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ABSTRACT. Purpose: Anatomy-based quantification of emphysema in a lung screening cohort
has the potential to improve lung cancer risk stratification and risk communication.
Segmenting lung lobes is an essential step in this analysis, but leading lobe
segmentation algorithms have not been validated for lung screening computed
tomography (CT).

Approach: In this work, we develop an automated approach to lobar emphysema
quantification and study its association with lung cancer incidence. We combine self-
supervised training with level set regularization and finetuning with radiologist anno-
tations on three datasets to develop a lobe segmentation algorithm that is robust for
lung screening CT. Using this algorithm, we extract quantitative CT measures for a
cohort (n ¼ 1189) from the National Lung Screening Trial and analyze the multivari-
ate association with lung cancer incidence.

Results: Our lobe segmentation approach achieved an external validation Dice of
0.93, significantly outperforming a leading algorithm at 0.90 (p < 0.01). The percent-
age of low attenuation volume in the right upper lobe was associated with increased
lung cancer incidence (odds ratio: 1.97; 95% CI: [1.06, 3.66]) independent of
PLCOm2012 risk factors and diagnosis of whole lung emphysema. Quantitative lobar
emphysema improved the goodness-of-fit to lung cancer incidence (χ2 ¼ 7.48,
p ¼ 0.02).

Conclusions: We are the first to develop and validate an automated lobe segmen-
tation algorithm that is robust to smoking-related pathology. We discover a quanti-
tative risk factor, lending further evidence that regional emphysema is independently
associated with increased lung cancer incidence. The algorithm is provided at
https://github.com/MASILab/EmphysemaSeg.
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1 Introduction
Annual lung cancer screening with low dose computed tomography (CT) is the standard-of-care
for individuals with a substantial smoking history,1 and two of the goals include (1) estimating
lung cancer risk early and (2) promoting health behavior change. Within the first goal, identifying
novel risk factors of lung cancer works toward an individualized approach to lung cancer risk and
further elucidates radiologic manifestations that are correlated with lung cancer development.2–6

As a related second goal, annual lung screenings have served as encounters to communicate lung
cancer risk and promote health behavior change such as smoking cessation. As a common abnor-
mality seen on lung screening CT that correlates with tobacco use and the development of lung
cancer, emphysema may be a useful biomarker for both goals.

Emphysema is inflammation and destruction of lung parenchyma that is primarily detected
through CT imaging in patients with chronic obstructive pulmonary disease (COPD).7

Emphysema has been well established as an independent risk factor for primary lung cancer.
Many CT studies have linked qualitative emphysema assessment to increased lung cancer
risk,8–10 although these studies are subject to inter-reader variability. An automated quantitative
approach to assessing emphysema avoids inter-reader variability and scales well with larger
cohorts. Quantitative emphysema, also known as low attenuation volume (LAV), is approximated
as intensity below −950 Hounsfield Units (HU). With this definition, the most up-to-date pooled
meta-analysis11 of studies from the United States,12–16 Norway,17,18 Japan,19,20 and Spain21 sup-
ports the independent association of quantitative emphysema severity with a higher risk of lung
cancer.

However, recent literature has suggested that increased lung cancer risk is stratified by the
location of emphysema. Bae et al.22 found that upper lobe LAV and the ratio of normal attenu-
ation volume and LAV were significant predictors of lung cancer development in the same lobe.
These results highlight the need for emphysema measures across different pulmonary lobes in
assessing lung cancer risk. In the aforementioned meta-analysis,11 a pooled analysis of three
studies9,17,21 discovered that the association with lung cancer held for centrilobular but not para-
septal emphysema. The former is a subtype of emphysema that predominantly affects central and
upper distributions of the lung, whereas the latter is distributed peripherally, adjacent to pleural
surfaces. Together, these findings argue for the need to anatomically quantify emphysema and
further investigate the effect of lobar emphysema on lung cancer risk.

Regarding the second goal, studies have shown that positive change in smoking habits have
correlated with increased adherence to lung screening as well as the presence of an abnormal CT
finding.23–25 These studies support the importance of communicating lung screening results and
suggest that integrated smoking cessation counseling may improve smoking abstinence. To this
end, allowing patients to visualize emphysema in their lungs has the potential to improve com-
munication and enhance behavior counseling in a shared decision-making setting. Clinical trials

(a) (b)

Fig. 1 Lobe segmentation helps localize emphysema in across different lobes of the lung field.
(a) Segmentation of lobes and LAV for a chest CT with high emphysema involvement. Emphysema
is approximated as LAV below −950 HU. (b) Segmentation enables the measurement of percent
emphysema involvement across pulmonary lobes. This information aids personalized radiologic
evaluation and clinical management as well as disease characterization at scale for population-
level research.
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have been proposed to research this model of care,26,27 but an automated tool for producing such
visualizations has not been made available (Fig. 1).

In this study, we develop and validate a lobe segmentation algorithm that is robust to
smoking-related pathology. We leverage this algorithm to quantify emphysema in a large lung
screening cohort. We investigate the multivariate association of lobar LAV with lung cancer
incidence after adjusting for an inclusive set of risk factors, including COPD. Finally, we ask
if lobar LAV remains significantly associated with lung cancer risk independent of radiologist
diagnosis of emphysema and whole lung LAV.

2 Datasets
This study involves deidentified human subjects and was supervised under Institutional Review
Board #181279 titled “SPORE Pilot Project: Machine Learning for Prognosis Assessment” at
Vanderbilt University. Informed consent was waived.

Vanderbilt lung screening program (VLSP)28 is an on-going lung cancer screening program
at Vanderbilt University Medical Center. Radiologist-annotated labels for the pulmonary lobes
were not available for the VLSP. As a lung screening cohort, VLSP subjects have a 20 pack-year
smoking history at minimum and have smoked within 15 years of scan acquisition. Across 887
subjects in the program, we collected 1490 chest CT scans (Table 1) that passed basic quality
control, ensuring no artifact occluding the lung fields, proper field of view, slice contiguity, and
realistic physical dimensions.29

TotalSegmentator (TotalSeg)30 is a publicly available dataset of clinically collected CTs
sampled from the University Hospital Basel, Switzerland, containing images of various proto-
cols, slice thicknesses, resolutions, and reconstruction kernels. One hundred and four anatomical
structures, including the pulmonary lobes, were annotated with the supervision of a board-
certified radiologist. We selected images on which at least part of the lung field was visible and
cropped them based on the boundaries of the lobe annotations, resulting in 660 unique CTs.

Lung nodule analysis (LUNA16).31 Data in the LUNA16 grand challenge were collected
from LIDC-IDRI, a publicly available reference database of diagnostic and lung screening chest
CTs. Tang et al.32 publicly released manual annotations for 50 examples in this dataset. Our team
manually reviewed this dataset and identified a subset of 47 annotated examples that were
appropriate for the finetuning step. Reasons for exclusion included the presence of an artifact
occluding the lung fields and incorrect annotations.

National Lung Screening Trial (NLST)1 is a publicly available lung screening dataset. Its
subjects have substantial smoking history and underwent annual low-dose chest CTs. Because
corresponding demographics, risk factors, smoking history, and past medical diagnoses are also
available, these risk factors were included to study the adjusted association between quantitative
lobar emphysema and lung cancer incidence. For this dataset, we sampled a cohort of 578
biopsy-confirmed lung cancer cases and 611 controls randomly sampled from subjects who did
not develop lung cancer 2 years after their latest scans. Quantitative emphysema measures were
extracted from a soft kernel CT from the first screening session of each subject in this cohort.
Characteristics of the cohort are summarized in Table 2.

Table 1 Characteristics of datasets used to develop the lobe segmentation model.

Characteristics VLSP Total-segmentator LUNA16

Population Lung screening Clinical routine Lung screening

Number of subjects 887 660b 47

Number of scans 1490 660b 47

Annotations Pseudo-labelsa Radiologist labels Radiologist labels

aPseudo-labels were generated using methods described in Sec. 3.1.
bScans with pulmonary lobe annotations available.
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Table 2 Characteristics of a balanced sample of lung cancer cases and controls from NLST.

Lung cancer cases Controls

Number of subjects/scans 578 611

Age 64 ± 5 62 ± 5

Race

White 541 (93.6%) 575 (94.1%)

Black 24 (4.2%) 14 (2.3%)

Hispanic or Latino 7 (1.2%) 10 (1.6%)

Othera 6 (1%) 12 (2%)

Education

Less than high school 54 (9.3%) 35 (5.7%)

High school or GED 152 (26.3%) 145 (23.7%)

Post high school training, excluding college 84 (14.5%) 95 (15.5%)

Associate’s degree 128 (22.1%) 153 (25.0%)

Bachelor’s degree 86 (14.9%) 102 (16.7%)

Graduate degree 63 (10.9%) 70 (11.5%)

Otherb 11 (1.9%) 11 (1.8%)

BMI (kg∕m2) 26.89 ± 4.70 27.85 ± 4.80

COPD present 66 (11.4%) 34 (5.5%)

Personal cancer history 35 6.0% 27 4.4%

Family lung cancer history 149 (25.8%) 144 (23.6%)

Smoking status

Former 253 (43.8%) 336 (55.0%)

Current 325 (56.2%) 275 (45.0%)

Smoking quit years 2.71 ± 4.27 3.86 ± 4.86

Smoking pack-years 65.12 ± 27.42 57.20 ± 25.98

Radiologic emphysema 318 (55.0%) 266 (43.5%)

Lung volume (cc) 5774 ± 1307 5637 ± 1294

LAV %

Total 8.0 [1.7, 12.2] 6.9 [1.3, 9.6]

LUL 7.8 [1.7, 9.8] 7.2 [1.3, 8.7]

LLL 5.7 [1.0, 6.2] 5.6 [0.7, 5.9]

RUL 12.8 [1.4, 15.2] 9.8 [1.0, 10.0]

RML 7.1 [1.5, 9.3] 6.9 [1.5, 9.7]

RLL 4.8 [0.7, 5.5] 4.2 [0.6, 5.1]

Continuous variables are given in mean ± standard deviation or mean [First quartile, third quartile]. BMI = body
mass index. COPD = chronic obstructive pulmonary disease. LAV % = low attenuation volume percentage.
aAsian, American Indian, Alaskan Native, Native Hawaiian, Pacific Islander, missing value, or decline to
answer.

bMissing value or decline to answer.
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3 Methods

3.1 Lobe Segmentation
Characterizing emphysema across a large lung screening cohort requires automatic lobe segmen-
tation that is robust to smoking-related pathology. The leading algorithm from Hofmanninger
et al.33 has been validated on diverse lung pathology but exhibits substantial artifact at the pul-
monary fissures (Fig. 2) that are not consistent with realistic 3D anatomy. To overcome this
challenge, we employed a volumetric level set method34 (LSM) to infer smoothly contoured
and artifact-free borders [Fig. 3(b)] from the leading algorithm. LSM-evolved segmentations
were acquired for each scan in VLSP and used as pseudo-labels to train a 3D U-Net from random
weights [Fig. 3(c)]. The resulting model was then finetuned with near ground-truth annotations
from TotalSeg [Fig. 3(d)]. The final model was quantitatively validated on an external screening
CT dataset and qualitatively reviewed for a sample hold out set of VLSP [Fig. 3(e)].

Fig. 2 State-of-the-art lobe segmentation algorithms fail to capture realistic lobe fissures in 3D in
lung screening CT. The leading lobe segmentation model from Hofmanninger et al.33 applied to two
examples. An irregular artifact is noticeable along the borders of the segmentation. In addition, the
right middle lobe (orange) and right lower lobe (red) are inaccurately segmented.

(a) (b) (c)

(d)

(e)

(f)

(g)

Fig. 3 Overview of methods. (a) The 2D U-Net based segmentation algorithm from Hofmanninger
et al.33 is applied to infer initial segmentations for the VLSP cohort. Pulmonary lobe annotations are
absent for this cohort. (b) Initial lobe segmentations are iteratively evolved using a volumetric level
set method (LSM). (c) The evolved segmentations are used as pseudo-labels for VLSP in the self-
supervised training of our 3D U-Net. (d) The model is further finetuned with 660 annotated chest
CTs from the TotalSegmentator dataset. (e) An external validation set from LUNA16 is used to test
the model’s performance on lung screening CTs. (f) The final model is leveraged to anatomically
quantify emphysema severity for the NLST cohort. (g) Multivariate logistic regression is applied to
study the association between emphysema measures and lung cancer incidence.
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3.1.1 Level set method

The LSM provides a framework to efficiently compute an evolving surface as discrete points by
embedding it as a level set of a higher-dimensional function. We leverage a classic LSM
formulation for image segmentation that has been well documented in the literature.35–38 In this
formulation, a lobe segmentation is computed from the zero level set, S, of a time-varying
function, ϕ∶R4 → R as

EQ-TARGET;temp:intralink-;sec3.1.1;114;657S ¼ fxðtÞjϕðxðtÞ; tÞ ¼ 0g:
The zero level set is therefore the set of discrete points at t where ϕ ¼ 0, and this set is

assumed to approximate an isosurface that represents the segmentation evolved after t timesteps.
ϕ is a function that models a 4D hypersurface by mapping a position at t to its signed distance to
the zero level set. We approximate the initial value of ϕ at t ¼ 0 as a signed distance transform of
the initial segmentation of a single lobe. The distance transform of each voxel inside the seg-
mentation is computed as the negative Euclidean distance to the nearest background voxel. This
results in a distance map in which voxels near the center of the segmentation were more negative
than those near the edge. The value of background voxels remains zero. The implicit level set
model is then iteratively evolved according to handcrafted force functions designed to drive the
model toward a desired deformation. During evolution, the evolution speed is derived from an
initial ϕ at t ¼ 0 by differentiating Eq. (1) with respect to t as
EQ-TARGET;temp:intralink-;e001;114;500

ϕðxðtÞ; tÞ ¼ 0;

∂ϕðxðtÞ; tÞ
∂t

¼ 0; (1)

EQ-TARGET;temp:intralink-;e002;114;437

∂ϕ
∂t

¼ −∇ϕ
∂xðtÞ
∂t

; (2)

where ∂xðtÞ
∂t is expressed as the evolution speed, F, in the surface’s outward normal direction such

that ∂xðtÞ
∂t ¼ F ∇ϕ

k∇ϕk. In imaging applications, F is a function of local properties of the image and

level surface. Although there are many choices of local properties to operate on, we found the
combination of a boundary attachment term and a smoothing term to be optimal for our purpose,
which is given as

EQ-TARGET;temp:intralink-;e003;114;351F ¼ α∇
1

1þ kGðb; σÞk þ β div

�
∇ϕ

k∇ϕk
�
; (3)

where Gðb; σÞ is the binary segmentation map, b, filtered with a Gaussian kernel of standard
deviation σ. The first term encourages the zero level surface to remain close to the initial seg-
mentation boundary within a range directly proportional to σ. This is a desirable property because
our goal with the LSM is to correct local artifacts at the border without substantially changing the
general position or volume of the initial segmentations. A larger σ allows the zero level surface to
evolve further from the initial segmentation boundary, and vice versa. The second term is a mea-
sure of the surface’s local mean curvature. It encourages deformations along the normal direction
in regions of high curvature, thereby smoothing the surface. Positive constants α and β govern the
weight of the boundary attachment term and the smoothing term, respectively. Solving the partial
differential equation in Eq. (2) with the finite difference method results in the zero level surface at
time t

EQ-TARGET;temp:intralink-;e004;114;182ϕðxðtÞ; tþ ΔtÞ ¼ ϕðxðtÞ; tÞ þ ΔtFk∇ϕk: (4)

A separate model, ϕðxð0Þ; 0Þl, is initialized for each lobe volume, Vl, which is segmented
using the algorithm from Hofmanninger et al.33 Each model is evolved according to Eq. (4) for a
fixed Δt and fixed number of iterations, k. The final zero level surfaces are computed as

ϕðxðkΔtÞ; kΔtÞl ¼ 0, and the volume enclosed by this isosurface, denoted by V̂l, is computed

as ϕðxðkΔtÞ; kΔtÞl ≤ 0. The five volumes, fV̂1; : : : ; V̂5g, acquired in this way, are merged

according to the following scheme: (1) a global lung field is computed as the union of all V̂l.
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(2) Voxels in the lung field with more than one label or no label are assigned to V̂l, where l

corresponds to the smallest valued ϕl. (3) The largest connected component of each V̂l is found.
Herein we briefly describe the specific settings and hyperparameters that were empirically

found to be optimal for the practical implementation of the LSM on the VLSP dataset. Resizing
initial volumes to 512 × 512 × 320 results in a LSM that is efficient in runtime and memory
without a noticeable tradeoff in resolution. The parameters of F consist of a Gaussian kernel
with σ ¼ 1.5 as well as α ¼ 1 and β ¼ 1.

3.1.2 Self-supervised pretraining

As shown in previous work,33 achieving accurate, reliable, and robust lung segmentation in
clinically collected medical images is more dependent on data diversity and quality than model
choice. As such we refrained from developing a bespoke model architecture and used a generic
state-of-the-art 3D U-Net.39 The model operates on 96 × 96 × 96 volumetric patches, and we
leverage the LSM-corrected lobe segmentations as regularized pseudo-labels for self-supervised
training. An 80% to 20% training-validation split of VLSP was used to train the 3D U-Net from
random weights. During training, patches centered on a voxel in the lung field were randomly
extracted and augmented with random intensity shifts and random affine transformations. Using
the average of Dice loss and cross entropy loss as the training and validation criterion, the model
was trained until the running average of the validation Dice decreased from the maximum
observed by >10%.

3.2 Finetune Training and Validation
The model was finetuned with 660 CT scans and corresponding labels from TotalSegmentator
using the same settings for data augmentation and loss criterion. Finetune training continued until
the running average of the validation Dice decreased 10% from its peak. The finetuned model
was tested using an external validation set consisting of 47 lung screening chest CTs from
LUNA16 with corresponding radiologist-generated labels. During inference, our algorithm
found connected components and set missing labels to their nearest neighbors as post-processing
of U-Net outputs. For comparison, we computed the Dice score of original and LSM-corrected
segmentations from Hofmanninger et al.33 We report Dice scores for each pulmonary lobe as well
as the average across the validation set (Fig. 4).

3.2.1 Sensitivity analysis

To access the segmentation of our proposed approach, the five finetuned models were tested on
their corresponding hold-out folds. For comparison, we computed the Dice score of original and

Fig. 4 LAV fraction across pulmonary lobes for lung cancer cases and controls without lung
cancer. Greater variance in LAV fraction was observed in the RUL compared with other lobes.
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LSM-corrected segmentations from Hofmanninger et al.33 We report the average Dice for each
pulmonary lobe as well as the average across all examples from the finetuned dataset.

To access the reliability and the robustness of our proposed approach in the context of a lung
screening population, we conducted a qualitative sensitivity analysis. Lobe segmentations for a
sample from VLSP were inferred using one of our finetuned models. This sample (Table 3) was
curated using a random selection stratified on COPD status (present or absent) and sex (M or F).
In addition, the sample included all VLSP subjects with biopsy-diagnosed lung cancer. All scans
for each subject in the sample were included in the analysis. The inferred lobe segmentations
were scored 1 through 5 using the following criteria.

1. All lobes appear to be inaccurately segmented and/or segmentation artifact prevents
assessment.

2. 2-3 lobes appear to be inaccurately segmented and/or there is severe segmentation artifact
present.

3. 1-2 lobe segmentations appear to be <80% accurate and/or there is moderate segmentation
artifact present.

4. All lobe segmentations appear to be >80% accurate and/or there is minor segmentation
artifact present.

5. All lobes appear to be accurately segmented and there is no noticeable segmentation arti-
fact present.

Scores from scans of the same patient were averaged into a single subject-level score. A
two-tailed Welch’s t-test was used to determine if scores were significantly different between
male and female, lung cancer present and absent, and COPD present and absent populations.

3.3 Emphysema Characterization
We investigated the association between lobar emphysema and lung cancer in a lung screening
cohort sampled from NLST. Emphysema was approximated as the volume below the standard
low attenuation threshold of −950 HU. The LAV was intersected with labels inferred from our
lobe segmentation model to quantify the LAV percentage in each lobe. Whole lung volume was
computed by multiplying the voxel count with the voxel dimensions.

3.4 Statistical Analysis
We adopted the practice of Labaki et al.16 in adjusting for covariates from the PLCOm2012

6 lung
cancer risk model, which were found to be significant predictors of developing lung cancer.
These include age, sex, body mass index (BMI), COPD status, past cancer history, past lung
cancer family history, smoking status, smoking quit time, and smoking pack years. We inferred

Table 3 Characteristics of VLSP sample used for sensitivity analysis.

Lung cancer COPD Sex Count

Present Present M 11

Present F 6

Absent M 11

Absent F 10

Absent Present M 35

Present F 37

Absent M 37

Absent F 39

Total 186
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missing values of BMI and/or COPD status for eight subjects using multivariate imputation.
Continuous covariates were min-max normalized with the following equation:

EQ-TARGET;temp:intralink-;sec3.4;117;712x̂i ¼
xi − xmin

xmax − xmin

;

where xi is the covariate of subject i, xmin is the minimum value of covariate x observed in the
population, and xmax is the maximum value of covariate x observed in the population. A logistic
regression model with lobar LAV percentage, whole lung volume, and PLCOm2012 covariates
was fit to estimate lung cancer risk. To further investigate if lobar LAV contributes to lung cancer
risk prediction independently of whole lung emphysema, we fit two additional models that
included radiologic emphysema and total LAV. The former is derived from abnormalities
detected by radiologists as part of the NLST archive, whereas the latter was computed as the
aggregate of lobar LAV percentage. Adjusted odds ratios and their p-values were computed for
each quantitative CT measure (Table 4). The added value of lobar LAV was assessed by
comparing the goodness-of-fit of PLCOm2012 only and with the addition of lobar LAV, lobar
LAV + radiologic emphysema, or lobar LAV + total LAV. The likelihood-ratio test was used
to determine a significant change in goodness-of-fit, and the χ2 statistic and p-value from this
test are reported (Table 5).

Table 4 Adjusted odds ratios for lobar LAV with respect to lung cancer risk.

Lobar LAV + Radiologic emphysema + Total LAV

Odds ratioa (95% CI) p Odds ratioa (95% CI) p Odds ratioa (95% CI) p

Radiologic
emphysema

N/A 1.21 (0.934, 1.56) 0.15 N/A

Lung volume 1.46 (0.443, 4.81) 0.53 1.43 (0.433, 4.74) 0.56 1.20 (0.457, 3.14) 0.56

LAV %

Total N/A N/A 0.078 (0.00, 276) 0.56

LUL 0.933 (0.252, 3.45) 0.92 0.810 (0.216, 3.04) 0.76 1.71 (0.155, 18.9) 0.66

LLL 0.525 (0.145, 1.90) 0.33 0.545 (0.151, 1.97) 0.36 1.09 (0.70, 17.1) 0.95

RUL 1.98 (1.07, 3.68) 0.03 1.89 (1.02, 3.52) 0.04 4.50 (0.273, 74.1) 0.29

RML 0.490 (0.070, 3.48) 0.48 0.537 (0.075, 3.85) 0.54 0.582 (0.075, 4.49) 0.61

RLL 2.71 (0.272, 26.9) 0.40 2.70 (0.268, 27.2) 0.40 4.89 (0.240, 99.8) 0.30

aOdds ratio is adjusted with PLCOm2012 lung cancer covariates: age, race, education, BMI, COPD, past cancer
history, past lung cancer family history, smoking status, smoking quit time, and smoking pack years.

Table 5 Added value of lobar LAV to goodness-of-fit.

Likelihood-ratio test

χ2 p

PLCOm2012 ref. N/A

Lobar LAV 7.48 0.02

+ Radiologic emphysema 9.57 <0.01

+ Total LAV 7.82 0.02
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Dice performance of lobe segmentation is reported as the mean from the LUNA16 test set.
95% confidence intervals for the mean Dice were computed from 100 bootstrap samples by
sampling with replacement from the predictions of LUNA16. We used a two-tailed
Wilcoxon signed rank test to determine if there was a significant difference in Dice performance
between our approach and baselines with a significance level of p < 0.05.

4 Results

4.1 Emphysema Characterization

4.1.1 Quantitative CT measures

The mean total LAV percentage in lung cancer cases (8.0 [1.7, 12.2]) was higher than that of
controls (6.9 [1.3, 9.6]). The comparison remained true across all lobes, with the largest differ-
ence being observed in the RUL. Across all subjects, we observed a greater variance in the LAV
percentage in the RUL compared with other lobes (Fig. 4). In addition, we observed a 140cc
increase in mean whole lung volume of lung cancer cases compared with controls. These obser-
vations align with the increased prevalence of radiologic emphysema and COPD diagnosed in
lung cancer cases (emphysema: 55%; COPD: 11.4%) compared with controls (emphysema:
44%; COPD: 5.5%).

4.1.2 Correlation to lung cancer risk (Table 4)

The LAV percentage in the RUL was found to be a significant predictor of lung cancer with an
odds ratio of 1.97 (95% CI: [1.07, 3.68]). Its statistical significance held when controlling for

(a) Dice by lobe (b) Mean aggregate Dice

Fig. 5 Mean Dice similarity coefficient across all cross validation folds on LUNA16. “Hof. et al.”
is the algorithm from Hofmanninger et al.33 The LSM is evolved from Hof. et al using level set
regularization and connected components. Our proposed model is trained using self-supervision
and further fine-tuned on five cross validation folds with the combined LUNA16 and active learning
dataset. † p < 0.05.

Li et al.: Quantifying emphysema in lung screening computed tomography with robust. . .

Journal of Medical Imaging 044002-10 Jul∕Aug 2023 • Vol. 10(4)



radiologic emphysema but not when controlling for the total LAV percentage. The odds ratio of
the RLL LAV percentage was relatively high at 2.71(95% CI: [0.272, 26.9]) but was not found to
be significantly different than 1 (Table 4). Compared with PLCOm2012, the addition of lobar LAV
significantly improved the goodness-of-fit (χ2 ¼ 7.48; p ¼ 0.02) according to the likelihood
ratio test. The addition of radiologic emphysema (χ2 ¼ 9.57; p < 0.01) and total LAV
(χ2 ¼ 7.82; p ¼ 0.02) also significantly improved the goodness-of-fit (Table 5).

4.2 Lobe Segmentation

4.2.1 Quantitative validation

There was no significant difference in Dice performance between the baseline and LSM-
processed results. In contrast, our proposed method (0.9278 Dice) significantly outperformed
the baseline (0.8996 Dice) and LSM (0.8982 Dice). Across each pulmonary lobe, the baseline
and LSM achieved a similar Dice performance, whereas our proposed method achieved a
significantly higher average Dice. A two-tailed Wilcoxon signed rank test found these
differences to be significant for p < 0.05. All three methods performed worse on the
RML compared with the other lobes, but here the improvement from our proposed method
was pronounced (Fig. 5).

4.2.2 Qualitative sensitivity analysis

No significant difference in the mean score between cancer status, COPD status, and sex were
observed (Table 6). The mean scores for all clinical categories were above 4. Across all three
categories, the score of 5 was the most frequent, reflecting the observation that these segmen-
tations appeared to be accurate without any noticeable artifact. Qualitative performance was

Table 6 Qualitative scores by cancer, COPD, and sex.

Mean score Std P

Cancer present 4.45 0.72 <0.05
Cancer absent 4.25 0.85

COPD present 4.16 0.87 <0.05
COPD absent 4.34 0.80

Male 4.03 0.86 <0.05
Female 4.51 0.73

Fig. 6 Distributions of qualitative scores for a random sample of VLSP. The distributions of scores
are heavily skewed toward a score of 4 and 5 regardless of lung cancer status, COPD status, and
sex.
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limited by a fewer number of 4s and 3s. These segmentations were ones that appeared less accu-
rate and/or had some noticeable artifact, most commonly in subjects with challenging RML
anatomy and obscure lobe fissures. A small number of scans received a score of 2, and no scans
received a score of 1 (Fig. 6).

5 Discussion

5.1 Emphysema Characterization
We investigated lobar emphysema as an independent risk factor for lung cancer by applying an
automated pipeline to quantify emphysema markers for a large lung screening cohort. Based on
the quantitative percentage of LAV, we found higher emphysema involvement in the upper lobes,
especially the RUL, compared with the lower lobes. These findings agree with previous studies
of upper lobe-predominant emphysema being highly prevalent in lung screening cohorts.9,16,40

The finding that LAV in the RUL independently contributes to lung cancer risk is novel. Our
findings remain significant even when controlling for whole lung emphysema diagnosis,
reinforcing the independent contribution of regional emphysema on lung cancer risk. Our results
align with a previous study22 that found upper lobe emphysema to be a significant predictor of
lung cancer location, although the distinction between left and right upper lobes was not made in
that study. Our results also agree with a pooled meta-analysis of three studies9,17,21 showing that
centrilobular emphysema, which presents with upper lobe predominance, is independently asso-
ciated with increased lung cancer risk. We did not confirm whether centrilobular emphysema was
driving the observed association in our cohort because diagnosing emphysema subtype requires a
visual assessment.

The lack of significant association between the LUL LAV percentage and lung cancer in our
cohort is surprising given that the upper lobes are thought to be similarly affected in emphysema.
The large odds ratio of the RLL LAV percentage with a 0.395 p-value is also worth noting and
suggests a distinction between left and right lungs that has not been studied in the context of
emphysema and lung cancer. The right main bronchus is wider, shorter, and more vertical than
the left. The emphysema quantification of the LUL combines the LUL and the lingula, which is
anatomically like the RML. However, the left and right upper lungs are thought to be physio-
logically similar in ventilation and perfusion despite these anatomical differences. Evidence of
distinction between left and right lungs is more likely specific to this study’s cohort, and
validation in other cohorts is needed for further investigation.

This section of work is limited in several aspects. First, Caucasians are overrepresented in
both cases and controls of the NLST cohort. This may bias the results and limit their applicability
to populations of greater racial diversity. Second, inaccurate segmentations may introduce noise
into the quantitative emphysema measures, especially when quantifying LAV in the RML. We
strived to minimize this noise by optimizing our model for lung screening CT and standardizing
the analysis to soft kernel CTs. Third, large emphysematous bullae may confound emphysema
quantification as these structures are known to compress surrounding lung tissue. This would
nonlinearly influence LAV-based quantification.

5.2 Lobe Segmentation
The present work seeks to develop a lobe segmentation algorithm that appears realistic in 3D and
is robust to smoking-related changes in the lung. To this end, we proposed a two-stage training
strategy that combines self-supervised training on a lung screening dataset with level set regu-
larization and finetuning on a clinical routine dataset with near ground truth labels. In general, the
LSM was successful in smoothing local artifacts, such as those in subjects A and B in Fig. 7, but
it preserved large scale defects such as those in subjects C. Although such defects introduced
label noise into the first stage of training, the final model resolved both small- and large-scale
artifacts. Testing on an external validation set confirmed that our algorithm outperformed a lead-
ing baseline method on lung screening subjects across all lung lobes. As the most variable in
anatomical shape and position, the RML was unsurprisingly the most challenging to segment.
Although superior to the leading method, our algorithm was only moderately accurate in
segmenting the RML.
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Our algorithm was not free of errors, as suggested by a mix of scores in our sensitivity
analysis. Common failure modes included inaccurate segmentation of challenging RML
anatomy and presence of visually apparent artifacts (Fig. 7). The scores were calibrated such
that a 3 or above would be acceptable for use in most visualization applications. Because the
overwhelming majority of samples scored in the acceptable range, this analysis supported the
clinical utility of our algorithm. Because our algorithm was primarily developed and validated on
lung screening subjects who all have substantial smoking history, its performance on pulmonary
pathologies seen in the clinical routine is unknown.

6 Conclusion
We developed an automated pipeline for robust quantification of emphysema and used it to inves-
tigate the association between lobar emphysema and lung cancer. We employed self-supervised
training with level set regularization and ground truth finetuning to maximize our model’s
performance on smoking-related pathology and minimize its susceptibility to producing border
artifacts. As a result, our lobe segmentation algorithm is more accurate on lung screening CT
compared with a leading baseline and is optimally suited to quantify lobar emphysema. The
algorithm is made publicly available at https://github.com/MASILab/EmphysemaSeg. We quan-
tified emphysema for a large lung screening cohort and are the first to find that a high LAV in the
RUL is an independent risk factor for lung cancer.

Disclosures
No conflicts of interests are reported.

Data Availability
The data presented in this article from the NLST are available upon request at https://cdas.cancer
.gov/learn/nlst/images/. The data from LUNA16 are available at https://luna16.grand-challenge.org/
Home/, and lobe annotations are released at https://github.com/deep-voxel/automatic_pulmonary_
lobe_segmentation_using_deep_learning. The data from TotalSegmentator are publicly available
at https://github.com/wasserth/TotalSegmentator. The data from VLSP used in this article are not
publicly available due to institutional and privacy restrictions.

Fig. 7 Lobe segmentations and ground truth annotations for three subjects using three methods: a
pretrained baseline model, the baseline model post-processed with the LSM, and our proposed
model. Segmentations of subject A, B, and C come from the 75’th, 50’th, and 25’th percentiles of
our proposed model’s Dice performance. The LSM resolves small-scale border artifacts and
achieves smoothly contoured fissures, but large-scale defects such as those seen in subject
C’s RML remain unresolved. Our proposed method effectively resolves large-scale defects and
segments the RML more accurately than the baseline method.
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