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Abstract

Purpose: Task-based image quality assessment using model observers (MOs) is an effective
approach to radiation dose and scanning protocol optimization in computed tomography (CT)
imaging, once the correlation between MOs and radiologists can be established in well-defined
clinically relevant tasks. Conventional MO studies were typically simplified to detection,
classification, or localization tasks using tissue-mimicking phantoms, as traditional MOs cannot
be readily used in complex anatomical background. However, anatomical variability can affect
human diagnostic performance.

Approach: To address this challenge, we developed a deep-learning-based MO (DL-MO) for
localization tasks and validated in a lung nodule detection task, using previously validated
projection-based lesion-/noise-insertion techniques. The DL-MO performance was compared
with 4 radiologist readers over 12 experimental conditions, involving varying radiation dose
levels, nodule sizes, nodule types, and reconstruction types. Each condition consisted of
100 trials (i.e., 30 images per trial) generated from a patient cohort of 50 cases. DL-MO was
trained using small image volume-of-interests extracted across the entire volume of training
cases. For each testing trial, the nodule searching of DL-MO was confined to a 3-mm thick
volume to improve computational efficiency, and radiologist readers were tasked to review
the entire volume.

Results: A strong correlation between DL-MO and human readers was observed (Pearson’s
correlation coefficient: 0.980 with a 95% confidence interval of [0.924, 0.994]). The averaged
performance bias between DL-MO and human readers was 0.57%.

Conclusion: The experimental results indicated the potential of using the proposed DL-MO for
diagnostic image quality assessment in realistic chest CT tasks.
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1 Introduction

Objective and quantitative image quality assessment is critical for optimizing radiation dose
and scanning protocols in computed tomography (CT). The reference standard using multicase
multireader studies is frequently challenged by intra- and interobserver performance variability
and intensive resource requirements. For example, it is usually very expensive and time-
consuming to collect sufficient positive cases with target pathology and establish ground truth
via clinical follow-up.1 Further, traditional image quality metrics (e.g., modulation transfer
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function and noise power spectrum) are inappropriate in the newer CT systems using iterative
reconstruction (IR) or other algorithms that involve nonlinear postprocessing,2–5 and cannot
serve as the complete descriptors of CT diagnostic image quality. In contrast, mathematical
model observers (MOs) have demonstrated potential as a task-based image quality descrip-
tor, i.e., predictor of human reader diagnostic performance, once a statistically significant
correlation can be determined between MOs and human readers for clinically relevant
CT tasks.

The performance of traditional MOs (e.g., channelized Hotelling observers) had been typ-
ically validated in simplified object detection tasks that used uniform phantom background and
artificial lesion-mimicking inserts as the surrogate of patient CT exams.6–8 To date, it is not yet
clear if the traditional MOs validated in the phantom studies can be readily applied for radiation
dose and scanning protocol optimization in various routine CT tasks. To achieve greater clinical
realism, multiple prior studies have presented statistical MOs incorporating models of human
visual processing. For instance, Gifford validated visual-search MOs that involved a two-stage
holistic search process, using simulated emission tomography;9,10 Lago et al.11,12 proposed a
foveated channelized Hotelling observer that involved the modeling of signal detectability across
the visual field and validated it using simulated breast tomosynthesis. However, it is still unclear
if these improved statistical MOs can be readily extended for x-ray CT tasks involving real
human anatomy. Of note, human reader performance is affected by patient anatomical variability
(e.g., soft-tissue heterogeneity) across different types of diagnostic tasks.13–16 Meanwhile, it is
challenging to acquire sufficient statistics of varying anatomical background from a general pop-
ulation, to use traditional MOs in patient CT images.

The emerging deep-learning-based MOs (DL-MOs) may provide an alternative solution to
this problem, using the state-of-the-art convolutional neural networks (CNN). Alnowami et al.,17

Murphy et al.,18 and Massanes and Brankov19 recently evaluated several DL-MOs in the simu-
lated and/or clinical mammograms. Further, Zhou et al.20 employed CNNs to approximate ideal
observer and Hotelling observer for a binary signal detection task in the simulated mammo-
grams. Meanwhile, Kopp et al.21 validated a DL-MO in a CT phantom study that involved the
detection of lesion-mimicking inserts in uniform phantom background. In these prior studies,
DL-MOs were constructed using relatively shallow CNN models and validated using simplified
detection tasks that lacked sophisticated anatomical background (e.g., patient chest/abdomen CT
images) or complex visual searching process. Therefore, it is not clear if these DL-MOs can be
readily applied in more challenging scenarios that involve complex patient anatomy and realistic
CT tasks. To overcome this issue, we have recently proposed a DL-MO framework that was
based on the ensemble modeling of a deep CNN model and a traditional statistical learning
technique. We validated this method in a two alternative forced choice experiment that involved
low-contrast liver metastases inserted in patient liver background.22,23

In this study, we proposed a modified DL-MO framework for more realistic lesion locali-
zation tasks, by incorporating sliding window strategy and nodule-searching process into
our prior DL-MO framework. Then we proceeded to validate this new DL-MO framework
in a virtual clinical trial that involved a realistic lung nodule localization task in patient chest
background. To generate a large number of realistic and positive cases with known truth, our
previously validated projection-based lesion-/noise-insertion techniques24–27 were used. The pre-
liminary results have been recently reported.28,29 In this paper, we present the complete meth-
odology with comprehensive experimental validation.

2 Method

2.1 DL-MO Framework for a Localization Task

The generic framework of the proposed DL-MO is illustrated in Fig. 1. This DL-MO framework
includes four major components: a pretrained deep CNN, a partial least square regression
discriminant analysis (PLS-DA) model, an internal noise component, and a nodule searching
process. The first three components were similar to the ones in our prior work.23 The main
difference of the current framework is that it combined with a sliding window strategy8 to
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generate the test statistics across all potential nodule locations and then a nodule searching
process was added to the DL-MO to determine the most likely location of lung nodules. Below
we provide more details on this new framework, focusing on the component of nodule searching
process. For further details of the other three major components, one can refer to Ref. 23.

The sliding window strategy was used to extract local image patches that were used as the
inputs to DL-MO. The image patches were fed into a 50-layer residual net (i.e., ResNet50)30 that
was pretrained on a natural image database, i.e., ImageNet,31 to extract image feature maps X 0

(termed as “CNN codes”) from a preselected intermediate layer of the CNN. PLS-DA model was
used to further engineer the CNN codes and generate the test statistics λ0 without the internal
noise. The test statistics λ0 was calculated as the inner product between CNN codes X 0 and PLS
regression coefficient vector B that was acquired by training PLS-DA model. Of note, λ0 was
assigned to the central voxel of each input image patch. The complete spatial distribution of λ0
(termed as “heat map”) was acquired after the sliding window scrolled through all potential
nodule locations. A nodule searching process was used to identify the location of the voxel that
coincided with the maximal value of λ0, i.e., the most-likely location of lung nodules. Finally, an
internal noise component was added to the maximal λ0 to model the variation of human reader
performance, i.e., λ ¼ λ0 þ α · x, where λ denotes the final test statistics, α is the weighting
factor, and x is a Gaussian random variable with a zero expectation and the same standard
deviation as the test statistics λ0;bkg of nodule-absent images.

2.2 Patient Data Preparation

2.2.1 Case selection

Fifty low-dose lung cancer screening patient CT exams were retrospectively selected from
our clinical data registry. The inclusion criteria included that: all patients agreed to the use
of medical records for research purpose; raw projection data were archived in our data registry;
all CT exams were acquired from a 192-slice dual-source CT system (SOMATOM Force,
Siemens Healthineers, Germany); and the midlevel lungs (middle lobe/lingula, within an
∼3-cm range) were nodule-free. All cases that did not meet the inclusion criteria were excluded.
In the original patient cohort, each patient was scanned twice, using a routine low-dose CT
protocol [120 kV without tin filter, 50 quality-reference-mAs (QRM), and nominal CTDIvol
3.6 mGy] and an ultralow-dose CT protocol (100 kV with an additional tin filter, 50 QRM,
nominal CTDIvol 0.17 mGy), respectively. However, only the projection data acquired with
the routine low-dose protocol were used in this study since the radiation dose was relatively
higher and several lower radiation dose levels would be simulated based on this relatively higher
dose level.

Fig. 1 The framework of the proposed DL-MO, including a pretrained deep CNN, a PLS-DA
model, nodule searching process, and an internal noise component. DL-MO, deep learning-based
model observer; CNN, convolutional neural network; and PLS-DA, partial least square regression
discriminant analysis.
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2.2.2 Simulation of patient cases with multiple dose levels and nodule conditions

We synthesized virtual chest CT exams to compare the performance of DL-MO and human
readers across 12 experimental conditions. These conditions involved three lung nodule sizes,
two lung nodule types, four radiation dose levels, and three image reconstruction types (Table 1).
The procedure of lesion-/noise-insertion is illustrated in Fig. 2. Poisson noise was inserted into
patient raw projection data to simulate chest CT exams acquired at additional lower radiation
dose levels [10%, 25%, and 50% of routine dose (RD)], using our previously validated projec-
tion-domain noise insertion tool.27 Moreover, the forward projections of lung nodule CT images
were added to patient raw projection data to synthesize nodule-present cases, using our previ-
ously validated projection-based lesion insertion tool.24,26 The real CT images of a ground-glass
nodule (GGN, 5.4 mm, −660 HU) and a partially solid nodule (PSN, 3.4 mm, −442 HU) were
selected as the base lung nodule models. The GGN images were numerically modified to gen-
erate two additional nodule sizes (3.4 and 7.4 mm). For each nodule-present case, one lung

Table 1 The configuration for all experimental trials.

Index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Type GGN GGN GGN GGN PSN PSN PSN PSN GGN GGN GGN GGN

Size 5.4 5.4 5.4 5.4 3.4 3.4 3.4 3.4 3.4 7.4 5.4 5.4

Dose (%) 10 25 50 100 10 25 50 100 50 50 50 50

Recon IR-2 IR-2 IR-2 IR-2 IR-2 IR-2 IR-2 IR-2 IR-2 IR-2 FBP IR-4

Note. Type: GGN, ground glass nodule and PSN, partially solid nodule.
Size: the effective nodule diameter in mm.
Dose: the percentage relative to routine radiation dose level.
Recon: IR, iterative reconstruction (ADMIRE) using a medium sharpness kernel with the strength setting of 2
(i.e., IR-2) or 4 (i.e., IR-4) and FBP, filtered back projection with a medium sharpness kernel.

Fig. 2 The schematic illustration of the process of synthesizing lesion-present and lower-dose
cases, using existing raw patient projection data. Of note, lesion model refers to nodule images
that were numerically modified from real nodule CT images. The inset illustrates example CT
images of two types of nodules. GGN, ground glass nodule and PSN, partially solid nodule.
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nodule was inserted at a preselected location at each side of chest. The location selection was
guided by a supervising radiologist who did not participate the reading sessions of virtual CT
exams. The following principles were used to determine nodule location: (1) the nodule abutted a
small blood vessel (solid, but fainter, white lines); (2) the nodule should not cross an airway or
fissure; (3) a nodule should not be placed against the margins of the lung; and (4) if possible, the
oval nodules were oriented so the long axis is oriented radially from the center of the chest.

After lesion- and noise-insertions were completed, the modified patient projection data were
used to reconstruct CT images with respect to varying experimental conditions. Image recon-
struction used filtered back-projection (FBP) and a commercial IR algorithm [Advanced
Modeled Iterative Reconstruction (ADMIRE), Siemens Healthcare, Germany] with two strength
settings (2 and 4). Each experimental trial included 30 CT images of the middle level of one
nodule-present/-absent lung. Each experimental condition involved 70 nodule-present and 30
nodule-absent trials.

2.3 DL-MO Study

DL-MO was constructed separately for each experimental condition, using the CNN codes from
the 26th convolutional layer and the most significant 20 PLS components. The repeated two-fold
cross validation (R2f-CV) was used to estimate the generalizability of DL-MO. The R2f-CV
method is briefly explained as follows. The stratified random sampling was first used to split
the patient exams to two equal-sized subgroups (i.e., n ¼ 25 cases per subgroup). One subgroup
was used to train DL-MO while the other was used for validation. Then the two subgroups were
swapped to retrain and revalidate DL-MO, respectively. In this study, this process was repeated
twice, and then DL-MO performance was averaged across all validation subgroups to estimate
the generalization performance of DL-MO. Of note, the training of DL-MO used the volume-of-
interests (VOIs) extracted across the entire available image volume of those training cases
(i.e., 30 slices per trial per condition). Further, the testing procedure was simplified by confining
the nodule searching process within a 3-mm-thick volume (Fig. 3), to reduce the computational
time. For nodule-present trials, DL-MO response was only calculated across three consecutive
images that coincided with the central region of lung nodules (along the z dimension), instead of
through the entire volume. For nodule-absent trials, DL-MO response was calculated over three

Fig. 3 An example of testing trial for deep-learning-based model observer. The square region-of-
interest indicates the location of the zoom insets. The zoom insets (#1 to #3) illustrate the central
three consecutive slices across a 7.4-mm ground glass nodule. The dashed arrows indicate the
location of nodule. Of note, the arrows were placed slightly off the center of lesion, for illustration
purpose.
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consecutive images that were randomly selected from the middle lobe/lingual. Note that the
random selection of nodule-absent images was repeated across all validation subgroups. The
further discussion about the simplification of testing procedure is presented in Sec. 4.

Data augmentation strategies were applied to the training subgroups, to improve the perfor-
mance of DL-MO. We selected similar data augmentation as used in Ref. 23. These strategies
included image conversion, cropping, z-direction interpolation, and random rotation. In image
conversion, a lung display window (W∕L: 1600∕ − 600 HU) was applied to original CT images
and then transformed to the grayscale range of [0, 255], to match the image dynamic range used
in ResNet-50. As for cropping, additional multisized VOIs were extracted for training the
DL-MO. The size of VOIs ranged from 10.4 × 10.4 × 3.0 mm3 to 19.3 × 19.3 × 3.0 mm3,
i.e., 14 × 14 × 3 voxels to 26 × 26 × 3 voxels. The z-direction interpolation and random rotation
were both used to generate more VOIs for training DL-MO. For each experimental condition,
data augmentation generated approximately additional 150,000 training samples. One could
refer to Ref. 23 for the further details of data augmentation strategies.

2.4 Human Observer Study

Four human readers (two board-certified radiologists and two radiology fellows) were recruited
to perform a signal-known-exactly localization task. The two board-certified radiologists had
more than 10 and 20 years’ experience, respectively. All human observers were subspecialized
in thoracic CT. A MATLAB (Mathwork, Inc.) based graphical user interface was developed to
display each experimental trial and record human reader response (Fig. 4). The target lung nod-
ule image with a clear background was displayed with the corresponding experimental trials.
Each reader participated in no <4 reading sessions where the 12 conditions were randomly split
across all sessions. The consecutive sessions were separated by >3 days to reduce the potential
recall effects. In each session, the experimental conditions were viewed in the order of difficulty
levels, i.e., the conditions with the lowest radiation dose level and/or smallest nodule size were
viewed earlier than the others. For each condition, all experimental trials were displayed in
a randomized order. Human readers were tasked to identify the most-likely nodule location.

Fig. 4 The graphical user interface developed for human observer study. In each experimental
trial, only one side of chest was viewed by readers, whereas the other side was blocked using
a cross marker.
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They were also requested to provide a six-scale detection confidence score (0: definitely no
nodule; 1: the case is very likely nodule-absent, but it would be the most suspicious location
if it is actually nodule-present; 2: the case is likely nodule-absent, but it would be the most
suspicious location if there is a nodule; 3: the case is likely nodule-present, and this is the
most suspicious location of nodule; 4: the case is very likely nodule-present, and this is the
most suspicious location of nodule; and 5: the case is definitely present).

2.5 Figure of Merit and Statistical Analyses

Area under localization receiver operating characteristic curve (AL) was used as the figure-of-
merit for the performance of both DL-MO and radiologist readers. The LROC plots the true
positive localization fraction (TPLF) as a function of false positive fraction, where TPLF is the
joint proportion of true positive decision and correct localization.32 The correct localization was
defined as when the distance between the reference location and the reader location <3.7 mm

(as was used in our preliminary reader study29), i.e., radius of the largest lung nodule used in this
study. The mean AL of all human readers was calculated for each experimental condition and
used as the overall performance metric. To determine the variance of AL, because all readers were
reading the same 100 cases, correlation exists. A nonparametric approach for multireader multi-
case analysis of AL was used to calculate the variance, taking into account the correlation.33,34

Pearson’s product moment correlation coefficient (denoted as Pearson’s ρ) was used to gauge the
strength of the correlation between DL-MO and human. Finally, Bland–Altman plot was used to
quantify the degree of discrepancy between DL-MO performance and human reader perfor-
mance across all experimental conditions.

3 Results

3.1 Summary of Radiologist Performance

We observed obvious inter-reader variability across all experimental conditions (Fig. 5),
although Wilcoxon signed rank test indicated statistically insignificant difference (P value =
0.204 at 5% significance level) between the mean AL of senior radiologists (i.e., readers #1 and
#2) and that of fellows (readers #3 and #4). The strength of variability appeared to decrease as the
difficulty level of experimental condition was reduced. The standard deviation of AL per con-
dition ranged from 3.1% to 11.8%, and the range of AL (i.e., the difference between maximal and
minimal values) per condition was 6.6% and 25.9%.

Fig. 5 The performance of each radiologist reader across 12 experimental conditions. AL is the
area under the localization receiver operating characteristic curve. Each value of AL was calcu-
lated across all available trials (n ¼ 100) per condition, which did not involve the repeated twofold
cross validation. These conditions were sorted according to the ascending order of mean AL.
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3.2 Virtual CT Exams and Heat Maps

Figure 6 illustrates some examples of synthesized patient images at different experimental con-
ditions with varying nodule types/sizes and radiation dose levels. Examples of heat maps from
validation subgroups are illustrated in Fig. 7. These heat maps were regrouped to four scenarios
for convenience of comparison. It can be seen that the voxel-wise response of DL-MO was
generally stronger at the location of lung nodules than that of nodule-absent regions. However,
the relative strength between the DL-MO response at nodule-present and nodule-absent regions
tended to decrease with lower radiation dose level and smaller nodule size, which suggested
a higher likelihood of detection error.

3.3 Internal Noise Calibration

The calibration of the weighting factor α of internal noise component (Sec. 2.1) is illustrated
in Fig. 8. The DL-MO performance was calibrated to match the averaged radiologist reader
performance (AL ¼ 79.4%) at the experimental condition #2 (i.e., 25% RD, 5.4 mm GGN,
with IR-2). After the calibration, the value of α was determined to be 1.8, i.e., the internal noise
was 1.8 times of the noise of λ0; bkg. The same value of α was used for all the other experimental
conditions with varying radiation dose levels, nodule sizes/types, and image reconstruction
types.

Fig. 6 Examples of synthesized patient images at different conditions with varying nodule types,
nodule sizes, and radiation dose levels. The arrows indicate the nodule location. GGN, ground
glass nodule and PSN, partially solid nodule.
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3.4 Statistical Analyses

For convenience of comparison, the experimental conditions were regrouped into four scenarios
(Fig. 9). The AL of the calibrated DL-MO was comparable to the averaged AL of radiologist
readers across all experimental conditions. A statistically significant correlation was observed
between DL-MO and human observers. The value of Pearson’s ρ was 0.980 with 95%
confidence interval (CI) [0.924, 0.994]. Further, Bland–Altman plot indicated that there was
no statistically significant discrepancy between DL-MO and radiologist readers (Fig. 10).

Fig. 7 Examples of heat maps from experimental trials across all experimental conditions at differ-
ent nodule size, nodule types, radiation dose levels, and image reconstruction types. The heat
maps were reorganized into four rows for convenience of comparison. The first and second rows:
radiation dose levels were changed from 10% to 100% RD. The third row: the nodule size was
changed from 3.4 to 7.4 mm. The fourth row: the image reconstruction types were changed across
FBP, IR-2, and IR-4. The solid arrows indicate the location of lung nodules in the heat maps. The
display window of heat map isW∕L: 2/0. The inset image at the bottom right illustrates an example
of experimental trials, and the dashed arrow indicates a GGN in the CT image. GGN, ground glass
nodule; PSN, partially solid nodule; RD, routine dose level; FBP, filtered back projection; IR-2,
iterative reconstruction with the strength setting of 2; and IR-4, iterative reconstruction with the
strength setting of 4.
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Fig. 8 The weighting factor α was adjusted to calibrate DL-MO performance to the averaged radi-
ologist reader performance at the experimental condition #2, that is, lesion size was 5.4 mm, lesion
type was ground glass nodule, radiation dose was 25% of routine dose level, and CT images were
reconstructed by iterative algorithm. The value of α was varied from 0.1 to 5.5 with a uniform inter-
val of 0.05. Every third sample was plotted out for the convenience of illustration. The error bars
indicate the standard deviation of DL-MO performance. AL is the area under the localization
receiver operating characteristic curve and DL-MO, deep learning-based model observer.

Fig. 9 Performance comparison between DL-MO and radiologist readers across all experimental
conditions with varying lung nodule sizes (3.4 to 7.4 mm), lung nodule types (ground glass and
partially solid), radiation dose levels (10% to 100% of routine dose), and image reconstruction
types (FBP and IR). For convenience of illustration, these experimental conditions were regrouped
to four charts. (a) Conditions #1 to #4, (b) conditions #5 to #8, (c) conditions #9, #3, and # 10, and
(d) conditions #11, #3, and #12. The radiologist reader performance was averaged across all read-
ers. The error bars indicate the standard deviation of the performance. DL-MO, deep-learning-
based model observer; AL, the area under the localization receiver operating characteristic curve;
GGN, ground glass nodule, PSN, partially solid nodule; FBP, filtered back projection; and IR, iter-
ative reconstruction.
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The mean bias was 0.57%. The upper and lower limits of agreement were −6.83%; (with 95% CI
[−11.0%, −2.68%]) and 7.96% (with 95% CI [3.81%, 12.1%]). In addition, the calibrated
DL-MO performance also yielded statistically significant correlation to individual radiologist
performance, despite the obvious inter-reader variability (Table 2). The corresponding
Pearson’s ρ ranged from 0.877 to 0.943. The corresponding 95% CI was expanded due to the
large variance of human reader performance.

4 Discussion

In this study, we developed a DL-MO framework for lesion localization tasks by incorporating
the sliding window strategy and nodule searching process into our previous deep-learning-based
method. We validated this framework in a realistic lung nodule detection task in patient CT lung
cancer screening exams by comparing the performance of DL-MO with that of radiologist
readers on multiple experimental conditions at varying lung nodule sizes, lung nodule types,
radiation dose levels, and image reconstruction types. Strong correlation and agreement between
the proposed DL-MO and human readers were demonstrated.

The selection of CNN layer and PLS components was empirically determined to be the same
as used in our prior work22,23 that involved a liver metastases detection task in patient images. It is
possible to fine-tune the selection of CNN layer and PLS components, to further enhance the
efficiency of DL-MO for the lung nodule localization task or other types of clinically relevant
diagnostic tasks. As was pointed out in Ref. 23, it is very challenging to theoretically predict the
optimal configuration of CNN layer and PLS components for the proposed DL-MO, due to the
extreme complexity for estimating the CNN feature transferability. Nevertheless, one could still
employ the straightforward grid searching strategy as used in Ref. 23, to determine a reasonable
configuration of CNN layer and PLS components.

The R2f-CV method was selected to evaluate the generalizability of DL-MO. Compared to
the standard 2f-CV method, R2f-CV can reduce the variance of the estimated generalization
performance. However, it still tends to yield a downward bias (i.e., the underestimation) on the

Fig. 10 Bland–Altman plots of the performance difference between DL-MO and radiologist read-
ers across all experimental conditions. Human performance was averaged across all radiologist
readers. The solid line denotes the bias. The two dashed lines denote the upper and the lower
LOA, respectively. The error bars indicate the 95%CI of LOA. DL-MO, deep learning-based model
observer and LOA, limit of agreement.

Table 2 Strength of correlation between the calibrated DL-MO and individual radiologist reader

Reader #1 #2 #3 #4

Pearson’s ρ 0.877 0.943 0.925 0.931

95% CI [0.611, 0.965] [0.806, 0.984] [0.748, 0.979] [0.766, 0.981]
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generalizability of a given machine learning model (e.g., the proposed DL-MO), especially on
the small-sized datasets.35 Other advanced cross-validation strategies, such as the bootstrap
cross-validation method,36 could be employed to provide more accurate estimation of the gen-
eralization accuracy of the proposed DL-MO, whereas the computational cost would be much
higher than the R2f-CV method. Further study is warranted to investigate different cross-
validation strategies, which is beyond the scope of current study.

Computational efficiency of the proposed DL-MO was limited, mainly due to the use of
sliding window strategy and the absence of GPU-based acceleration techniques. For each exper-
imental condition, the average training time was ∼60 min. For each testing trial, the average
time for calculating the DL-MO response per CT image was ∼7.5 min, i.e., DL-MO would
spend ∼225 min per experimental trial if the calculation is carried over all 30 images of the
middle lobe/lingula. Therefore, we were motivated to carry out the simplification of the testing
procedure (Sec. 2.3) in DL-MO studies, to avoid the excessive computational cost. Such sim-
plification may not significantly degrade the DL-MO performance over signal-present images
since the most relevant nodule information was already included in the images that coincided
with the nodule centroid. However, we acknowledge that this simplification may underestimate
the potential false positives (i.e., overestimating the accuracy) over signal-absent images as the
model has a limited number of slices to test on, and then the weight of internal noise component
may need to be recalibrated for the testing over the entire image volume. Since the signal-absent
images per case per condition were randomly selected for DL-MO testing (Sec. 2.3), a potential
way to reduce such variance is to repeat the cross validation for more times so that DL-MO
performance would be evaluated against more diverse anatomical background. Further, as was
aforementioned, the R2f-CV tends to underestimate the generalization performance especially
on the small-sized dataset.35 This phenomenon could at least partially cancel out the effects of
the potentially underestimated false positives. Despite this simplification, the agreement between
the DL-MO and human observer performance suggested that the potential under-estimate of the
false positives in signal-absent images could be statistically insignificant. The current method
could be readily extended to enable nodule searching in a larger 3-D image volume: the sliding
window can be moved across the entire volume to generate 3-D heat map; then the most-likely
nodule location can be labeled as the voxel that coincided with the maximal λ0; the remaining
steps would be the same as described in Sec. 2. To improve computational efficiency, the sliding
window strategy may be converted to a convolutional operation, without significantly compro-
mising DL-MO performance. The computation can be further accelerated by GPU-based tech-
niques. With proper acceleration techniques, it would be more practical to have the DL-MO to
search the nodule throughout the entire image volume of the middle lobe/lingula, which could
potentially further improve the strength of correlation and agreement between DL-MO and
radiologist readers. These aspects shall be investigated in our follow-up study.

The proposed DL-MO was calibrated to match the averaged human observer performance at
a given condition, by adjusting the weight of internal noise component instead of directly using
human data as the ground truth of DL-MO training. The calibrated DL-MO also yielded strong
correlation to individual human observer involved in calibration. We estimate that the calibrated
DL-MO may maintain positive correlation to a new human observer who is not involved in
calibration, when there is no statistically significant performance difference between new
observer and the prior ones involved in calibration.

Finally, we acknowledge several limitations in the presented study. First, we only used two
original lung nodules for mimicking different nodule sizes and contrast levels, whereas radiol-
ogists are frequently challenged to identify a large number of different types of lesions with
varying radiological features. The reason why we chose only two original lung nodules was
because we would like to evaluate the impact of nodule size and contrast levels on the reader
performance, with other factors fixed. Second, the size of patient cohort and the number of radi-
ologist readers may be limited, and the large inter-reader variability may result in non-negligible
standard error to the averaged human reader performance. Third, although the current validation
study is considered relatively comprehensive since it included four radiologist readers (both
experienced radiologists and trainees) and both FBP and IR reconstruction methods, studies
involving more human readers from multiple institutions and images obtained from other
CT scanners may be needed to fully evaluate its generalizability.
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5 Conclusion

A DL-MO framework was developed to evaluate diagnostic image quality in lesion localization
tasks. This framework was validated in a realistic lung nodule detection task in CT by comparing
the performance predicted by the DL-MO and that of radiologist readers. It was shown that
the DL-MO performance was highly correlated with human observer performance in the lung
nodule detection task that involved patient chest background, realistic lung nodule images, and
complex visual searching process. The presented study demonstrated strong potential of using
the proposed DL-MO for task-based image quality assessment and radiation dose optimization
in realistic CT tasks.
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