.

Figure 7 shows representative Grad-CAM maps for a ROP stage 3 patient to highlight the
regions useful for deep learning classification for individual-color-channel inputs in red
[Fig. 7(a1)], green [Fig. 7(a2)], and blue [Fig. 7(a3)] channels. The Grad-CAM maps confirm
that individual color channels can capture different aspects of the ROP abnormalities.

While both the red and green channels effectively identify the fibrovascular ridge region, the
classical area observed in ROP, the blue channel predominantly emphasizes the vessels and
somewhat neglects this area. When comparing the early-fusion [Fig. 7(b)] and intermediate-
fusion [Fig. 7(c)] architectures, it is clear that both fusion architectures maintain the features
learned from the individual-color-channel inputs. However, in the late-fusion [Fig. 7(d)] archi-
tecture, the model attempts to preserve the features from the individual-color-channel inputs, but
it may not prioritize the ridge features as prominently, particularly in the green channel.

4 Discussion
We utilized a CNN for end-to-end classification of ROP, covering normal and stages 1 to 3 ROP
fundus images. Our evaluation compared classification performance with individual-color-
channel inputs and multi-color-channel fusions. Traditional fundus imaging typically employs

Fig. 5 Confusion matrices of red-channel (a), green-channel (b), blue-channel (c), early-fusion (d),
intermediate-fusion (e), and late-fusion (f) architectures.
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white light, but it suffers from a reduced field of view. This limitation results in extended exami-
nation times and potential difficulties in capturing the retinal edges, risking the oversight of cru-
cial areas that delineate the boundary between vascular and avascular regions critical for
detecting ROP stages. To address this, trans pars plana has been proposed to provide the ultimate

Table 1 Comparative performance illustration of ROP stage fundus images.

Architectures Class

Metrics

Accuracy
mean % (SD)

Sensitivity
mean % (SD)

Specificity
mean % (SD)

AUC
mean (SD)

Red-channel Normal 88.50 (0.05) 90.00 (0.06) 88.00 (0.54) 0.912 (0.04)

Stage 1 88.00 (0.04) 78.00 (0.12) 91.33 (0.07) 0.871 (0.04)

Stage 2 85.00 (0.05) 54.00 (0.24) 95.33 (0.03) 0.786 (0.16)

Stage 3 87.50 (0.05) 76.00 (0.20) 91.33 (0.08) 0.872 (0.07)

Average 87.25 (0.05) 74.50 (0.15) 91.50 (0.06) 0.860 (0.08)

Green-channel Normal 88.50 (0.07) 90.00 (0.09) 88.00 (0.10) 0.931 (0.05)

Stage 1 89.50 (0.02) 74.00 (0.15) 94.67 (0.06) 0.902 (0.05)

Stage 2 86.00 (0.05) 60.00 (0.25) 94.67 (0.05) 0.786 (0.14)

Stage 3 88.00 (0.04) 80.00 (0.11) 90.67 (0.08) 0.896 (0.02)

Average 88.00 (0.04) 76.00 (0.15) 92.00 (0.07) 0.878 (0.06)

Blue-channel Normal 83.00 (0.11) 72.00 (0.13) 86.67 (0.11) 0.871 (0.17)

Stage 1 76.50 (0.06) 54.00 (0.26) 84.00 (0.11) 0.716 (0.12)

Stage 2 75.00 (0.05) 28.00 (0.18) 90.67 (0.06) 0.566 (0.18)

Stage 3 78.50 (0.07) 72.00 (0.23) 80.67 (0.17) 0.798 (0.11)

Average 78.25 (0.07) 56.50 (0.20) 85.50 (0.10) 0.728 (0.15)

Early-fusion Normal 90.00 (0.04) 90.00 (0.09) 90.00 (0.06) 0.925 (0.05)

Stage 1 87.00 (0.06) 72.00 (0.23) 92.00 (0.06) 0.911 (0.06)

Stage 2 82.00 (0.07) 58.00 (0.23) 90.00 (0.06) 0.759 (0.14)

Stage 3 91.00 (0.04) 80.00 (0.17) 94.67 (0.04) 0.882 (0.07)

Average 87.50 (0.06) 75.00 (0.18) 91.67 (0.05) 0.869 (0.08)

Intermediate-fusion Normal 93.00 (0.05) 92.00 (0.07) 93.33 (0.04) 0.950 (0.05)

Stage 1 87.50 (0.05) 78.00 (0.21) 90.67 (0.08) 0.905 (0.08)

Stage 2 85.00 (0.07) 58.00 (0.20) 94.00 (0.04) 0.831 (0.16)

Stage 3 86.50 (0.04) 76.00 (0.14) 90.00 (0.08) 0.891 (0.04)

Average 88.00 (0.05) 76.00 (0.16) 92.00 (0.06) 0.894 (0.08)

Late-fusion Normal 86.50 (0.07) 90.00 (0.09) 85.33 (0.09) 0.918 (0.04)

Stage 1 86.50 (0.03) 66.00 (0.08) 93.33 (0.08) 0.886 (0.05)

Stage 2 84.00 (0.06) 52.00 (0.20) 94.67 (0.04) 0.725 (0.14)

Stage 3 87.00 (0.06) 80.00 (0.01) 89.33(0.08) 0.927 (0.04)

Average 86.00 (0.05) 72.00 (0.12) 90.67 (0.07) 0.864 (0.07)
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field of view.39 However, due to optical properties, different wavelengths of white light penetrate
tissues differently.15 In this context, multispectral imaging with narrow bandwidths has been
proposed.17 Our research enhances our understanding of detection capabilities across diverse
spectral ranges and the fusion of different channels, providing insights into the potential benefits
of using either single-channel or multispectral imaging for improved diagnostics in ROP. Green-
channel demonstrated the highest performance among individual-color-channel inputs, surpass-
ing red-channel marginally and outperforming the Blue-channel. The superiority of the green
channel is likely due to its ability to capture critical features in retinal images for ROP stages.
Higher absorption rates of blood and hemoglobin in the spectrum around 550 to 580 nm, com-
pared to the spectrum at 420 nm, result in less light reflection from blood-rich areas, making them
appear darker on scans and significantly enhancing contrast.40 Previous studies41–43 consistently
highlight that the green channel of the fundus image offers the highest contrast between retinal
vessels and the background. Peng et al.31 proposed a deep learning-based ROP staging, incor-
porating a multi-stream-based parallel feature extractor and a concatenation-based deep feature
fuser, utilizing the green channel for per-examination classification of ROP. Similarly, Chen

Table 2 Performance of ROP classification for intermediate fusion using red and green channels.

Architectures Class

Metrics

Accuracy
mean % (SD)

Sensitivity
mean % (SD)

Specificity
mean % (SD)

AUC
mean (SD)

Intermediate-fusion Normal 95.50 (0.01) 94.00 (0.04) 97.33 (0.01) 0.965 (0.06)

Stage 1 87.99 (0.02) 88.00 (0.11) 88.00 (0.05) 0.901 (0.07)

Stage 2 86.00 (0.06) 64.00 (0.14) 93.00 (0.05) 0.802 (0.12)

Stage 3 89.49 (0.02) 74.00 (0.04) 94.66 (0.04) 0.915 (0.06)

Average 89.75 (0.03) 80.00 (0.08) 93.25 (0.04) 0.896 (0.08)

Fig. 6 ROC curves of red-channel (a), green-channel (b), blue-channel (c), early-fusion
(d), intermediate-fusion (e), and late-fusion (f) architectures with the mean value of the AUCs and
their corresponding standard deviations.
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et al.30 leveraged the green channel for binary classification of ROP stage while also evaluating
the generalizability of deep learning models across various populations and camera systems.

On the other hand, the blue-channel demonstrated a markedly inferior performance com-
pared to the red-channel and green-channel. This can likely be attributed to the limited penetra-
tion of short-wavelength blue light into the retina and higher scattering of light, resulting in an
inability to effectively capture the deeper retinal layers. Consequently, this limitation led to
images with lower contrast between vascular and avascular area, making it challenging to dis-
tinguish the main areas, such as the demarcation line or ridge.

In contrast, the red-channel’s performance is comparable to that of the green-channel, early-
fusion and intermediate-fusion, underscoring its effectiveness in providing rich spectral infor-
mation. Red light’s deeper penetration into ocular tissues in a fundus image enables valuable
information. Given the association between choroidal and retinal development, it suggests that
issues with choroidal development may influence the severity of ROP.44–46 Nonetheless, it is
important to acknowledge that the red channel may exhibit reduced contrast, especially when
distinguishing between ROP stage 2 and stage 3, where discerning the development of blood
vessels in the ridge is crucial. This limitation can make the green channel generally superior.
Recognizing the inherent risks associated with shorter wavelengths and the potential discomfort
and distress that can be induced by extended exposure to bright white light during eye exami-
nations, using light with longer wavelengths, such as red or green, offers a potentially safer alter-
native that may also be better tolerated by the infants. It is worth noting that the red channel
boasts higher illumination efficiency than the green channel, therefore the power required to
do imaging can be reduced drastically compared to green and blue light, making the red channel
a safe and practical choice for ROP stage classification. Moreover, transmission efficiency of red
spectrum through the sclera is significantly higher than the blue and green spectrum,47 making it
the optimal choice for trans-scleral illumination.

Our findings highlight the increased difficulty in detecting stage 2 compared to other stages
of ROP. Diagnosing stage 2 can be challenging due to the subtle and variable appearance of ridge
formation. Clinicians may sometimes misinterpret mild to moderate stage 3 as stage 2, as the
extraretinal neovascularization in stage 3 can be difficult to distinguish on 2D images.48 Stage 2
often develops popcorn neovascularization, which typically coalesces into the more character-
istic appearance of stage 3 and makes the distinction between stage 2 and stage 3 challenging.49

Regarding multi-color-channel fusion, early-fusion and intermediate-fusion architectures
showed performance comparable to the green-channel, indicating that combining channels did
not significantly improve performance beyond that of the green channel alone. This is attributed

Fig. 7 Representative Grad-CAM results for a stage 3 patient [Fig. 2(b)] to highlight the regions
useful for deep learning classification in individual-color-channel inputs (a), early-fusion (b), inter-
mediate-fusion (c), and late-fusion (d).
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to the presence of similar biomarkers in both the red and green channels, preventing the inter-
mediate fusion model from leveraging additional distinct information or correlations.

The saliency maps obtained from this analysis reveal a consistent pattern across the red
[Fig. 7(a1)] and green [Fig. 7(a2)] channels, indicating a predominant focus on the fibrovascular
ridge region and its immediate surroundings, a key sign for ROP stage classification. This sug-
gests that the models can identify key features associated with the presence of ROP stage, high-
lighting the clinical relevance of these regions in diagnosing these ocular conditions.

However, certain limitations of this study are acknowledged. The relatively small size of the
dataset and the lack of external testing cohorts limit the generalizability of the results. Future
studies with larger and diverse datasets, including more advanced ROP stages and considering
zone or plus disease of ROP, will be crucial for a comprehensive understanding and robust val-
idation of the proposed approaches. Incorporating the near-infrared spectrum also may hold
promise for enhanced detection and classification of ROP stages, warranting thorough explora-
tion and validation.

5 Conclusion
This study examined the influence of individual-color-channel inputs and multi-color-channel
fusions in deep learning for ROP stage classification. The green channel yielded the best per-
formance, slightly surpassing the red channel and significantly outperforming the blue channel.
For multi-color-channel fusion options, early-fusion and intermediate-fusion architectures dem-
onstrated nearly matching performance to the green channel input. This comparative analysis
suggests that the green or red channel alone can provide sufficient information for ROP stage
classification, eliminating the need for blue images. While the study generally concludes that the
green or red channel suffices, the red channel may be preferred in specific applications due to its
superior illumination efficiency and enhanced transmission through the sclera, offering a safe
and practical choice that reduces imaging power requirements and optimizes trans-scleral
illumination.
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