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Abstract. In the deep learning-based video action recognition, the function of the neural network is to acquire
spatial information, motion information, and the associated information of the above two kinds of information over
an uneven time span. We propose a network for extracting semantic information of video sequences based on
the deep fusion feature of local spatial–temporal information. Convolutional neural networks (CNNs) are used in
the network to extract local spatial information and local motion information, respectively. The spatial information
is in three-dimensional convolution with the motion information of the corresponding time to obtain local spatial–
temporal information at a certain moment. The local spatial–temporal information is then input into the long- and
short-time memory (LSTM) to obtain the context relationship of the local spatial–temporal information in the long-
time dimension. We add the ability of the regional attention mechanism of video frames in the neural network
mechanism for obtaining context. That is, the last layer of convolutional layer spatial information and the first
layer of the fully connected layer are, respectively, input into different LSTM networks, and the outputs of the two
LSTMs at each time are merged again. This enables a fully connected layer that is rich in categorical information
to provide a frame attention mechanism for the spatial information layer. Through the experiments on the three
action recognition common experimental datasets UCF101, UCF11, and UCFSports, the spatial–temporal infor-
mation deep fusion network proposed has a high correct recognition rate in the task of action recognition. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.28.2.023009]
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1 Introduction
Action recognition technology is a technology that the com-
puter understands and classifies human action from an image
sequence containing people. This paper uses deep learning
methods to perform action recognition. Deep learning is a
very popular direction in the field of machine learning in
recent years. Convolutional neural networks (CNNs) have
certain translation invariance and scale invariance, and
their calculation methods have great similarities with mam-
malian visual systems. The CNN network has a significant
improvement over the traditional neural network recognition,
and the method is an end-to-end identification method that
does not require manual design features, which has attracted
a large number of people to research and has achieved suc-
cess in many areas of computer vision.

In the deep learning-based video action recognition, the
design of the neural network structure mainly focuses on
how to obtain spatial information, motion information, and
the association of the above two kinds of information over an
uneven time span. Only by fully obtaining enough spatial
information and motion information in the time dimension
can the neural network better recognize the action. For exam-
ple, when performing a motion recognition such as a swing
in golf and a bicycle, the difference in spatial background
information will be good classification identification infor-
mation because in a swing of golf, the golf club, and golf
ball are significantly recognized and most of the green
background can be regarded as information of actional rec-
ognition. However, relying solely on spatial information is

difficult to recognize actions with similar backgrounds,
such as the golf swing action shown in Fig. 1 and the hitting
action of the croquet sport. Because the backgrounds of these
two actions are very similar, in the case of such a situation,
the motion information clearly better recognizes the above
two actions.

Recently, many researchers have had many outstanding
achievements in such research: let single or multiple video
frames enter single-channel CNN to learn local spatial–tem-
poral information.1–3 The CNN-acquired spatial information
is merged with the motion information extracted by the tradi-
tional optical flow method through the CNN.4–7 The CNN
combines with the long- and short-time memory (LSTM)
network to obtain video stream context information.8–10

However, compared with the excellent application perfor-
mance of CNNs in face recognition,11 image classification,12

and human pose estimation,13 there is no substantial progress
in the application of CNNs to action recognition. In fact,
looking at the test performance on the actional recognition
standard datasets UCF101 and HMDB51, among the current
method of high video action recognition rate, in addition to
single-channel CNN acquisition of recognition features
through supervised learning,14 there are methods for merging
single-channel CNN learning extraction features with tradi-
tional artificial definition features (such as HOF15),16,17,18 and
the coding–decoding network architecture composed of
CNN and LSTM19,20,21 to implement action recognition.

Among the above methods, there are still some defects,
mainly for the following reasons: (1) the training dataset
for action recognition is relatively lacking. Different from
image classification, there are large datasets like ImageNet
(1000 samples per category) that can be used for training,*Address all correspondence to Hongshi Ou, E-mail: ouhongshi@163.com
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but the standard dataset for action recognition UCF101 has
only 100 samples per action category. (2) The method of the
multivideo frame simultaneously entering CNN to extract
spatial–temporal information solves the problem of local
spatial–temporal information fusion. However, because
CNN does not get good information about video streams
over time, such methods cannot solve the problem of full
acquisition of time-dimensional (3-D) information. In addi-
tion, the dual-stream architecture method22,23 based on spa-
tial CNN network space features and temporal CNN network
optical flow characteristics in full-connection layer fusion
cannot obtain two important clues in video action recogni-
tion: (i) spatial location where motion occurs (ii) spatial
information and changes in motion information over time.
(3) In the CNN and LSTM methods, after the first fully con-
nected layer of CNN is connected to the LSTM, although
LSTM is used as a tool for 3-D information extraction
since the fully connected layer has only semantic informa-
tion, the time clue of spatial information is not obtained,
so the regional attention mechanism of the video frame is
also lacking.

Based on the above deficiencies, this paper proposes a
neural network architecture that not only can fully integrate
local spatial and motion information but also can obtain
long-term information dimension and has added a video
frame attention mechanism.

2 Related Work
In the recent research on CNN for video action recognition,
the main problem is how to obtain the spatial information of
video frames and the information over time. In order to

obtain the spatial–temporal information of the video stream,
the following three CNN-based network structures are pro-
posed in Ref. 1: (i) late fusion: two video frames with a cer-
tain interval enter two different CNN channels, and finally
merge at the first fully connected layer so that the actional
motion information of the two frames before and after the
acquisition can be obtained. (ii) Early fusion: allows multiple
consecutive video frames to enter the single-channel CNN
simultaneously. This approach is primarily concerned with
obtaining more detailed motion information. (iii) Slow
fusion (SFCNN): consecutive multiple video frames have
overlapping into the four-channel CNN, and the four-channel
CNN merges into two different CNN channels after the last
convolution layer is merged. The dual channel CNN enters
the single-channel CNN after the last convolutional layer is
fused. SFCNN is also for considering how to obtain spatial–
temporal information of video streams more effectively, so
this network architecture allows more video frames to enter
the network at the same time, but this also causes an increase
in network parameters. The above method uses two-
dimensional (2-D) CNN, i.e., the 2-D CNN acquires spatial
features and then fuses to obtain motion information. In the
method proposed in Refs. 2 and 16 consecutive frames in a
finite time were entered into a CNN network (3DCNN) hav-
ing a 3-D convolution kernel with a parameter of 3 × 3 × 3.
This method works because the convolution kernel acts
on both the spatial dimension and the time dimension.
Therefore, compared with the above-mentioned SFCNN,
which only has a 2-D convolution kernel acting on the spatial
dimension, the network architecture achieves better perfor-
mance, but the network depth and parameters will be deeper

Fig. 1 Golf swing and croquet batting.

Journal of Electronic Imaging 023009-2 Mar∕Apr 2019 • Vol. 28(2)

Ou and Sun: Spatiotemporal information deep fusion network with frame attention. . .



and more. For 3DCNN, Sun et al.24 decomposed the 3-D vol-
ume integration into 2-D spatial convolution and one-dimen-
sional (1-D) time convolution. The 1-D time convolution was
a characteristic channel, in which 2-D space was convolved
in time, and it was embedded only at the upper layers of the
network. Simonyan and Zisserman4 proposed a dual-flow
structure model based on CNN, which used space CNN
stream to extract spatial information of single video frame
and used time stream CNN to extract motion information
of multioptical stream frame. Then the extracted spatial
information and the motion information were fused on the
full link layer in the dual stream structure.

In addition to the above-mentioned spatial–temporal
information using CNN to obtain video action, the combina-
tion of CNN and LSTM has attracted more and more atten-
tion from researchers. In the method of combining CNN and
LSTM, the image features were first extracted using CNN,
and the features extracted by CNN were sent to LSTM. For
example, Zhu et al.25 proposed the use of hypercolumn fea-
tures for facial analysis. This so-called hypercolumn feature
not only extracted the feature map of the last layer of the
CNN as a feature of entering the LSTM but also extracted
the features of the previous CNN layer and the late CNN
layer into the LSTM. Kar et al.14 made CNN’s fully con-
nected layer features into LSTM for time-dependent seman-
tic information extraction. Among such methods, the feature
map extracted by the previous CNN is rich in spatial features
but lacks semantic information. In video action recognition,
the most important thing is to extract a feature that is inde-
pendent of position and rotation, but the features extracted by
the previous CNN do not support this feature. On the con-
trary, in the features extracted by the late CNN full connec-
tion layer, the semantic information is rich but lacks spatial
information.

Sharma et al.26 and Yao et al.27 proposed an LSTM-based
attention model that added a mechanism to where actional
classification of video frames should be addressed.
Sharma et al.26 used a soft focus mechanism—using the
back propagation training method to dynamically change
the region of interest of each frame in the video. This method
of training focus coefficient weights using a backpropagation
algorithm is a very resource intensive task, and the classifi-
cation fails if there is an error in the area of interest. In addi-
tion, Karpathy et al.1 proposed a multiresolution method with
a fixed focus on the central portion of the video frame.

In the field of video recognition, there is a lack of label
data for training networks. In order to overcome the short-
comings of the training samples, Ding et al.28 designed
a semisupervised deep domain adaptation framework for
effective knowledge transfer, this paper’s core idea is to
jointly construct two coupled neural networks and build a
classifier to enhance the feature transferability of the deep
structure. Li et al.29 proposed a transfer independent together
method, which designed a general framework to solve the
shortcomings of other methods that were only applicable
to a particular situation or required target samples for train-
ing. Li et al.30 proposed a low-rank discriminant embedding
(LRDE) method. This paper focuses on the specific problem
of multiview learning where samples have the same feature
set but different probability distributions. LRDE not only
deploys low-rank constraints on both the sample level and
feature level to dig out the shared factors across different

views but also preserves geometric information in both
the ambient sample space and the embedding feature space
by designing a graph structure under the framework of graph
embedding. Li et al.31 proposed a heterogeneous domain
adaptation (HDA) method that can optimize both feature dis-
crepancy and distribution divergence in a unified objective
function. Specifically, they present progressive alignment,
which first learns a new transferable feature space by diction-
ary-sharing coding and then aligns the distribution gaps on
the new space. Different from previous HDA methods that
are limited to specific scenarios, this approach can handle
diverse features with arbitrary dimensions. Li et al.32 pro-
posed a multimanifold sparse graph embedding (MSGE)
algorithm, which can explicitly capture multimodal multima-
nifold structure while considering both intraclass compact-
ness and interclass separability and then learn an integral
subspace model. Furthermore, a sparse embedding is
achieved using L2,1-norm, which makes the transformation
matrix row sparse, so MSGE can select relevant features and
learn subspace transformation simultaneously.

Compared with the existing methods, the spatial–tempo-
ral information fusion network with attention mechanism
proposed in this paper not only has the fusion mechanism
of spatial information and motion information but also has
the attention mechanism effectiveness of video frames.

3 Approach
In the action recognition neural network architecture pro-
posed in this paper, video frame space information and
time information are extracted using a pretrained convolu-
tional network (CNN). The features from the spatial and tem-
poral stream CNN are fused at the pixel level and then enter
the LSTM for feature information extraction of the video
series. The selection of CNN will be discussed in Sec. 3.1
of this paper. Section 3.2 discusses the fusion method of
dual-stream CNN feature pixel level. Section 3.3 discusses
the LSTM framework used by the action recognition
model. Section 3.4 gives the question of how the character-
istics of the dual-stream CNN fusion enter the LSTM and
generate a mechanism of interest. Section 3.5 gives the over-
all network architecture. Section 3.6 introduces the specific
implementation details of the network–network hyperpara-
meter settings.

3.1 Convolutional Neural Network Transfer Learning
Implementation

The proposed CNN in neural network models is used for fea-
ture extraction tasks. The traditional neural network learning
method cannot obtain good feature extraction results under
the limited training samples. Therefore, in order to improve
the classification accuracy of the model, a large number of
training datasets must be used for model training. In the
action recognition task, the existing data are not very abun-
dant, so if the model is trained from the original state, a good
training model cannot be obtained. For the training problem
of limited datasets, this paper uses the method of migration
learning. In our network structure, CNN is used to extract the
features of video frames. Inspired by the literature,28–32 the
form of our migration learning implementation is: the initial
state of CNN is the VGG-16 model that has been pretrained
using ImageNet dataset. The structure of the model is
shown in Fig. 2. The VGG-16 model contains 13 layers
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of convolutional layers and 3 layers of fully connected
layers. The representation of the convolutional layer in Fig. 2
is conv<receptive_field_size><number_of_channels>, and
the fully connected layer representation is FC-< number_
of_channels>.

3.2 Architectures for Fusing the Two Stream
Networks

There are two main drawbacks in the dual-stream fusion
structure proposed in Ref. 4: (i) because fusion is only per-
formed at the categorizable layer (FC layer), it is impossible
to obtain information about the spatial and temporal charac-
teristics at the pixel level through training. (ii) In the spatial
information and time information extraction operation, the
spatial CNN stream only works with a limited number of
video frames, and the time CNN stream acts on a limited and
fixed length video optical stream frame, which makes it dif-
ficult for the model to distinguish the action over time. The
network structure of this paper is an extended version of the
dual-flow structure. In order to overcome the two drawbacks
of the dual-stream fusion structure, our network not only
fuses at the FC layer but also fuses at the convolutional
layer, which ensures spatial information and motion informa-
tion fusion at the pixel level. In addition, the network uses
LSTM to implement more frames into the network for both
video frames and optical frames. This allows the network to
better obtain the semantic information of the spatial–tempo-
ral features of video behavior. The final experiment proves
that the neural network we designed can overcome the two
drawbacks of the above dual-flow fusion structure.

3.2.1 Spatial feature fusion method

When distinguishing actions such as brushing the teeth and
combing hair, the time stream CNN can recognize such
motion because the hand has a periodic motion back and
forth in space. The spatial stream CNN can recognize the
position information of the motion (located in the teeth or
hair), so the fusion of the two streams can identify whether
to brush or comb the hair. For this reason, when the dual-
stream network is fused, the fusion of the feature maps
on each channel should be the corresponding fusion between
pixels in the same position.

If the spatial stream CNN and the time stream CNN have
the same network structure in the dual stream structure, the
fusion method of the same spatial position on the feature map
is very easy to implement, for example, it can be simply
covered or stacked in the same location. However, each net-
work (spatial CNN and time CNN) has multiple channels in
the fusion layer. How to determine the channel correspon-
dence between different networks is a key issue. We assume
that different channels on the spatial network are responsible
for extracting features from different regions of the space,
whereas a channel in the time network is responsible for

extracting motion features from different regions. There-
fore, after the channels of the dual stream network are
stacked on the fusion layer, the method of fusion must enable
subsequent subnetworks to learn the ability to obtain a cor-
respondence between one channel of one network and
a channel of another network so as to better distinguish
between different categories.

Based on the above considerations, we have chosen a spa-
tial information fusion method based on convolution
operations.22 The mapping relationship of feature fusion is
yt ¼ fðxat ; xbt Þ, where f is a fusion function, the spatial net-
work feature map is xat ∈ RH×W×D, the time network feature
map is xbt ∈ RH 0×W 0×D 0

, and the merged output feature map
is yt ∈ RH 00×W 00×D 00

. In the above equation, t represents time
(In the following, the operation is the same at each moment,
so t is removed from each equation), w represents the width
of the feature map, H represents the height of the feature
map, and D represents the number of channels on the fusion
layer. There are H ¼ H 0 ¼ H 00, W ¼ W 0 ¼ W 00, and
D ¼ D 0.

First, we make the feature maps of each channel on the
fusion layer of the two networks in series, that is, have the
following feature mapping relationship: ycat ¼ fcatðxa; xbÞ,
the specific stacking method is as follows:

EQ-TARGET;temp:intralink-;e001;326;390ycati;j;2d ¼ xai;j;d ycati;j;2d−1 ¼ xbi;j;d; (1)

where i and j are the feature map spatial position, d is the
channel label, and there is y ∈ RH×W×2d. The serial connec-
tion between the spatial network and the spatial network fea-
ture map does not define the correspondence between the
dual-stream network channels. Therefore, the subsequent
subnetworks need to develop the ability to learn the channel
correspondence. Hence, we carry out convolution fusion on
this basis:

EQ-TARGET;temp:intralink-;e002;326;269yconv ¼ ycat � f þ b: (2)

In the above equation, f is a set of filters and
f ∈ Rn×m×2D×D, b ∈ RD. The dimension of the filter is
n ×m × 2D, and the number of channels output after convo-
lution fusion is D. The filter bank described above is used to
reduce the dimension of the channel number and at the same
time to fuse the feature maps xa and xb at the same spatial
position. We set the parameters of f to be trainable, so f can
learn the correspondence between the two feature maps. For
example, if f is learned as a series of two permutation unit
matrices 1 0 ∈ R1×1×D×D, then the i’th channel of the spatial
network is only summed with the i’th channel of the time
network.

In the dual-stream network structure, another key issue in
feature fusion is the feature fusion at the given level. As
shown in Fig. 3, the method of fusion has many forms.
The multilayer fusion method used in the right diagram of

Fig. 2 VGG-16 network.
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Fig. 3 is not only fusion in the spatially rich convolutional
layer but also in the fully connected layer with rich semantic
information. This fusion method has the pixel-level fusion of
spatial information and motion information, and the com-
plexity of semantic information is further improved, which
enhances the robustness of network classification. However,
the main parameters of the network come from the fully con-
nected layer, so this fusion method greatly increases the
number of network parameters. In this paper, the fusion
method shown in the left side of Fig. 3 is used. This method
only fuses in the convolutional layer with rich spatial infor-
mation, so it does not increase the parameter amount of the
network. Through postvalidation, this fusion method can
achieve a good action recognition accuracy rate when com-
bined with the network design method introduced in the fol-
lowing chapters.

3.3 Layer Normalization LSTM Network
In this paper, we need to obtain the correlation information of
a sequence of frame images in the video for action category
judgment. We use LSTM network to realize the feature
extraction of video sequence signals. The “cell” structure
of the traditional LSTM cycle network is shown in Fig. 4.

In order to obtain more abundant time information fea-
tures, we make video frames continuously input into LSTM,
and LSTM and CNN are combined to perform end-to-end

training methods. Therefore, the depth of the network pro-
posed in this paper is relatively deep, and the LSTM input
gate it, the forgetting gate ft, the activation function of the
output gate ot are all sigmoid functions. In order to ensure
the convergence of the training, the LSTM cyclic network
with layer normalization function is used in the network.
That is, the parameters of each input sigmoid function are
subjected to the following normalization process:

EQ-TARGET;temp:intralink-;e003;326;664μβ←
1

m

X
xi; (3)

EQ-TARGET;temp:intralink-;e004;326;612σ2β←
1

m

X
ðxi − μβÞ2; (4)

EQ-TARGET;temp:intralink-;e005;326;581bxi← xi − μβffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2β þ ϵ

q ; (5)

EQ-TARGET;temp:intralink-;e006;326;541yi←γbxi þ β ≡ BNγ;βðxiÞ: (6)

In the above four equations, m is the number of samples
used in single training, xi is the i’th sample value in a single-
training sample, and yi is the sample value of the input sig-
moid activation function after normalization.

3.4 CNN and LSTM Combination Method for Action
Recognition

We use the combined method33,34 shown in Fig. 5, where
Xconv and Xfc specific network feature layers are shown in
Fig. 3. Xconv is a feature map of the spatial and time networks
after 3-D convolution fusion of the last convolutional layer,
and Xfc is the first fully connected layer of the subnetwork
behind the fusion layers.

In Fig. 5, the LN_LSTM� [layer normalization LSTM
(LN_LSTM)] is a network as shown in Fig. 6(b), which
is a cyclic network, in which the input is a time series signal
and the output is also a time series. The LN_LSTM network
is shown in Fig. 6(a) as a long-short-term memory network
that is traditionally understood, i.e., sequence input and sin-
gle-hidden layer unit output.

In the multilayer long-term memory network proposed in
the paper, we first output the long- and short-term memory
network (LN_LSTM�) through the sequence input sequence
to realize the hidden sequence state expression of the video.
Each hidden state in LN_LSTM� is input to the LN_LSTM

Fig. 3 Spatial information and motion information fusion method.

Fig. 4 LSTM cyclic neural network “cell” structure. Fig. 5 CNN and LSTM combined network.
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output by a single-hidden unit, and the final single-hidden
unit expresses the video sequence. In this way, we achieve
hierarchical acquisition of information, and through the end-
to-end back propagation training method, the information
exchange between the convolution spatial feature stream
Xconv − LN_LSTM� and the full-link semantic information
stream Xfc − LN_LSTM� is realized. After the semantic
information and spatial information are exchanged, the
video frame region attention mechanism of the network
can be realized, and the back propagation training conver-
gence process is also improved.

The network model equation is as follows. In the first
layer, the LN_LSTM fused convolutional layer features
and the fully connected layer features enter the long-term
and short-term memory network of the “sequence input
sequence output” mode of operation, realizing the sequence
hidden state of the video:

EQ-TARGET;temp:intralink-;e007;326;686hi;tconv ¼ LN_LSTM�ðxi;tconv; hi;t−1conv Þ; (7)

EQ-TARGET;temp:intralink-;e008;326;643hiconv ¼ ðhi;1conv; hi;2conv; : : : ; hi;TconvÞ; (8)

EQ-TARGET;temp:intralink-;e009;326;620hi;tfc ¼ LN_LSTM�ðxi;tfc ; hi;t−1fc Þ; (9)

EQ-TARGET;temp:intralink-;e010;326;597hifc ¼ ðhi;1fc ; hi;2fc ; : : : ; hi;Tfc Þ: (10)

In the second layer, the sequence hidden state of the
LN_LSTM� output is re-entered into the LN_LSTM of sin-
gle-sequence input hidden state output:

EQ-TARGET;temp:intralink-;e011;326;552hi ¼ LN_LSTM½Wðhiconv; hifcÞ�; (11)

EQ-TARGET;temp:intralink-;e012;326;510yi ¼ softmaxðhiÞ: (12)

As shown in Fig. 7, the feature maps obtained when clas-
sifying the first, sixth, and ninth volumes of the space net-
work (only the first six feature maps are shown in this
figure): It can be known from the first-layer feature map
that when the “shooting” is classified and learned, the
“weight coefficient” of the spatial network is affected by
the time network information in the process of learning
acquisition, and finally the attention to the target is realized,
that is, each edge of the target can be extracted correctly. In

Fig. 7 Heat maps of Intermediate CNN layer outputs for the video frame obtained from UCFSports data-
set: outputs are obtained for the first, sixth, and ninth convolutional layers and only the six channels for
each layer is shown in this figure.

Fig. 6 Two forms of LSTM network used in the combined network:
(a) sequence-to-one LN_LSTM and (b) sequence-to-sequence
LN_LSTM�.
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addition, the space network can also obtain various spatial
information in the scene—the characteristics of the basket-
ball court, that is, the network we designed can pay close
attention to the target and obtain the scene information.
The sixth and ninth layers realize the display. As the number
of layers increases, the feature information of the network
deep network is gradually simplified, and finally the output
features are independent of the position and rotation. For this
reason, we put the spatial information and time information
into the final layer of convolution. The spatial–temporal
information obtained after the fusion enters the following
LSTM to obtain the semantic information of the video
sequence.

3.5 Proposed Architecture
As described in Secs. 3.1–3.4, we will present our proposed
network architecture as shown in Fig. 8. The spatial network
and the time network perform 3-D convolution fusion on
the last layer of convolutional layer (after ReLU output),
and the fused feature output enters the sequence input
sequence to output the LSTM network LN_LSTM�. At
the same time, the feature given by the fusion is pooled
and then enters the long-and short-term memory network
LN_LSTM� of another sequence input sequence output.
Finally, the sequence features of the two LN_LSTM� outputs
are fused using the LN_LSTM output from the sequence
input single-hidden layer unit, and the last layer of the net-
work is the softmax classification layer.

In order to classify the video sequences, T frames are
acquired in each video and enter the spatial network. The
sampling time of the video frames shown in Fig. 8 is
t; tþ τ; : : : ; tþ Tτ, respectively. In addition, the input infor-
mation of the network is centered on the information collec-
tion time of the space network, and the time characteristics
are collected in the range of the center point time L∕2. That
is, the collected optical flow frame is collected centering on
the captured video image frame. If L ¼ 4, a total of the opti-
cal image of the T × 4ðLÞ frame is collected into the time
network. In addition, if τ ≥ L, the collection of optical
flow frames will overlap.

3.6 Implementation Details
The spatial convolutional network and the time convolu-
tional network we use are both VGG-16 network models.
The VCC-16 model consists of 13 layers of convolutional
layers. In the network structure of Fig. 7, the initial state
of each convolutional layer of the spatial network is the pre-
trained VGG-16 model of the ImageNet dataset. The input of
the spatial network is the video frame image. If we select the
training dataset and the video with the smallest number of
video frames with T frames, we set the number of sampling
frames per video as T. The value of the number of frames T
affects the validity of the semantic information acquired by
the network. If the number of frames is too small, the correct
rate given in Table 1 will not be achieved. The initial input of
the time convolutional network is a multiframe stack of
video optical flow images. The number of stacked frames
we use is L ¼ 4. The number L of stacks of optical flow
frames also affects the correct rate. If L is <4, the change
of frame motion before and after can not be obtained,
which will result in the loss of motion information, which
will reduce the correct recognition rate. Later experiments
show that when L ¼ 4, stepping can reduce the demand
for GPU computing resources and at the same time can guar-
antee the high correct recognition rate as shown in Table 1.
Before training, we will process the optical flow image of the
video in advance, which can further shorten the training time.
Since the number of channels of the first layer of convolu-
tional layer of the input time convolutional network is related
to the number of stacked frames of the optical stream image,
the initialization of the first convolutional layer of the time
network is random initialization, and the initial state of other
convolutional layers is consistent with the initialization proc-
ess of the spatial convolutional network, which is pretrained
VGG-16 model for the ImageNet dataset. The size of the
video frame image and the optical stream image of the
input network are both 224 × 224.

As with the fusion structure described in Sec. 3.2 of
this paper, the dimensionality of the 3-D convolution
kernel f used in spatial–temporal information fusion is
3 × 3 × 3 × 1024 × 512, where the dimension of the

Fig. 8 Spatial–temporal information deep fusion network with video frame area attention mechanism.
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spatial–temporal filter is H 00 ×W 00 × T 00 ¼ 3 × 3 × 3.
D ¼ 1024 is the number of channels after the feature map
is stacked in the last convolutional layer (after the ReLU out-
put) of the spatial convolutional network and the time con-
volutional network.D 0 ¼ 512 is equal to the number of input
channels of the next layer network (Fc6). In the LSTM
network used in this paper, the hidden state dimension of
all LSTM networks is 101. The tensor formats of the
inputs Xt

conv and Xt
fc of LSTM� in Fig. 7 are Xt

conv ¼
ð512 × 14 × 14Þ, and Xt

fc ¼ ð4096 × 1Þ, respectively.
At the same time, the spatial network, time network, and

long-short-term memory are trained. The first fully con-
nected layer (Fc6 in Fig. 8) in the network has a dropout
ratio of 0.5 in training, and the output dropout ratio of all
LSTMs is 0.25. Experiments show that if the dropout ratios
of Fc6 are not equal to 0.5, or the dropout ratios of LSTM are
>0.25, the correct rate of recognition will be reduced. The
learning rate of the first training in network learning is 10−5.
When the network training converges and reaches a fixed
classification accuracy rate, the training will stop. The sec-
ond training uses the result of the first training as the initial
state, which is the same as the subsequent training, and from
the second training session, the initial learning rate is further
reduced to 10−6. The value of the learning rate will affect
whether the training of the network can converge. The
experiment proves that if the learning rate is >10−5 in the
first training, the network cannot converge.

Compared with the network with only dual-flow struc-
ture, the video frame region focusing mechanism of spa-
tial–temporal information deep fusion network proposed
in this paper will be overfitted. This is because the use of
LSTM and the number of video frames sent to the network
have an order of magnitude increase. To avoid overfitting
and to enhance the generalization of the network, we use
the method of increasing the training dataset to overcome
the overfitting phenomenon. That is, the following random

image frame acquisition process is added. In the selected T
frame image, when the T frame is guaranteed to be acquired,
the initial acquisition frame is randomly generated, and the
acquisition interval τ is randomly sampled in the range.2,10 In
addition, the range of the sampling interval τ has an impact
on the semantic information acquired by the network. If the
interval is too large, the local semantic information is miss-
ing. If it is too small, the overall semantic information is
missing. In addition, the value range of τ must contain
the value of the number L of stacks of optical flow frames.
If L is much larger than the maximum value of τ, local null-
time information redundancy is caused. If L is less than the
minimum value of τ, it causes the absence of local spatial–
temporal information.

The computer used for network training is configured
with two E5-2620 V4 processors and one NVIDIA
GTX1080TI GPU. The computer system is a 64-bit
UBUNTU system, and the software development environ-
ment is tensorflow. According to the above method, it takes
1 day (140 epoch) to train the network model for the first
time to stabilize the network parameters. The second training
takes only 8 h (46 epoch) to stabilize the network parameters.

4 Experiment
We use three public datasets to train and validate our net-
work: UCF101, UCF11, and UCFSports. The above three
datasets are very challenging for the recognition task of
video action because the lighting conditions of each video
are inconsistent. Moreover, in some video imaging proc-
esses, the camera does not move continuously, whereas in
some video imaging, the camera does not move, and the
background complexity of each video is different.

4.1 Datasets

1) UCF101:37 UCF101 video dataset has 13,320 videos,
including 101 categories.

2) UCF11: UCF11 video dataset has 1600 videos,
including 11 action categories: ball-shooting, cycling,
diving, golf swings, horseback riding, football kick-
ing, swinging, tapping tennis, trampoline, volleyball
smashing, and dog walks.

3) UCFSports: UCFSports video dataset with 150 vid-
eos, including 10 different action categories: diving,
golf swing, kicking, weightlifting, horseback riding,
running, skateboarding, swing bench, swing side,
and walking. The video with the smallest number of
frames in the dataset has 22 frames.

4.2 Experimental Procedure
Among the videos of each dataset, the video of the minimum
number of frames has an inconsistent number of video
frames. For each dataset, the minimum number of video
frames T is selected as the number of frames of each
video sample. Assuming that N is the total number of frames
of a video sequence, the acquisition interval t is:

EQ-TARGET;temp:intralink-;e013;326;121t ¼ N
T
: (13)

If the integer value of t is t 0, the sequence S of captured
video frames is:

Table 1 Comparison of our results to the state-of-the-arts on action
recognition datasets UCF101.

Method Accuracy (%)

LRCN8 82.9

Dense trajectories35 84.2

Composite LSTM model20 84.3

Soft attention26 84.9

C3D2 85.2

Two-stream ConvNet4 88.0

Beyond short snippets21 88.6

Snippets36 89.5

C3D + iDT + linear SVM2 90.4

Two-stream fusion22 92.5

Ours (VGG-16-3Dconv-2LST) 95.3
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EQ-TARGET;temp:intralink-;e014;63;752S ¼ ð1 × t 0; 2 × t 0; : : : ; T × t 0Þ: (14)

In this paper, the total video frames T sampled by the
three datasets are all 17 frames. The experiment uses a
cross-validation method, that is, each training dataset is ran-
domly divided into a training set and a verification set. The
training set is used to train the network model, and the veri-
fication set is used for the training correctness rate test veri-
fication after training. The ratio of the training set and the
verification set is 7:3.

4.3 Results and Comparative Analysis
Figure. 9 shows a graph showing the relationship between
the loss function and the number of echoes obtained by per-
forming training verification on the UCF101 video dataset. It
can be concluded from Fig. 9 that the action recognition net-
work architecture training proposed in this paper can
converge faster, and the correct recognition rate in the veri-
fication set tends to be stable with the increase of training
echoes. From this, we can deduce that although our network
depth is deeper than other methods, there is no case where
the network gradient disappears or explodes.

In addition to the experimental verification of the video
action recognition of UCF101 dataset using our proposed
method, the UCF101 dataset is identified and classified
by other methods. The experimental results of each method
are shown in Table 1.

The LRCN8 method caused the first fully connected layer
and the second fully connected layer of the convolutional
network to be sent to the LSTM for time information extrac-
tion, which lacked time change information extraction of
spatial information. Dense trajectories35 were a traditional
dense trajectory method. The composite LSTM model20

method used the video sequence frame as a sequence infor-
mation with context semantics and used LSTM to implement
sequence-to-sequence mapping for video characterization.
This method does not use volume and neural network
(CNN) to extract spatial information; C3D2 and two-stream
ConvNet4 have the disadvantage of limited time dimension
information. The beyond short snippets21 method combines

spatial and temporal information at the final predictive output
layer, thus lacking pixel-level information fusion. The
snippets36 method implemented CNN to extract spatial fea-
tures as a keyframe extraction tool and used the following
SVM to classify keyframes. Such methods lack complete
time dimension information. The two-stream fusion22

method has the pixel level fusion of spatial information and
mobile information but lacks the interaction process of spa-
tial information and semantic information and lacks the abil-
ity to acquire complete semantic information. Combining the
characteristics of each method and the analysis of the pro-
posed network architecture, the proposed method has the
ability to make up for various defects of other methods.

Figures 10 and 11 show graphs showing the relationship
between the loss function and the number of training times
for training verification of UCF11 and UCFSports video
datasets. As illustrated in Figs. 10 and 11, the action recog-
nition network architecture proposed in this paper is applied
to the dataset with fewer samples, and the training conver-
gence is faster. Moreover, in the case of limited training sam-
ples and verification sets, the correct rate is 100%, which
makes it possible to judge that our network has a good gen-
eralization ability.

Similarly, in addition to the experimental verification of
the video action recognition of UCF11 and UCFSports data-
sets using our proposed method, the UCF101 dataset is iden-
tified and classified by other methods. The experimental
results of each method are shown in Table 2.

Cho et al.38 used traditional multicore sparse representa-
tion to express video local motion features and global motion
features. This method requires learning the dictionary to
express local motion features and is limited by the diction-
ary’s expressive ability; Weinzaepfel et al.39 first used spatial
CNN and time CNN to obtain multitarget candidate regions
of frame images, racked regions with higher classification
scores, and then evaluated the scores. Finally, the action
was timed and classified using the form of a sliding window
on the time dimension. Such methods lack the effective
integration of spatial information and time information, so
the classification results are improved with the relative

Fig. 9 The relationship between the loss function and the number of training obtained by performing
training verification on the UCF101 video dataset.
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traditional methods, but there are still many areas for
improvement; SGSH40 first detected the video frame contain-
ing the target and the target in the corresponding frame
image, extracted the frame containing the target, and
described the global characteristics of the video sequence
with histograms of oriented optical flow (HOOF) features.
Meanwhile, the frame image target area was extracted,
and the 3D-SIFT feature was used to describe the local target
feature. Finally, the HOOF and 3D-SIFT features entered the
multiclass SVM for class classification. This method is the
best performing method in traditional nondeep learning

methods because of the fusion of local features and global
features. However, it is well-known that no matter what
kind of artificially designed video global features and
local features, it is impossible to contain more effective infor-
mation than the neural network itself obtained through learn-
ing; Soft attention18 had a frame attention mechanism, but it
was not the full connection layer and the convolution layer
working together to obtain spatial information. This method
lacks the ability to express spatial information effectively,
thus leading to errors in the classification of ball-shooting,
throwing, and volleyball playing. Although two-stream
LSTM33 has a mechanism of attention, it lacks effective
time information acquisition methods. The method proposed
by our method is 100% accurate for UCF11 verification data-
set. This proves that our network can effectively obtain
motion information and spatial information, realize the effec-
tive fusion of spatial information and motion information,
and finally obtain the semantic information of video.

Combining the characteristics of the above methods and
comparing the action recognition network architecture pro-
posed by our analysis, we can conclude that the network
architecture designed in this paper can achieve the fusion
of spatial–temporal information and the ability to express
global features and local features. The experimental results
also demonstrate the effectiveness of our method.

Disadvantages of our method: when the video classifica-
tion is performed on the computer used in the network train-
ing, the specific prediction speed is slower—one video takes
770 ms. Among the various methods in Tables 1 and 2, their
basic network structure is different. The experiment shows
that the proposed method has better performance on the
three datasets UCF101, UCFSport, and UCF11. However,

Fig. 10 The relationship between the loss function and the number of training obtained by performing
training verification on the UCF11 video dataset.

Fig. 11 The relationship between the loss function and the number of training obtained by performing
training verification on the UCFSport video dataset.

Table 2 Comparison of our results to the state-of-the-arts on action
recognition datasets UCF11 and UCFSport.

UCF11 UCFSport

Method
Accuracy

(%) Method
Accuracy

(%)

Dense trajectories35 84.2 Dense trajectories35 89.1

Soft attention26 84.9 Weinzaepfel et al.39 90.5

Cho et al.38 88.0 SGSH40 90.9

Snippets36 89.5 Snippets36 97.8

Two-stream LSTM33 94.6 Two-stream LSTM33 99.1

Ours (VGG-16-
3Dconv-2LSTM)

100.0 Ours (VGG-16-
3Dconv-2LSTM)

100.0
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our experiments do not show that our method has the best
recognition accuracy rate regardless of which dataset is used.

5 Conclusion
We propose a network for video action recognition. We use
the migration learning method to fully acquire the video
frame space information and the local time information of
the video frame sequence using the pretrained CNN network
with limited training samples. The local spatial information
and the local time information are deeply fused, and finally
the fused global time and space information is obtained using
LSTM. In the design of LSTM, the fully connected layer
semantic information is used to realize the effective extrac-
tion of the spatial information entering the LSTM (the spatial
information attention mechanism is implemented). Through
the experimental comparison on the standard dataset, the
proposed method has a higher improvement in the correct
recognition rate, which proves that we propose the network
architecture with the following three important mechanisms:
(1) the ability to fuse local spatial information with local time
information, (2) effective acquisition of global spatial–tem-
poral information, and (3) effective combination of spatial
information and semantic information, and the effectiveness
of spatial information attention mechanism.
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