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ABSTRACT. Purpose: As large analyses merge data across sites, a deeper understanding of
variance in statistical assessment across the sources of data becomes critical for
valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and corre-
lated noise, so care must be taken with distributional assumptions. Here, we char-
acterize the role of physiology, subject compliance, and the interaction of the subject
with the scanner in the understanding of DTI variability, as modeled in the spatial
variance of derived metrics in homogeneous regions.

Approach: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal
Study of Aging, with ages ranging from 22.4 to 103 years old. For each subject, up to
12 longitudinal sessions were conducted. We assess the variance of DTI scalars
within regions of interest (ROIs) defined by four segmentation methods and inves-
tigate the relationships between the variance and covariates, including baseline age,
time from the baseline (referred to as “interval”), motion, sex, and whether it is the
first scan or the second scan in the session.

Results: Covariate effects are heterogeneous and bilaterally symmetric across
ROIs. Inter-session interval is positively related (p ≪ 0.001) to FA variance in the
cuneus and occipital gyrus, but negatively (p ≪ 0.001) in the caudate nucleus.
Males show significantly (p ≪ 0.001) higher FA variance in the right putamen,
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thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs
defined by the Eve type-1 atlas, an increase in motion is associated (p < 0.05)
with a decrease in FA variance. Head motion increases during the rescan of DTI
(Δμ ¼ 0.045 mm per volume).

Conclusions: The effects of each covariate on DTI variance and their relationships
across ROIs are complex. Ultimately, we encourage researchers to include esti-
mates of variance when sharing data and consider models of heteroscedasticity in
analysis. This work provides a foundation for study planning to account for regional
variations in metric variance.
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Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JMI.11.4.044007]
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1 Introduction
Large datasets enable the exploration of questions that would be impractical with smaller- or
moderate-sized datasets while giving rise to the development and application of deep learning
models, which can assimilate complex data. One prevalent challenge is that large datasets often
comprise samples aggregated from distinct sources at different time points using diverse tech-
nologies, causing data heterogeneity, experimental variations, and statistical biases if the analysis
is not executed appropriately.1 In such scenarios, understanding the variance and variability of
data is of great importance. The general linear model,2 a structured and widely used framework
for relationship modeling, allows us to illustrate the importance. The general linear model is
assessed through regression. A linear regression can be expressed by Y ¼ Xβþ ε, where the
response variable Y, the covariate matrix X, and the regression coefficients β are conventionally
represented in matrix forms given by
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where we use M to denote the number of samples and N to denote the number of independent
variables. The error term ε is given by

EQ-TARGET;temp:intralink-;e002;114;291ε ∼N ð0;ΣÞ; (2)

where Σ represents the covariance matrix. If we assume the errors are uncorrelated, Σ is
simplified to a diagonal matrix. We can simplify the estimation of Eq. (1) with a whitening
matrix,3 W

EQ-TARGET;temp:intralink-;e003;114;231WY ¼ WXβþWε; where W ¼ WT ¼ Σ−1∕2: (3)

Note Wε ∼N ð0; IMÞ, where IM denotes the identity matrix of dimension M ×M. We illus-
trate the practical importance of understanding the variance structure for reducing statistical
errors (Fig. 1).

Diffusion tensor imaging (DTI)4–6 is a modeling approach used in diffusion-weighted im-
aging,7–9 a variant of conventional magnetic resonance imaging (MRI) based on the tissue water
diffusion rate.10 DTI allows for visualization and measurement of the degree of anisotropy and
structural orientation of fibers in the brain and has been widely used in studies.11–13 DTI is inher-
ently subject to low signal-to-noise ratio (SNR), and the noise structure exhibits spatial variability
and correlation, primarily attributed to fast imaging and noise suppression techniques.14,15

Understanding the statistical nature of DTI variance or noise has been proven to be beneficial
for diffusion tensor estimation,15,16 outlier detection,17 and reproducibility assessment.18–20
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Methods have been proposed for DTI variance (or noise) estimation, among which we rec-
ognize four types. The first type requires multiple repeated acquisitions (therefore, we refer to it
as the “multiple acquisition method”). After the repeated acquisitions, we could take the standard
deviation of the measurements, or perform data resampling, such as bootstrap or jackknife,21 to
quantify uncertainties of DTI parameters. The second type involves two repeated acquisitions,
which we call the “scan-rescan method.” We compute the difference between the images from
each acquisition and then calculate the standard deviation of the difference across the space.22,23

Note that the standard deviation must be divided by the square root of 2 to account for the com-
bination of two random variables (noise in each image). The third and fourth types are used when
we have only one acquisition. For the third type, we select a homogeneous region of interest
(ROI) and compute the standard deviation of the measurements within this ROI (“ROI-based
method”).24 The fourth type, often referred to as “model-based resampling,” involves fitting
a model (e.g., diffusion tensor) locally to the observed data. The residuals from the fitted model,
along with the original observed data, are then used by data resampling techniques such as wild
bootstrap to generate random subsets.21,25 From each subset, we obtain an estimate of a specific
parameter. Across all subsets, we get the distribution of the estimates and thus quantify the uncer-
tainty of the DTI parameter. The first type (multiple acquisition method) makes no assumptions
about the noise properties at the cost of requiring multiple acquisitions (for each diffusion gra-
dient in the DTI scenario).21 The second type (scan-rescan method) assumes that the noise is
constant across space, or across the region from which the standard deviation is computed.23

The third method (ROI-based method) assumes that both the noise and the signal are constant
across the ROI.24 The fourth method (model-based resampling) assumes that the non-constant
variance of measured signals can be captured by the chosen model.21 In this study, we choose the
ROI-based method for estimating noise across brain regions in DTI. This is because it does not

Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression equa-
tion reduces the number of false positives (FP) and false negatives (FN) under heteroskedasticity.
In the top row, the population truth has zero slope. In data sampled from the synthetic population
data, ordinary least square (OLS) regression using the standard equation generates FP, while the
solution with whitening, W, does not falsely reject the null hypothesis (the horizontal line). After
10,000 experiments, the FP frequency is lower with whitening, centering at 5 per 100. In the sec-
ond row, the population truth has a positive slope. In data sampled from the synthetic population
data, OLS regression using the standard equation generates FN, while the solution with whitening,
W, does not. After 10,000 experiments, the FN frequency with whitening is half that of the one
without whitening.
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require repeated acquisitions, and one advantage is that we can compute noise from each scan
within an imaging session, enabling inter-scan comparisons. First, this method can be applied to
datasets that do not have scan-rescan data available, thus enabling validation of our findings
using other datasets. Second, by using an individual scan for noise estimation, we can mitigate
errors caused by motion and inter-scan misalignment of the brain, which could be problematic
when using the multiple acquisition method or the scan-rescan method. Third, we want to avoid
using the assumption of the fourth type (model-based resampling).21

Up to this point, we have been using the terms “variance” and “noise” interchangeably.
In the following text, we use “variance” when referring to the measure of the dispersion of data
and “noise” when referring to imaging noise such as MRI noise—primarily caused by thermal
fluctuations and electrical noise—to avoid misinterpretation.

To gain a better understanding of DTI variance or noise, it is important to characterize the
role of physiology, subject compliance, and the interaction between the subject and the scanner.
Our approach is driven by two fundamental questions (Fig. 2): Which factors are associated with
DTI variance? Where and how does this association manifest? We assess the variance of DTI
scalars, including fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and
radial diffusivity (RD), within ROIs, and investigate the associations between the variance and
covariates, including baseline age, time from the baseline (referred to as “interval”), motion, sex,
and whether it is the first or the second scan within the session, using linear mixed-effects
models.28

2 Methods
We use the PreQual29 pipeline for preprocessing and quality assurance of the DTI data. PreQual
is an end-to-end pipeline that applies denoising, inter-scan normalization, susceptibility-induced
distortion correction, eddy current-induced distortion correction, inter-volume motion correction,
slice-wise signal dropout imputation, and more. PreQual also provides a summary of the data and
preprocessing in a portable document format (PDF) report for more efficient quality assurance.
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Fig. 2 We observe that the noise (approximated by the difference between the scan and rescan
acquired within the same imaging session) in DTI scalar images, such as FA images, generally
increases with age. (Subjects’ ages are grouped into 5-year bins to respect privacy.) But motion is
also considered to increase with age.26,27 We would like to know the following: Which factor is
associated with DTI variance? Where and how does this association manifest?
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We use data acquired from the neuroimaging substudy of the Baltimore Longitudinal Study
of Aging (BLSA).30,31 The BLSA is an extensive, ongoing research project that began in 1958,
enrolling healthy volunteers aged 20 years and older to study normal aging through a longi-
tudinal approach by following participants for their entire lives. We consider all subjects with
at least one session comprising both T1-weighted (T1w) magnetization-prepared rapid gradient-
recalled echo (MPRAGE) MRI data and DTI data. We exclude 49 DTI images exhibiting one or
more of the following characteristics according to their potential impact on subsequent analyses:

(1) The presence of extreme susceptibility-induced distortion, motion artifacts, or eddy
currents that resist correction.

(2) The failure of the preprocessed data to be fitted by the tensor model.
(3) An exceptionally low signal-to-noise ratio in the FA and MD images.

The exclusion of these cases results in the dataset depicted in Fig. 3. We identify 1035 sub-
jects (562 F/473 M, 22.4 to 94.4 years old at baseline) with 2751 sessions (1497 F/1254 M).
Detailed demographic information can be found in Table S1 and Fig. S1 in the Supplementary
Material 1. The 2751 sessions of MRI data were acquired by four different scanners, including a
1.5 Tesla Philips Intera scanner (scanner A, 83 sessions) at the Kennedy Krieger Institute (KKI),
two 3 Tesla Philips Achieva scanners using the same platform and protocol (scanners B and C, 16
sessions and 59 sessions, respectively) at the KKI, and a 3 Tesla Philips Achieva scanner (scanner
D, 2593 sessions) at the National Institute on Aging. Detailed scanner information and protocol
are provided in Table 1, which was previously reported.32 Among the 1035 subjects, 59 switched
to a different scanner in follow-up scans. During subsequent sessions, four female subjects
and 10 male subjects were diagnosed with Alzheimer’s disease, while the remaining subjects
remained cognitively normal throughout all sessions.

2.1 ROI-Based DTI Variance Estimation
We use a registration-based approach for brain segmentation in the b0 (minimally weighted)
volume (Fig. 4). We initiate the process with brain segmentations for the T1w images obtained
through manual parcellations provided by the JHU-MNI-ss atlas (“Eve atlas”)33,34 and automated
whole-brain segmentation by spatially localized atlas network tiles (SLANT).35 For the Eve atlas,
there are three types of parcellations available, each with a different regional focus.33 For SLANT
segmentation, labels for 132 regions covering the whole brain are provided.35 We use the method

22.4 to 92.424.2 to 94.4

Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and
males, but it is well-matched and appropriate for our research objectives in other aspects: (i) the
age ranges of females and males align closely; (ii) rescan DTI data were acquired in most ses-
sions, enabling inter-scan comparisons; and (iii) the distributions of sessions of females and males
align closely.
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by Hansen et al.36 to transfer these labels from T1w to b0 space. After label transferring, we
manually review the segmentation to see if the labels align with the anatomical regions.

2.2 Linear Mixed-Effects Model
We use linear mixed-effects models28 to analyze the association between DTI scalar standard
deviation and covariates (R program, version 4.2.2;37 Ubuntu 20.04.5 LTS; R package lme4,
version 1.1.31;38 R package lmerTest, version 3.1.3.39).

We study linear mixed-effects models of the form

EQ-TARGET;temp:intralink-;e004;114;114σijkl ∼ Agebaseline;i þAgeinterval;ij þMotionijl þ Sexi þRescanijl þ r1;i þ r2;k þ εijkl; (4)

where σijkl represents the standard deviation of a DTI scalar (FA, AD, MD, or RD) in a specific
brain region of subject i at session j via scanner k in acquisition l, Agebaseline;i (hereafter referred

Table 1 Protocol for the T1w MPRAGE and DTI scans.

Parameter Scanner A Scanners B/C Scanner D

MPRAGE

Head coil Philips 8-ch Philips 8-ch Philips 8-ch

Scan time (min:s) 3:58 10:52 10:52

Slice thickness (mm) 1.5 1.2 1.2

Number of slices 124 170 170

Flip angle (deg) 8 8 8

TR/TE (ms) 6.6/3.3 6.8/3.1 6.5/3.1

Field of view (mm) 240 × 240 256 × 240 256 × 240

Acquisition matrix 208 × 208 256 × 240 256 × 240

Reconstruction matrix 256 × 256 256 × 256 256 × 256

Reconstructed voxel size (mm) 0.94 × 0.94 1.00 × 1.00 1.00 × 1.00

DTI

Head coil Philips 8-ch Philips 8-ch Philips 8-ch

Scan time (min:s) 3:56 3:58 4:20

Number of gradients 30 32 32

Number of b0 images 1 1 1

Max b-factor (s/mm²) 700 700 700

Number of signal averages (NSA) 1 1 1

Diffusion gradient timing DELTA/delta (ms) 39.2/15.1 36.3/16 36.3/13.5

Slice thickness (mm) 2.5 2.2 2.2

Number of slices 50 65 70

Flip angle (deg) 90 90 90

TR/TE (ms) 6210/80 6801/75 7454/75

Field of view (mm) 240 × 240 212 × 212 260 × 260

Acquisition matrix 96 × 96 96 × 95 116 × 115

Reconstruction matrix 256 × 256 256 × 256 320 × 320

Reconstructed voxel size (mm) 0.94 × 0.94 0.83 × 0.83 0.81 × 0.81
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to as “baseline”) is the age of subject i at baseline session (unit: decade), and Ageinterval;ij
(hereafter referred to as “interval”) is the time between the current session, j, and the baseline
session (unit: decade). Motionijl is a scalar value reflecting the degree of head movement of
subject i at session j during acquisition l (calculated based on eddy movement, unit: milli-
meters),40 Sexi is the gender of subject i (0 for female and 1 for male), and Rescanijl is a binary
variable indicating if the acquisition l is the first scan (coded 0) or the rescan (coded 1) of session
j. We consider the subject and scanner as two random intercepts denoted by r1;i and r2;k, respec-
tively. Prior to fitting the models, we standardize the dependent variable σ. The results for the
models are based on the standardized σ.

We have a total of 2224 models, derived from the four DTI scalars (FA, AD, MD,
or RD), across varying ROIs defined by Eve type 1 (176 ROIs), Eve type 2 (130 ROIs),
Eve type 3 (118 ROIs),33,34 and SLANT (132 ROIs).35 Each model starts with a full model,
with all fixed effects and random effects, followed by an implementation of backward model
selection.39 The p-values for the fixed-effect terms are calculated based on the associated F
tests.39 To account for multiple comparisons, we adjust the p-values across the pairs of DTI
scalar and ROI for a false discovery rate (FDR) of 0.05 using the Benjamini-Hochberg method.41

3 Results
The magnitude and direction of the effects of each covariate on DTI variance exhibit hetero-
geneous patterns across ROIs (Fig. 5). Specifically, interval is positively related to FA variance
in ROIs such as the cuneus, middle occipital gyrus, superior occipital gyrus, medulla, and
precuneus white matter, but negatively related in ROIs such as the caudate nucleus, posterior
thalamic radiation, and superior fronto-occipital fasciculus (Table 2). Males have higher FAvari-
ance in the right putamen, thalamus, body of corpus callosum, and cingulum (cingulate gyrus),
but lower FA variance in the middle frontal gyrus (Table 3). In the right inferior temporal gyrus,
an increase of 1 mm in motion is associated with an increase of 2.211 standard deviations in the
z-scored standard deviation (σ) of FA values (β ¼ 2.211, p ≪ 0.001). Interestingly and counter-
intuitively, in several ROIs, including the medulla, middle occipital white matter, and cingulum
(cingulate gyrus), an increase in motion is linked with a decrease in FA variance (Table 2).

In the lateral fronto-orbital gyrus, left insular, gyrus rectus, and inferior occipital gyrus, both
motion and interval exhibit a positive association with FA variance (Table 2). In the left caudate

Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target
subject’s T1w image and using three types of manual parcellations provided by the Eve atlas.
To generate transformation matrices for transferring these labels to DTI scalar images, intra- and
inter-modality registrations are performed. Standard deviations of DTI scalars within each ROI are
computed.
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nucleus and right posterior thalamic radiation, they both show a negative association with FA
variance (Table 2). In many other ROIs, such as the cuneus, lingual white matter, and middle
occipital white matter, motion is negatively related to FA variance, while interval is positively
related (Table 2). Results from the left ROI closely align with those from the corresponding right
ROI (Table 2). There are some ROIs where the interval is significantly (p ≪ 0.001) associated
with FA variance, while motion either gets removed during the model selection or shows weak
associations (p ≥ 0.05) (Fig. 5).

On data extracted from ROIs defined by SLANT segmentation, which has a different
regional focus and delineation than Eve type-1 segmentation, the aforementioned patterns of
effects can also be observed (Figs. 6 and 7). For instance, in the left cerebellum exterior, both
motion and interval are positively associated with FA variance, with motion’s coefficient
(β ¼ 0.960, p ≪ 0.001) higher than that of interval (β ¼ 0.485, p ≪ 0.001). This parallels the

Fig. 5 Covariate effects on FA standard deviation (standardized) are region-specific. Motion and
interval exhibit opposite effect directions in many ROIs. Gender differences exist in multiple ROIs.
Counterintuitively, motion is negatively related to FA standard deviation in many ROIs. The lookup
table for the abbreviation of the ROI name is in the Supplementary Material 2.
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Table 3 Effects of sex on FA standard deviation (standardized) in selected ROIs from Eve type-1
atlas.

Covariate Sex

ROI Left Right

β p-value β p-value

Putamen — — 0.602 2.6 × 10−27

Thalamus 0.388 5.9 × 10−13 0.450 4.3 × 10−18

Body of corpus callosum 0.287 4.1 × 10−07 0.353 1.3 × 10−09

Cingulum (cingulate gyrus) 0.509 1.7 × 10−16 0.471 1.4 × 10−14

Middle frontal gyrus −0.370 1.8 × 10−09 −0.148 1.9 × 10−02

Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in
the results derived from SLANT segmentation, despite its differing definitions and delineations of
ROIs compared to Eve type-1 segmentation (Fig. 5).
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relationship observed between the motion and interval coefficients in the left cerebellum defined
by the Eve type-1 segmentation (β ¼ 0.993, p ≪ 0.001 for motion; β ¼ 0.471, p ≪ 0.001 for
interval). Similarly, in ROIs such as the right cuneus, left precuneus, right superior occipital
gyrus, and right middle occipital gyrus, motion shows a negative association with FA variance,
while interval shows a positive association. The exact coefficients and p-values are in the
Supplementary Material 3, where we also provide the results from other pairs of DTI scalar and
segmentation methods.

In the model selection process, we observe that the rescan and the motion terms appear
mutually exclusive, with only one preserved post-selection in most models. This pattern is
echoed in the heatmaps of coefficients (Figs. 5 and 6), where the cell in either the motion or
the rescan column is colored gray. This hints at a correlation between rescan and motion.
Supporting this observation, we detect an increase in head motion in the rescan of DTI acquired
right after the first scan of DTI in the same session (mean shift Δμ ¼ 0.045 mm per volume,
relative mean shift Δμ∕μ ¼ 17.0%, coefficient of determination R2 ¼ 0.065).

To examine the differences between scanners, we measure the SNR of the FA images based
on ROIs. There are differences between scanners regarding SNR across ROIs (Fig. 8). To validate
our findings, we include two additional datasets, Alzheimer’s Disease Neuroimaging Initiative
(ADNI)42 and Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD).43 We
exclude data points from subjects with cognitive impairment and use the remaining 1808 subjects
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Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT
segmentations, results based on the two segmentation methods are largely similar (comparable
regions are colored similarly) and both show that the effects of motion and interval on FA variance
vary across ROIs.
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from the three datasets for the experiment. Detailed information about the data is included in
Table S2 and Fig. S2 in the Supplementary Material 1. We reproduce the experiments of the
linear mixed-effects models, except that the rescan term in Eq. (4) is omitted because the def-
initions of rescan in ADNI and BIOCARD differ from the definition of rescan in BLSA. The
coefficients and p-values, visualized in Fig. 9, show a similar pattern to those derived from the
BLSA, although the effect sizes differ, and the hierarchical clustering differs partly due to the
omission of one covariate.

4 Discussion
While many studies have estimated and shown the spatial variability of DTI variance (or
noise),14,15,44 we characterize how DTI variance is associated with physiological and behavioral
factors across brain regions. We answer the following questions: Which factors are associated
with DTI variance? Where and how does this association manifest? We found region-specific and
bidirectional effects of covariates—including interval (which captures the within-individual
longitudinal change over time), motion, and sex—on FA variance across brain regions. For in-
stance, FA variance is positively associated with an interval in the cuneus, but negatively asso-
ciated with caudate nucleus. Long-standing research has demonstrated that there is a decline in
white matter microstructure with aging,45–50 with the consensus being that frontal and parietal
areas are particularly vulnerable, and the occipital and motor areas are mostly preserved. The
frontal lobe exhibits the most pronounced decline, with FA declining by ≈3% per decade starting
at ∼35 years of age.51 Although our study focuses on the standard deviation of FA, our results
converge with these prior research studies as we have shown high sensitivity to aging in the
frontal, parietal, and temporal areas. While it is unclear what mechanisms are driving the changes
in these areas, potential culprits include the change in uniformity of fiber orientations and fiber
density.52–54

Previous studies55–57 have shown differences in FA between genders across brain regions.
Oh et al.55 found that males have significantly higher FA values in global corpus callosum struc-
ture areas, while they exhibit lower FA values than females in the partial areas of the rostrum,
genu, and splenium. Menzler et al.57 found that males show higher FA values in the thalamus,
corpus callosum, and cingulum. Most of these regions previously identified in the literature also
show significant (p ≪ 0.001) associations between FA variance and sex in our study. While
previous studies have reported changes in mean FA values, we offer a different perspective
by depicting the variance of FA values.

Fig. 8 SNR of the FA images across eight Eve type-1 atlas-defined ROIs, including white matter
(WM) regions (body of the corpus callosum, precuneus WM, cuneus WM), gray matter regions
(insular, putamen, middle occipital gyrus, thalamus), and mixed regions (medulla), in four different
scanners of BLSA (where scanner A is the 1.5 Tesla Philips Intera scanner and scanners B/C/D
are the 3 Tesla Philips Achieva scanners). “L.” stands for the left hemisphere of the brain.
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The negative association observed between motion and FA variance in multiple regions,
while counterintuitive, is not unreasonable. One might naturally expect that as motion increases,
the uncertainty (reflected as variance) in the image should increase, given that motion leads to
lower image quality, signal-to-noise ratio, and artifacts that can mislead image interpretation.58,59

However, the images we use for analysis have undergone motion correction during preprocess-
ing. Although in practice, motion artifacts cannot be fully eliminated from the image, the
recorded motion value does not reflect the motion’s impact on the image after preprocessing.
Instead, it reflects the subject’s motion during image acquisition. A higher motion value does not
necessarily correspond to a noisier image post-preprocessing. Furthermore, Zeng et al.60 found
that head motion during brain imaging is not merely a technical artifact but a reflection of
a neurobiological trait. Specifically, individuals with stronger distant connectivity in the default
network could consistently refrain from moving and such “head motion tendency” remains

Fig. 9 To assess the generalizability of our findings, we include two additional datasets, ADNI and
BIOCARD, and fit the linear mixed-effects models. The coefficients and p-values show similar
patterns to those from BLSA alone, despite that the effect sizes and the hierarchical clustering
are different, partly due to the omission of the rescan covariate.
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consistent within individuals. These points, taken together, provide explanations from image
processing and biological perspectives, respectively, for why FAvariance can decrease as motion
increases.

This study underscores the significance of heteroscedasticity in diffusion-weighted MRI
mega-analyses and provides a relatively straightforward approach to addressing this issue.
Despite the longstanding recognition of heteroscedasticity in statistical analyses,61–64 its appli-
cation to diffusion-weighted MRI is still in its nascent stages. Recent advancements have started
to bridge this gap, with emerging studies illustrating the importance of accounting for hetero-
scedasticity in MRI data.65–67 These pioneering efforts are pivotal, yet they remain underutilized
in the broader research community. To enhance the precision and reliability of findings in mega-
analyses, it is imperative to disseminate these methodologies more widely and integrate them into
commonly used analytical tools. Future research should focus on developing and employing
increasingly sophisticated techniques to model and understand heteroscedasticity, thereby
improving the robustness of statistical assessments in large-scale neuroimaging studies.

4.1 Limitations of Current Study
First, this study relies on a registration-based method for brain segmentation in the b0 space.
Despite rigorous quality assurance, the labels for each brain region may not correspond flawlessly
with the true anatomical regions. Consequently, the standard deviation of DTI scalars extracted
from each region combines both voxel-wise modeling factors and image analysis factors from
neighboring regions. Second, we used backward model selection for the fixed-effect terms of the
linear mixed-effects models. Such a method can be unstable according to Breiman68 Third, we use
the variance of DTI scalar values in the ROI as a proxy for measuring noise. This is not an ideal
proxy, because signal intensities may not be homogeneously distributed within each ROI, and the
ROI-based variance captures not only the image noise but also the spatial variability in voxel
intensity due to microstructural variations. This makes it suboptimal to reflect DTI noise. Fourth,
the motion value used in this study is based on movement calculated by FMRIB Software
Library’s eddy,40 which approximates true head motion. In addition, sensors or motion tracking
sequences might be necessary to quantify head motion during scanning more accurately.

5 Conclusion
The notion of harnessing variance to enhance the reliability of analysis is universally applicable.
Having a better understanding of variance is pivotal in mega-analyses, in which heteroscedas-
ticity is often an inherent challenge. Our study illuminates the complex and heterogeneous effects
of covariates including baseline age, interval, motion, sex, and rescan on DTI variance across
ROIs. More comprehensive efforts are required to fully characterize the variance. In the mean-
time, we encourage researchers to consider models of heteroscedasticity in their analyses and to
include their estimates of variance when sharing data. As highlighted in the introduction, the
application of the whitening matrix, constructed using the variance of the data, significantly
reduces statistical errors. We anticipate that more sophisticated methods can further unlock
the potential benefits derived from a nuanced understanding of variance, thereby bolstering the
accuracy and reliability of future research.
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