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Abstract. It is well known that rapid building damage assessment is necessary for postdisaster
emergency relief and recovery. Based on an analysis of very high-resolution remote-sensing
images, we propose an automatic building damage assessment framework for rainfall- or earth-
quake-induced landslide disasters. The framework consists of two parts that implement landslide
detection and the damage classification of buildings, respectively. In this framework, an
approach based on modified object-based sparse representation classification and morphological
processing is used for automatic landslide detection. Moreover, we propose a building damage
classification model, which is a classification strategy designed for affected buildings based on
the spectral characteristics of the landslide disaster and the morphological characteristics of
building damage. The effectiveness of the proposed framework was verified by applying it
to remote-sensing images from Wenchuan County, China, in 2008, in the aftermath of an earth-
quake. It can be useful for decision makers, disaster management agencies, and scientific
research organizations. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.10.025027]
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1 Introduction

A landslide is a geological occurrence that can cause severe loss of life, agricultural production, and
the environment. Landslide disasters occur almost every year, and response time is a crucial factor in
the effectiveness of postdisaster relief in such situations. In order to adequately provide emergency
relief, decision makers and rescue organizations need a global perspective on the situation onsite.1

With the development of satellite and airborne remote-sensing technologies, the outputs of very
high-resolution (VHR) optical images and synthetic aperture radar (SAR) images have shown
a marked improvement in quality.2 These images have been widely used in a variety of fields
that use remote sensing, one of which is image processing for postdisaster emergency response.

The main objective of this paper is to devise a method for convenient and efficient building
damage assessment based on an analysis of images of these structures in areas affected by land-
slides. According to our survey of the literature, research on building damage assessment has
focused on this task against the backdrop of earthquakes. Chesnel et al.3 proposed a semiau-
tomatic damage assessment method based on a pair of very high-spatial resolution images
and some ancillary data. Their system assessed damage to buildings using the change detection
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method. Klonus et al.4 proposed a modified change detection method based on isotropic fre-
quency filtering, spectral and texture analysis, and segmentation, which yielded superior accu-
racy to standard methods. Although conventional change detection methods always work well in
assessing building damage, their anti-interference ability is poor. Their results are easily influ-
enced by natural factors, such as the solar incident angle, seasonal variation, and the Earth’s
surface humidity. Li et al.5 detected building damage in urban environments from multitemporal
VHR image data using the one-class support vector machine. This method performed better at
the object level than at the pixel level, with an overall accuracy of 82.33%. Gerke and Kerle6

proposed a two-step approach for building damage classification. This method yielded an overall
classification accuracy of 70% for four classes and a building damage identification accuracy of
63%. Although high-classification accuracy can be obtained, it is premised on the airborne,
oblique pictometry imagery available.

In addition to research that has used high-resolution optical images, other studies have been
conducted based on SAR images to consider the impact of climatic conditions and occlusion on
the optical images.7–11 These methods have yielded satisfactory assessment results, but they can-
not be generalized to other types of disasters, such as landslides. Thus, in this study, we design an
automatic damage assessment framework for buildings in the aftermath of landslides according
to the characteristics of the damage caused. The proposed framework first exploits object-based
classification to detect landslides and combines the detection results and a building damage
classification model (BDCM) to realize the entire assessment process. In particular, the main
contributions of this paper are as follows:

1. An automatic assessment framework for building damage caused by landslide disaster
based on VHR images is proposed. It can efficiently assess the degree of building dam-
age, which can be helpful for subsequent disaster relief work.

2. An approach based on the modified object-based sparse representation classification
(SRC) method and morphological processing is introduced for landslide detection.

3. A quantitative building damage classification scheme for landslide disaster is introduced.
Based on this, a BDCM is proposed. The effectiveness of the model is also verified.

The remainder of this paper is organized as follows: In Sec. 2, we review related literature.
Section 3 consists of a description of the morphological quantitative scheme for building damage
caused by landslides. In Sec. 4, the proposed assessment framework is described in detail.
Experiments to test the proposed framework are detailed in Sec. 5, and our conclusions are
given in Sec. 6.

2 Related Work

Landslide detection is clearly required before damage to a building can be assessed. In recent
years, research on landslide detection has developed quite rapidly. Methods based on varying
sensor data have been exploited to discriminate landslide-affected regions from the background
and analyze them. Since optical images may carry many spectral characteristics and details of the
target, they are widely used. Research on landslide detection based on optical images can be
divided into two types: pixel-based methods and object-oriented methods. In opposition to
the former, which mainly consider spectral and textural features,12,13 the latter class of methods
enables the consideration of more complex and advanced features.14–17 To improve detection
accuracy, some classical machine learning classification methods have been applied to
remote-sensing image classification. These include support vector machines,18,19 artificial neural
networks,20 and methods based on fuzzy theory.14,21 Studies show that these methods have
achieved satisfactory classification effect based on VHR images.

Sometimes, weather in a disaster region is persistently foggy and cloudy following a haz-
ardous occurrence. In this situation, SAR images are particularly useful due to their unique
advantages of all-time and all-weather imaging.22 Li et al.23 found that landslide-affected
areas show complicated scattering mechanisms because the landslide surface becomes relatively
rough in the scale of the X-band. They distinguished landslide areas by using a supervised
Wishart classifier and polarimetric scattering similarity parameters. This technique performs
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well in forested areas but is unsuitable for urban areas. Li et al.24 proposed another simple and
effective approach for unsupervised classification of large-scale landslides. This involved first
transforming PolSAR images from the RGB color space to the hue-saturation-intensity color
space. A combination of k-means clustering and hue-saturation-intensity imagery in different
channels was then used stage by stage for automatic landslide extraction. This method is suited
for large-scale landslide detection. Inspired by this approach, our framework involves the trans-
formation of optical images from RGB to hue-saturation-value (HSV) space and the exploitation
of a modified SRC method to detect landslide regions.

Since most natural signals can be satisfactorily represented by a sparse vector corresponding
to the linear combination of a few dictionary atoms, sparse representation has been shown to be
an extremely powerful tool in remote-sensing data processing. Chen et al.25,26 proposed a simul-
taneous joint sparsity model for hyperspectral image (HSI) target detection and classification.
This exploits the fact that in HSI, neighboring pixels have similar spectral characteristics.
Furthermore, they introduced a kernel sparse representation method27,28 that maps low-dimen-
sional features to high-dimensional features and improves classification accuracy. Fang et al.29

proposed a multiscale adaptive sparse representation model for spectral–spatial HSI classification.
It effectively exploits spatial information at multiple scales via an adaptive sparse strategy. Song
et al.30 developed a classification strategy that applies extended multiattribute profiles to an SRC
framework. This approach combines the advantages of sparse representation and rich structural
information to provide efficient classification results for different multi/hyperspectral datasets.
Furthermore, other sparse representation models have been proposed to improve classification
accuracy, such as manifold-based sparse representation,31 regularized sparse representation,32 non-
local weighted joint sparse representation,33 and sparse representation-based binary hypothesis.34

These sparsity-based classification methods have some common shortcomings that are
mostly embodied in two aspects. On the one hand, they are almost at pixel level. Since the
size of remote-sensing images is often very large, classification processing incurs high-time
complexity. On the other hand, pixels in HSI are represented by N-dimensional vectors,
where N is the number of spectral bands. If the number of HSI bands is small (such as
three or four), pixel-based information is scarce, which leads to low-classification accuracy.
To overcome these problems, we35 had proposed an object-based landslide and mudflow detec-
tion method that combined multichannel sparse representation and eight neighbor judgment
methods. Using this, a large-sized remote-sensing image was divided into a number of uniform
patches and each was vectorized as a processing object. This method may solve the above-
mentioned defects, but much larger thresholds are needed in practice.

After further research, we have modified the SRC method to detect landslides. The imple-
mentation process is described in Sec. 4.

3 Building Damage Classification Scheme

By carefully observing the characteristics of landslide-affected buildings in VHR images, we
found certain regularities in morphological changes in landslides that are different from
those due to earthquakes. These regularities are as follows:

1. The affected buildings and landslides tend to have certain spatial relationships. The
buildings tend to be located within or near areas hit by landslides. The distance between
buildings and the landslide area appears to be inversely proportional to the degree of
damage. That is, the shorter the distance, the more severe the degree of damage.
The most severe degree of damage occurs when an entire building is buried under
the landslide; buildings that remain intact in such cases are usually far from the landslide.

2. The affected buildings usually exhibit morphological changes. Some structures suffer
obvious deformation due to the impact of mud. Some are surrounded or even invaded
by a lot of rubble, and the texture of the roofs of certain buildings becomes very chaotic.

3. The degree of damage to a building is somewhat related to the depth of mud pouring into
it. When a building is located along the edge of a landslide, mud usually pours into it,
whereby the building is damaged but the texture of its roof remains unchanged. This is
a specific but common form of damage in landslides.
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Under the direction of experts at the Academy of Disaster Reduction and Emergency
Management, operated by the Ministry of Civil Affairs and the Ministry of Education, we pro-
pose a quantitative building damage classification scheme for landslides according to morpho-
logical characteristics (Table 1). In this scheme, we classify affected buildings into four grades.

We select two features to classify building damage according to the characteristics of two-
dimensional remote-sensing images. They are (1) the spatial relationships between a building
and the landslide area and (2) the roof texture. In order to calculate the spatial relationships,
outlines of the building and the landslide are required. The former can be obtained either
from relevant government departments or by hand annotation and the latter can be obtained
by using the SRC-based approach.

4 Assessment Framework

Our proposed assessment framework is aimed at automatically classifying building damage
when landslides occur. It consists of two parts—the SRC-based approach, which is used to detect

Table 1 Building damage classification scheme applied to landslides.

Damage
grade

Grade
name Brief description

1 Intact Intact, or negligible damage: far from landslide; no mud accumulation inside building

2 Slightly
damaged

Slight structural damage; moderate nonstructural damage: close to or in contact with
the landslide; shallow mud accumulation inside building

3 Heavily
damaged

Severe structural damage: severe nonstructural damage; located along the edge of
landslide; deep mud accumulation inside building, and apparent rubble around it

4 Buried Complete collapse or washing away; most or all is buried underneath rubble; located
within the landslide area

Fig. 1 Structure and operation flow of the framework.
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landslides, and the classification model, which classifies affected buildings. The specific imple-
mentation process is shown in Fig. 1.

4.1 Sparse Representation Classification-Based Approach for Landslide
Detection

According to the classification scheme, landslide detection, while imperative, is time-consum-
ing. We studied the spectral characteristics of landslides and proposed an SRC-based approach
for automatic landslide detection. It is composed of three procedures: dictionary construction,
target detection, and morphological processing.

4.1.1 Dictionary construction

An overcompleted dictionary is crucial and necessary for the SRC method. Before the occur-
rence of a landslide, we collect a large number of typical sample patches (k × k size) from VHR
remote-sensing images. These sample patches consist of landslide and background (nonland-
slide) samples, each as a processing object. Since the landslide is mostly manifested in its spec-
tral characteristics than in other features, and since the HSV color space is close to human color
perception, we convert every patch from RGB color space to HSV.

In the HSV color space, hue is used to distinguish colors, saturation is the percentage of white
light added to a pure color, and value refers to perceived light intensity.36 It is known that the
method of calculating HSV spatial components might affect both recognition performance and
computational efficiency. From practical experience, we quantify the HSV space component in
unequal intervals. The quantization scheme is shown as

EQ-TARGET;temp:intralink-;e001;116;445H ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 H ∈ ð345;360�& ½0;15�
1 H ∈ ð15;25�
2 H ∈ ð25;45�
3 H ∈ ð45;55�
4 H ∈ ð55;80�
5 H ∈ ð80;108�
6 H ∈ ð108;140�
7 H ∈ ð140;165�
8 H ∈ ð165;190�
9 H ∈ ð190;220�
10 H ∈ ð220;255�
11 H ∈ ð255;275�
12 H ∈ ð275;290�
13 H ∈ ð290;316�
14 H ∈ ð316;330�
15 H ∈ ð330;345�

S ¼

8><
>:

0 S ∈ ½0; 0.15�
1 S ∈ ð0.15; 0.4�
2 S ∈ ð0.4; 0.75�
3 S ∈ ð0.75; 1�

V ¼

8><
>:

0 V ∈ ½0; 0.15�
1 V ∈ ð0.15; 0.4�
2 V ∈ ð0.4; 0.75�
3 V ∈ ð0.75; 1�

:

(1)

Here, based on a color model derived from substantial analysis, we divide hue into 16 parts.
Saturation and value are divided into four parts each. Then an HSV histogram is generated
using quantified hue (H), saturation (S), and value (V) as

EQ-TARGET;temp:intralink-;e002;116;184G ¼ QsQvH þQvSþ V; (2)

where QS is the quantified series of S and QV is the quantified series of V. Here, we set
QS ¼ QV ¼ 4. Then

EQ-TARGET;temp:intralink-;e003;116;129G ¼ 16H þ 4Sþ V: (3)

Finally, we concatenate the 16 × 4 × 4 histogram and obtain a 256-dimensional vector for each
patch, which is exactly an atom of the dictionary. Thus, we obtain an overcomplete dictionaryD,
which is the union of two low-dimensional subdictionaries, i.e., the landslide subdictionary and
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the background subdictionary spanned by landslide training samples fdligi¼1;2;3: : : Nl
and back-

ground training samples fdbi gi¼1;2;3: : : Nb
, respectively.

Since the sample patches are randomly selected, the constructed dictionary is redundant, and
atom vectors are highly correlated. To solve this problem, we perform a preprocessing step called
whitening, the goal of which is to make the dictionary less redundant. Thus, we construct an
overcomplete dictionary where (i) the atoms are less correlated with one another and (ii) all
atoms have the same variance.

4.1.2 Target detection

With a test VHR image patch, a corresponding 256-dimensional HSV histogram vector y is
calculated in the same manner as that of an atom in the dictionary. According to the sparse
representation theory, y can be approximately represented by a sparse vector x corresponding
to the linear combination of all atoms, the mathematical representation of which is rendered as

EQ-TARGET;temp:intralink-;e004;116;567

y ≈ ðdl1α1 þ dl2α2þ · · · þdlNl
αNl

Þ þ ðdb1β1 þ db2β2þ · · · þdbNb
βNb

Þ
¼ ½ dl1 dl2 · · · dlNl

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dl

½α1 α2 · · · αNl
�T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α

þ ½ db1 db2 · · · dbNb
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Db

½ β1 β2 · · · βNb
�T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

β

¼ DlαþDbβ ¼ ½Dl Db �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
D

½α β �T|fflfflfflfflffl{zfflfflfflfflffl}
x

¼ Dx;

(4)

where Dl and Db are the landslide and background subdictionaries consisting of Nl landslide
atoms and Nb background atoms, respectively. α and β are sparse vectors, whose nonzero entries
correspond to the weighting of the atoms in Dl andDb, respectively. The 256 × N matrix D with
N ¼ Nl þ Nb is the training dictionary consisting of both the landslide and background training
samples, and the N-dimensional vector x is a concatenation of the two vectors α and β, which is
also a sparse vector. If y is a background patch, ideally, it cannot be sparsely represented by the
landslide training samples. Namely, α is a zero vector and β is a sparse vector, and vice versa.
Therefore, test patch y can be sparsely represented by the combined landslide and background
dictionaries, and the locations of nonzero entries in the sparse vector x contain critical informa-
tion about the class of y. To better illustrate this model, an example is shown in Fig. 2. The
landslide dictionary contains Nl ¼ 540 training samples and the background dictionary contains
Nb ¼ 735 training samples. For a background patch, the sparse representation vector x is shown
in Fig. 2(a). We see that vector α (red entries) corresponding to the landslide dictionary is a zero
vector and vector β (blue entries) corresponding to the background dictionary is a sparse vector.

Fig. 2 Sparse representation of a background patch. (a) The sparse representation vector x con-
sisting of vectors α (red entries) and β (blue entries). (b) A whitened background sample histogram
feature (black solid) and its approximation Dbβ (red dashed).
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Awhitened background sample histogram feature (black solid) and its approximation Dbβ (red
dashed) are shown in Fig. 2(b).

The sparse vector x satisfies the equation y ¼ Dx, and the number of its nonzero entries
should be as less as possible. So we get the loss function as

EQ-TARGET;temp:intralink-;e005;116;687x̂ ¼ argminkDx − yk2 subject to kxk0 ≤ K0; (5)

where k:k2 and k:k0 denote the l2-norm and the l0-norm, respectively. The latter is defined as
the number of nonzero entries in the vector (also called the sparsity level of the vector).26 K0 is
a preset upper bound on the sparsity level.37 In the absence of a priori information of the K0,
the aforementioned problem is satisfactorily solved by the sparsity adaptive matching pursuit
algorithm.38

The sparse vector x̂ is recovered by decomposing y over the preconstructed dictionary D.
Thus, we may find the few atoms inD best representing y. The recovery process implicitly leads
to a competition between the two subspaces (Dl and Db). Once sparse vector x̂ is obtained, the
residuals of recovery are calculated with the following equations:

EQ-TARGET;temp:intralink-;e006;116;548

rlðyÞ ¼ ky −Dlα̂k2;
rbðyÞ ¼ ky −Dbβ̂k2; (6)

where α̂ and β̂ denote the recovered sparse coefficients corresponding to the landslide and back-
ground dictionaries, respectively. The class of y can be determined by comparing the residuals
rlðyÞ with rbðyÞ. The detector is defined as

EQ-TARGET;temp:intralink-;e007;116;461PðyÞ ¼ rlðyÞ
rlðyÞ þ rbðyÞ

: (7)

Finally, we preset threshold τ, which is a very small positive number based on experience. When
output PðyÞ is greater than τ, the test patch is labeled as class 0; otherwise, it is labeled as class 1

EQ-TARGET;temp:intralink-;e008;116;393ClassðyÞ ¼
�
0 if PðyÞ > τ
1 otherwise

: (8)

If the class of a test patch is labeled as 0, it is determined to be a background patch. Otherwise,
the patch is considered to be a potential landslide patch.

4.1.3 Morphological processing

According to the characteristics, a landslide should be a complete or continuous region, where
each potential landslide patch should be an interconnection. Then in order to deal with broken or
fragmented regions, some morphological processing operations, including the open operation,
the close operation, and connected-component labeling, are applied to potential landslide
patches. Some isolated patches should be eliminated if they are smaller than a given threshold
θ and certain smaller holes should be filled. According to the average size of buildings and expert
experience, our goal is to identify the landslide patch, whose area is larger than 200 m2.
Therefore, we set this threshold θ as

EQ-TARGET;temp:intralink-;e009;116;191θ ¼ 200

R2
; (9)

where R is the resolution of the VHR image. Finally, some complete landslide areas are seg-
mented. Morphological processing may not only reduce the miss rate and the false alarm rate, but
can also smooth the boundary of the landslide. In this way, we can get a more accurate outline of
the landslide. A flowchart of landslide detection is shown in Fig. 3.
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4.2 Building Damage Classification Model

In remote-sensing images, the outlines of the building and the landslide area embody polygons.
We adopt the dimensionally extended nine-intersection model (DE-9IM) to analyze the spatial
relationships of the two polygons.39 The DE-9IM model is a mathematical approach that defines
a pair-wise spatial relationship between geometries of different types and dimensions. This
model expresses spatial relationships among all types of geometries as pair-wise intersections
of their interior, boundary, and exterior by considering the dimensions of the resulting intersec-
tions. It can be expressed as

EQ-TARGET;temp:intralink-;e010;116;522DE9IMða; bÞ ¼
2
4 dimðIðaÞ ∩ IðbÞÞ dimðIðaÞ ∩ BðbÞÞ dimðIðaÞ ∩ EðbÞÞ
dimðBðaÞ ∩ IðbÞÞ dimðBðaÞ ∩ BðbÞÞ dimðBðaÞ ∩ EðbÞÞ
dimðEðaÞ ∩ IðbÞÞ dimðEðaÞ ∩ BðbÞÞ dimðEðaÞ ∩ EðbÞÞ

3
5; (10)

where dim is the maximum number of dimensions of the intersection (∩) of the interior (I), the
boundary (B), and the exterior (E) of geometries a and b. dimðxÞ can yield values f−1; 0; 1; 2g,
specifically −1 for empty sets (∅), 0 for points, 1 for lines, and 2 for areas. If we map the values
{0, 1, 2} to T (true) and −1 to F (false), the DE-9IMmodel can be expressed as a matrix using the
Boolean domain {T, F}.

There are many kinds of spatial relationship between two polygons. In this paper, we only
need four. The corresponding spatial predicates are disjoint, touches, overlaps, and covers, and
the matrix of the each predicate is as in Fig. 4.

Finally, based on the above input data and spatial relationship theories, we designed the
BDCM on the basis of the previous work,40 which is shown in Fig. 5. In this model, we deter-
mine the building damage grade directly when the spatial relationship between the outlines of the
building and the landslide areas are covered or overlapped. If the relationship is disjoint, the
shortest Euclidean distance between two regions needs to be calculated. According to the expe-
rience of experts, 3 m is a suitable discrimination threshold. Therefore, we preset a shortest
distance threshold Td to 3∕R pixels (R is the resolution of the VHR image). When the shortest
Euclidean distance is greater than Td, the degree of damage to the building is in the “intact”

Relationships Intersection matrix Examples

Disjoint T * F

* * F

F F *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Intersects

Touches F T *

* * *

* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F * *

T * *

* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F * *

* T *

* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Overlaps T * T

* * *

T * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Covers T * *

* * *

F F *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

* T *

* * *

F F *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

* * *

T * *

F F *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

* * *

* T *

F F *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Fig. 4 Spatial predicates and correspondences to the matrix expression.

Fig. 3 Flowchart for landslide detection.
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grade; otherwise, as in the “touch” relation, we need to calculate the texture of the roof of the
building in the predisaster and the postdisaster images to classify the degree of damage as two
grades according to textural differences. Since we find that texture is often not required, it is
ignored in this paper.

5 Experiments

In order to test the performance of the proposed framework, VHR images for the Wenchuan
earthquake in China on May 12, 2008, were acquired and analyzed. This earthquake triggered
massive landslides and mud-rock flow that caused a large number of casualties and massive
damage to infrastructure. We used the QuickBird pre-event image acquired on June 26,
2005, and the QuickBird postevent image acquired on June 3, 2008. Both images were acquired
in panchromatic and multispectral modes with spatial resolutions of 0.61 and 2.4 m, respectively.
Following image fusion, we obtained the 0.61-m multispectral images used in our experiments.

The experiments were executed on a personal computer running on an Intel Core2 Quad
CPU at 2.83 GHz with 4 GB of memory. Figure 6 shows images of Wenchuan County before
and after the earthquake. One subset containing images of damaged buildings was marked as
the experimental region and is shown bounded by a red box in Fig. 6.

5.1 Landslide Detection Experiments

Prior to damage grading, we cropped 4500 sample patches (size ¼ 24 × 24) consisting of 2000
landslide sample patches and 2500 background sample patches from several landslide remote-
sensing images. For comparison, we calculated the HSV histogram features and the RGB histo-
gram features for each sample patch. Finally, we concatenated the different color space histo-
gram features and obtained two R4500×256 dictionaries.

Fig. 5 The building damage classification model.
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The SRC method based on both HSVand RGB histogram features was applied to the exper-
imental images of Wenchuan County, and the results were compared both visually and quanti-
tatively by using receiver operating characteristics (ROC) curves. In our study, the identification
of landslide patches and nonlandslide (background) patches is a binary classification problem,
where outcomes are labeled either as positive (p) or negative (n). The ROC curve illustrates the
performance of the binary classifier system as its discrimination threshold is varied. It is defined

Fig. 6 VHR images of Wenchuan County before (a) and after (b) the earthquake.

Fig. 7 Landslide detection result with two different feature dictionaries: (a) the pre-event VHR
image of major disaster areas in Wenchuan County, (b) the postevent VHR image of major
disaster areas in Wenchuan County, (c) visual interpretation results of landslide areas, (d) visual
interpretation landslide areas overlaid on (b), (e) landslide detection result according to RGB
histogram feature dictionary, (f) RGB histogram-based classified landslide areas overlaid on
(b), (g) landslide detection result according to HSV histogram feature dictionary, and (h) HSV
histogram-based classification landslide areas overlaid on (b).
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by a true positive rate (TPR) and a false positive rate (FPR), which are labeled as x- and y-axes,
respectively. In our experiments, the class labels for all test patches were determined at each
threshold. The TPR is the ratio of the number of hits (landslide patches determined as landslides)
to the total number of true landslide patches, and the FPR was calculated by the number of false
alarms (background patches determined as landslide) over the total number of background
patches.

The pre- and postevent images of Wenchuan County used for the experiment are shown in
Figs. 7(a) and 7(b), respectively. In order to evaluate our landslide detection method, the SRC
experiments based on the above two dictionaries were performed and their experimental results
were compared with the visual interpretation results. The visual interpretation results of the
landslide areas from the National Disaster Reduction Center of China are shown in Fig. 7(c).
Figure 7(d) shows the visual interpretation of landslide areas overlying the postevent image. The
RGB histogram-based classification results are shown in Figs. 7(e) and 7(f), whereas Fig. 7(e)
shows the binary classification results and Fig. 7(f) shows the final landslide detection areas
overlying the postevent image. Similarly, the results of the HSV histogram-based classification
are shown in Figs. 7(g) and 7(h). Both experiments employed morphological processing. To
eliminate isolated potential landslide patches, the area threshold was set 540 pixels automati-
cally, equivalent to 200 m2. The corresponding ROC curves are shown in Fig. 8, which shows
that the SRC method using the HSV histogram feature dictionary was more effective.

5.2 Experiments on Building Damage Classification Model

After obtaining landslide detection results through the SRC-based framework, we easily
obtained the outlines of the landslide area. The outlines were entered into the BDCM. Mean-
while, the outline of the building obtained from the cooperation in advance was also entered into
this model. In this experiment, the shortest distance threshold Td was set as 5 pixels, approx-
imately equal to 3 m (5 × 0.61 m). Finally, the model assigned a damage grade to each affected
building (Fig. 9). The assessment results were then displayed, and all kinds of assessment reports
could be generated depending on the user’s requirements.

In this case, the total number of buildings was 106, and the number of correct classifications
was 92. The assessment results are depicted by a confuse matrix shown in Table 2. Here, the rows
represent assessment results obtained using our method, and the columns show the reference
data from the National Disaster Reduction Center of China. The results were satisfactory,
with high producer accuracy and user accuracy. The overall accuracy was 86.79%, and the
Kappa coefficient was 0.82.

Fig. 8 ROC curves of landslide detection results using two dictionaries.
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6 Conclusion

In this paper, we developed an effective and reliable assessment framework to classify building
damage caused by landslides. The framework can yield satisfactory results by taking advantage
of VHR optical remote-sensing images. This framework not only exploits the advantages of
remote-sensing data, but also reduces the participation of experts. Experiments showed that
the framework can provide effective support for emergency disposal work and disaster manage-
ment. Since the framework has been developed for VHR images, its performance will be affected
by low-resolution images. Further modification and extended research will continue on this front.
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