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ABSTRACT. Remote sensing images often contain a significant amount of clouds, which can
result in substantial resource costs during transmission and storage. Cloud detection
can reduce these costs. Although current cloud detection methods perform well in
extracting large and thick clouds, there are still some issues, such as missed detec-
tion of small and thin clouds and false detection in non-cloud areas. Therefore, we
propose a deep learning framework called DB-Net. It consists of three main mod-
ules: feature extraction module (FEM), cascaded feature enhancement module
(CFEM), and feature fusion module (FFM). In the FEM, we leverage the advantages
of both convolutional neural network and Transformer by utilizing two branches to
reduce the loss of semantic information. To enhance the acquisition capability of
multi-scale semantic information, in the CFEM, regular convolutions are replaced
with deformable convolutions to adaptively capture cloud features of various sizes,
and a cascaded structure is designed to enhance the interaction of information
among different scales. Furthermore, to focus on small and thin cloud information
and suppress non-cloud background information, we designed the FFM using atten-
tion mechanisms to enhance the target information in the features extracted by FEM
and CFEM. Extensive experiments were conducted on the GF1-WHU dataset, and
comparisons were made with mainstream cloud detection networks. The experi-
mental results indicate that the proposed DB-Net method reduces cloud information
omission, effectively focuses on thin clouds and small clouds, and improves overall
cloud detection performance.
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1 Introduction
With the advancement of technology, a great deal of artificial satellites are being launched into
space, leading to a rapid growth in the quantity of remote-sensing images. These data are widely
applied in the fields of surface observation,1 natural disaster analysis,2 land use and land cover
change detection,3 and three-dimensional terrain reconstruction.4 However, according to the
International Satellite Cloud Climatology Project,5 more than 66% of the earth’s surface is regu-
larly covered by clouds. Most of the data covered by the cloud layer are redundant and invalid
and bring burden and resource overhead to the analysis,6 storage, and transmission of remote
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sensing data, especially true for space-borne satellites. Therefore, accurate cloud detection plays
a crucial role in improving transmission efficiency and saving memory storage overhead.

In the field of deep learning, cloud detection is considered an end-to-end encoding–decoding
model that establishes complex nonlinear mappings between inputs and outputs, enabling
automatic extraction and classification of cloud features. Xie et al.7 designed a dual-branch deep
convolutional neural network (CNN) that effectively predicts thick clouds, thin clouds, or non-
clouds. Shao et al.8 proposed a network model named multiscale features CNN (MF-CNN). The
model employs four different pooling operations to capture multi-scale features of clouds. Chai
et al.9 introduced the MSegNet network, which effectively enriched the semantic information of
clouds using full-spectrum images. The aforementioned cloud detection methods based on CNNs
achieve decent results, but they suffer from information loss during the feature extraction process
and lack the capability to effectively extract foreground information (clouds). Attention
mechanisms10–13 can reduce information loss and enhance the foreground information. Zhang
et al.14 designed a cloud pixel detection model for GF1-WFV images. The model employs a
U-shaped structure and utilizes spatial attention modules to capture information at different
scales. Yu et al.15 proposed a novel CNN architecture called MFG-Net for cloud detection in
GF-5 images. They incorporated channel attention and spatial attention into the pyramid pooling
module to capture cloud channel and spatial information. In addition, some researchers enhance
the acquisition of foreground information by designing special convolutional kernels or employ-
ing information augmentation techniques. He et al.16 designed a framework called DAB-Net. The
framework consists of a feature extraction backbone and a deformable context feature pyramid
module to capture features at different scales, reducing the computational complexity of the
model while extracting multi-scale cloud information. Wu et al.17 proposed BoundaryNet. It
extracts cloud features at different scales and then leverages a differential boundary network
for integrating multi-scale features and edge information. Guowei et al.18 proposed
BABFNet, which is specifically targeted at challenging areas in remote sensing image cloud
detection, such as cloud boundaries and thin clouds. By introducing a boundary prediction
branch and a bilateral fusion module, the performance of cloud detection was significantly
improved. Zhang et al.19 enhanced the extraction and fusion of global and multi-scale contextual
information by designing the Resblock-cloud and two context information fusion modules.
Zhang et al.20 introduced a multi-branch residual context semantic module, a multi-scale con-
volution sub-channel attention module, and a feature fusion upsampling module to enhance fea-
ture extraction and edge information.

The aforementioned methods are all based on convolution operations, which can only
capture local information. Although it is possible to obtain a larger receptive field and integrate
a wider range of information through downsampling, this process may lead to a loss of cloud
contextual semantic information. To overcome the limitations of CNNs, some researchers have
recently explored the use of Transformers21–23 to obtain global information. Zhao et al.24 intro-
duced the MMANet, harnessing the synergy of multi-scale patch embedding, multi-path pyramid
vision transformers, and strip convolution to adeptly synthesize comprehensive and detailed fea-
ture representations. Zhang et al.25 proposed Cloudformer V2, which introduces Transformers
into cloud detection, addressing the issues of low accuracy in cloud detection. Tan et al.26

proposed SwinUnet, which utilized the Swin Transformer to detect cloud and cloud shadow.
Ma et al.27 proposed a hybrid CNN-Transformer network called CNN-TransNet for cloud
detection. It combines the advantages of Transformers and CNNs to enhance finer details and
establish long-term dependencies.

As observed from the above analysis, to enhance the detection capability of thin clouds and
small clouds, the network needs to capture both local and global features while possessing the
ability to differentiate similar features. Therefore, the objective of this study is to preserve multi-
scale and global information while enhancing local information, aiming to minimize the loss of
information for small clouds and thin clouds. In addition, the attention mechanism is employed to
focus on cloud-related foreground information and suppress interference from features similar to
clouds in the scene. The contributions are as follows:

1. This paper proposes a feature extraction module (FEM) by combining CNN and Swin
Transformer. In the FEM, a U-shaped CNN branch is designed to focus on extracting local
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texture details, whereas the Swin branch utilizes the Swin Transformer to extract global
information. The information from both branches complements each other, enhancing the
ability to extract and preserve cloud information. The FEM will be introduced in Sec. 3.1.

2. This paper proposes a cascaded feature enhancement module (CFEM) based on atrous
spatial pyramid pooling (ASPP).28 It enhances the interaction of information across differ-
ent scales by concatenating feature maps from different scales, thereby reducing the loss of
multi-scale information. The CFEM will be introduced in Sec. 3.2.

3. This paper adopts a feature fusion module (FFM) based on an attention mechanism that
combines the global information from the Swin branch with the local detail information
from the CNN branch. It adaptively focuses on the semantic information of small and thin
clouds and ignores the semantic information of features similar to clouds in the scene that
are non-clouds, thereby improving the performance of cloud detection. The FFM will be
introduced in Sec. 3.3.

2 Dataset
The GF1-WHU29 dataset consists of 108 GF1 wide-field-of-view (WFV) 2A-grade images
captured by the GF1 wide-angle camera, along with their corresponding reference clouds and
cloud masks. The cloud masks for the GF1-WHU dataset were manually drawn by experienced
experts. They visually inspected the boundaries of clouds and their shadows and manually delin-
eated them. Pixel values 0, 1, 128, and 255 represent missing values, background, cloud shad-
ows, and clouds, respectively. In this study, the focus was primarily on the detection of clouds.
Therefore, irrelevant information was removed, and missing values, cloud shadows, and back-
ground were unified as the background class, whereas clouds were classified as a separate class.
The background is represented by 0, and the clouds are represented by 255.

In this study, we selected 12 scenes of satellite imagery for training and three scenes for
testing. The testing set includes three types of clouds: thin, thick, and small clouds. All images
were cropped to a size of 384 × 384 pixels. The final training set consists of 14,698 cropped
images, whereas the testing set contains a total of 5544 images, including 1890 images with
thick clouds, 1890 images with small clouds, and 1764 images with thin clouds. Figure 1
displays a portion of the training data, whereas Fig. 2 shows a subset of the three scenes of
testing data.

Fig. 1 Display of some training data from the GF1-WHU dataset.

Fig. 2 Display of some testing data from the GF1-WHU dataset.
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3 Proposed Method
DB-Net is an encoder–decoder-based pixel-level segmentation model that classifies each pixel as
either cloud or non-cloud. The specific structure of DB-Net is shown in Fig. 3. It consists of three
components: the FEM, CFEM, and FFM.

FEM has two branches dedicated to global and local cloud information extraction. CFEM is
added to the Fusion layer of the Swin branch and in the middle of the CNN branch to achieve
multi-scale cloud information. FFM combines information from both branches and emphasizes
the extraction of cloud information while minimizing the loss of information from small and thin
clouds. In addition, concatenation conv and upsample (CCU) is to fuse the input features and
restore the original number of input channels. The detailed introduction of the three modules can
be found in Secs. 3.1–3.3.

3.1 Feature Extraction Module by the Combination of Swin Transformer
and CNN

Traditional convolutional neural networks excel at extracting local features but are limited by the
fixed size of their convolutional kernels, making it challenging to effectively capture global
contextual information. This limitation can impact the ability to extract features of clouds and
consequently affect the accuracy of cloud detection.

In contrast to CNNs, Swin Transformer employs a hierarchical attention mechanism to effi-
ciently handle global long-range dependencies in images. It decomposes the image into a series
of small patches and utilizes multiple layers of transformer modules for information propagation
and feature extraction. Within each local window, the features are encoded as vector represen-
tations and interact through a self-attention mechanism to capture global dependencies.

To fully utilize the strengths of Swin Transformer and CNNs, we employ the FEM in the
encoding stage of the model. The Swin branch captures the global contextual information of
images, whereas the CNN branch captures the local texture and detail information. In the
FFM, the global and local information is fused.

3.1.1 CNN branch

The CNN branch is designed to capture local texture details of clouds, and it consists of two
parts: encoding and decoding. The encoding part consists of two elements, conv block (CB)
and downsample block (DB). CB is composed of a convolution, BatchNorm, rectified linear
unit (ReLU) activation function, and basic block. The structure of the basic block is consistent
with that of ResNet.30 DB is composed of a downsampling operation and multiple basic blocks.
In CB, the convolutional kernel has a size of 3 with a stride of 2 and a padding of 1. In DB1 to
DB4, the number of basic blocks is 3, 4, 6, and 3, respectively. The CFEM is incorporated in the
middle of the encoding–decoding process to perform multiscale feature extraction. In the decod-
ing part, the features from the encoding part are concatenated and upsampled, gradually restoring
them to their original sizes. In UP, the convolutional kernel has a size of 3 with a stride of 1 and a

Fig. 3 Overall architecture of the proposed DB-Net.
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padding of 1. The feature sizes of f1,f2, f3, and f4 are 1/32, 1/16, 1/8, and 1/4 of the original
size, respectively. The specific structure of the CNN branch is shown in Fig. 4.

3.1.2 Swin branch

The Swin branch is used to extract the global semantic information of clouds. From Fig. 5, it can
be seen that the Swin branch mainly consists of patch partition, patch embedding, patch merging,
Swin Transformer block, and CFEM. The Swin branch consists of four layers, each of which
extracts features corresponding to different scales to capture semantic information at different
levels. In our implementation, the number of Swin Transformer blocks in each layer is set to 2, 2,
6, and 2. The feature sizes of S1, S2, S3, and S4 are 1/4, 1/8, 1/16, and 1/32 of the original size.

The Swin branch divides the image into a set of patches using a patch partition. Each patch is
then linearly embedded into the Swin Transformer block by patch embedding. Patch merging
involves dividing the features equally and placing them in different channels, similar to a pooling
operation. The CFEM is utilized for multiscale feature extraction, similar to the CNN branch.
The Swin Transformer block consists of four main components: window-based multi-head self-
attention, shifted window-based multi-head self-attention, multi-layer perceptron (MLP), and
layer normalization. The equations are as follows:

EQ-TARGET;temp:intralink-;e001;117;338Y
Λ l

¼ W −MSAðLNðYl−1ÞÞþYl−1; (1)

EQ-TARGET;temp:intralink-;e002;117;296Yl ¼ MLPðLNðYΛ
l
ÞÞþY

Λ l
; (2)

EQ-TARGET;temp:intralink-;e003;117;272Y
Λ lþ 1

¼ SW −MSAðLNðYlÞÞþYl; (3)

EQ-TARGET;temp:intralink-;e004;117;248Ylþ1 ¼ MLPðLNðYΛ
lþ1

ÞÞ þ Y
Λ lþ1

: (4)

Fig. 5 Architecture of the Swin branch.

Fig. 4 Architecture of the CNN branch.
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3.2 Cascaded Feature Enhancement Module Based on ASPP
Multiscale information plays a crucial role in improving the detection accuracy of clouds.
General multiscale feature extraction architectures often lack effective information interaction
among different scales, which can negatively impact detection performance. To address these
challenges and effectively extract multiscale information, we propose the CFEM. It consists
of two components: the multi-scale feature extraction module (MFC) and channel weight selec-
tion (CWS). The overall CFEM is given by Eq. (5)

EQ-TARGET;temp:intralink-;e005;114;652CFEM ¼ CWSðMFCðxÞÞ; (5)

and the specific structure of the CFEM is shown in Fig. 6.
The MFC component includes a pooling block, a 1 × 1 convolution, and three parallel

deformable convolution (DCN)31 modules. The pooling block takes the input features and
applies both max pooling and average pooling operations. The results of these pooling operations
are then element-wise added together. The resulting feature map is then upsampled using linear
interpolation to restore it to the original size. DCNs use different dilation rates to capture cloud
information at different scales. Compared with regular convolutions, the DCN is better suited to
adapt to the shape of clouds and extract their semantic information. The regular convolution has a
dilation rate of 1 and padding set to 0, whereas DCN has dilation rates and padding set to 6, 12,
and 18. The kernel size of the regular convolution is 1 × 1, with a stride of 1. All DCNs have a
convolution kernel size of 3 × 3 and a stride of 1. To enhance the cloud semantic information, we
respectively concatenate f1, f2, and f3with the input features x. The MFC module is defined as
shown in Eq. (6)

EQ-TARGET;temp:intralink-;e006;114;473MFC ¼

8>>>>>><
>>>>>>:

f1 ¼ conv1×1ðxÞ
f2 ¼ DCN3×3ðconcatðx; f1ÞÞ
f3 ¼ DCN3×3ðconcatðx; f2ÞÞ
f4 ¼ DCN3×3ðconcatðx; f3ÞÞ
f5 ¼ upsampleðaddðmaxpoolðxÞ; averagepoolðxÞÞÞ

; (6)

where the DCN is an extension of the regular convolution that introduces additional offset terms
ΔXn, which are computed through another convolution operation. The DCN is defined as shown
in Eq. (7)

Fig. 6 Architecture of CFEM.
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EQ-TARGET;temp:intralink-;e007;117;736DCNðx0Þ ¼
X
xn∈R

wðxnÞ · yðx0 þ xn þΔxnÞ; (7)

where y represents the pixel matrix at the corresponding position of the convolution kernel, xn
represents the offset for each point on the convolutional output receptive field, x0 represents the
coordinates of the convolutional kernel center, w represents the weights corresponding to the
sampling points, and R represents the set of offset coordinates.

CWS component includes a 3 × 3 DCN, average pool, and MLP. The channel concatenation
in the MFC module unavoidably leads to redundant information, which can negatively impact
detection performance. CWS is utilized to concentrate on the significant channel information
related to clouds and to diminish information redundancy. The specific equation of CWS is
shown in Eq. (8)

EQ-TARGET;temp:intralink-;e008;117;598CWSðxÞ ¼ MLPðaveragepoolðxÞÞ � DCN3×3ðxÞ; (8)

where x represents the result of concatenating f1,f2, f3,f4, andf5.

3.3 Feature Fusion Module Based on Attention Mechanism
In Secs. 3.1 and 3.2, the global contextual semantic information, local texture detail information,
and multiscale information from cloud images are extracted by FEM and CFEM. However, the
information contains some irrelevant noise and background information. We designed the FFM
to fuse the aforementioned information and focus on foreground (cloud) information. The FFM
consists of the spatial attention module (SAM) and multi-scale channel attention module
(MCAM). SAM andMCAM operate on the outputs of the CNN and Swin branches, respectively.
SAM is responsible for focusing on the spatial information and local texture details of clouds in
the input information. MCAM extracts multiscale information from the intermediate layers and
focuses on important channel information and spatial information relevant to clouds. The final
output is obtained by merging the 1 × 1 convolution of the outputs from SAM and MCAM. The
specific structure of the FFM is shown in Fig. 7 and Eq. (9)

EQ-TARGET;temp:intralink-;e009;117;407FFM ¼ conv1×1ðconcatððx1 · SAMðx1ÞÞ;MCAMðx2ÞÞÞ; (9)

where x1 represents the output of the CNN branch, x2 represents the output of the Swin branch,
and conv1×1 is used to change the channel dimension.

The SAM module applies max pooling and average pooling operations to the input features
to extract various spatial features. Subsequently, the concatenated results undergo a 1 × 1 con-
volution and sigmoid activation function to obtain the spatial attention weight matrix. The spe-
cific equation of SAM is shown in Eq. (10)

Fig. 7 Architecture of FFM.
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EQ-TARGET;temp:intralink-;e010;114;736SAM ¼ sigmoidðconv1×1ðconcatðmaxpoolðxÞ; averagepoolðxÞÞÞÞ; (10)

where xrepresents the input features of SAM.
The MCAM module passes through three parallel convolutional modules for feature extrac-

tion at different scales. The convolutional kernel sizes are respectively set to 3 × 3, 5 × 5, and
7 × 7, with a stride of 1. Then, the features at multiple scales are added together to obtain the
fused feature. The fused feature is then subjected to average pooling and passed through an MLP
to obtain a weight vector. Next, the weight vector is multiplied element-wise with the features
extracted by the three convolutions. Finally, the fused feature undergoes the SAM to achieve the
final result. The specific equation of MCAM is shown in Eq. (11)

EQ-TARGET;temp:intralink-;e011;114;623

8>>>>>>>><
>>>>>>>>:

f1 ¼ conv3×3ðxÞ
f2 ¼ conv5×5ðxÞ
f3 ¼ conv7×7ðxÞ
f4 ¼ MLPðaveragepoolðconv1×1ðconcatðf1; f2;f3ÞÞÞÞ
f5 ¼ conv1×1ðconcatðf1 � f4; f2 � f4; f3 � f4ÞÞ
MCAM ¼ SAMðf5Þ � f5

; (11)

where x represents the input features, f13̃ correspond to the output features of convolutional
kernels of sizes 3 × 3, 5 × 5, and 7 × 7, f4 represents the weight vector, and f5 represents the
fused feature.

3.4 Loss Function
The binary cross-entropy (BCE) provides pixel-level loss supervision, ensuring accurate clas-
sification of individual pixels. The intersection over union (IOU) loss provides image-level loss
supervision, reinforcing cloud pixels that were missed at the pixel level and weakening falsely
detected cloud pixels. Therefore, we utilize the BCE loss in combination with the IOU loss to
form our loss function for cloud detection, distinguishing between cloud and non-cloud. The
equation of BCE loss is defined as Eq. (12)

EQ-TARGET;temp:intralink-;e012;114;391LossBCEðy; y 0Þ ¼
XW
w¼1

XH
h¼1

ðyhw logðy 0
hwÞþ ð1 − yhwÞ logð1 − y 0

hwÞÞ; (12)

where y ∈ RW×H×1 denotes the ground truth cloud mask and y 0 ∈ RW×H×1denotes the produced
cloud mask. The equation of the IOU Loss is defined as Eq. (13)

EQ-TARGET;temp:intralink-;e013;114;324LossIoUðy; y 0Þ ¼ 1 −
P

W
w¼1

P
H
h¼1 yhwy

0
hwP

W
w¼1

P
H
h¼1ðyhw þ y 0

hw − yhwy 0
hwÞ

; (13)

The final Eq. (13) combines these two loss functions so that the loss function can perform loss
supervision at the pixel and image level, and the specific equation is defined as Eq. (14)

EQ-TARGET;temp:intralink-;e014;114;262Lossfinal ¼ λ1LossBCEðy; y 0Þ þ λ2LossIoUðy; y 0Þ; (14)

where λ1 and λ2 represent the corresponding loss function weights and we set both of them to 1.

3.5 Evaluation Metrics
To evaluate the effectiveness of our model, we utilize metrics such as accuracy, precision, recall,
and F1. The following are the equations for the evaluation metrics

EQ-TARGET;temp:intralink-;e015;114;179 Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
; (15)

EQ-TARGET;temp:intralink-;e016;114;133Precision ¼ TP

TPþ FP
; (16)

EQ-TARGET;temp:intralink-;e017;114;104Recall ¼ TP

TPþ FN
; (17)

EQ-TARGET;temp:intralink-;e018;114;75F1 ¼ 2 × Precision × Recall

Precisionþ Recall
; (18)
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where TP represents the prediction is the cloud pixel and the actual mask is also the cloud pixel,
TN represents that the prediction is the non-cloud pixels and the real mask is also the non-cloud
pixels, FP represents that the prediction is the cloud pixel and the real mask is non-cloud pixels,
and FN represents that the prediction is non-cloud pixels and the true mask is the cloud pixels.

4 Implementation Details
All the experiments were implemented on a workstation with a single graphics processing unit
(GPU) device (NVIDIA GV102: GeForce RTX 3090) running the Windows operating system.
The code was written in Python 3.7 and used Torch version 1.9.1. We employed the Adam opti-
mizer to minimize the difference between the network’s predicted outputs and the ground truth
values and set the hyperparameters as β1 ¼ 0.9 and β2 ¼ 0.999. The initial learning rate was set
to 10−6. For each experiment, we trained the model for 100 epochs to obtain the final results.

5 Experimental Results and Analysis

5.1 Comparison Methods
To validate the effectiveness of the model, this study compares STCNet with BoundaryNet,17

PspNet,32 CDNetv2,33 RsNet,34 and ManfanNet.35 BoundaryNet is a model specifically designed
for accurate cloud detection, aiming to address issues of unclear cloud boundaries and low
accuracy. CDNetv2 is a cloud detection model that employs attention mechanisms and
multi-scale feature fusion to achieve high-precision cloud detection on satellite image thumb-
nails. PspNet is a neural network model used for semantic segmentation tasks, which utilizes
multi-scale fusion to combine features from different levels for more comprehensive and accurate
semantic information. RsNet is a cloud detection model based on UNet,36 which effectively inte-
grates semantic information from deep and shallow layers through skip connections, improving
the effectiveness of cloud detection. MafanNet enhances the ability to extract features and deeply
mine spatial information through its designed attention modules, boundary refinement enhance-
ment model, and bilateral FFM, thereby improving the detailed repair of cloud and cloud shadow
boundaries.

5.2 Comparison Experiments
All experiments were conducted on the GF1-WHU dataset. The results of different methods are
shown in Fig. 8 and Table 1. In regions covered by thick clouds, as shown in Figs. 8(a) and 8(b),
different models exhibit similar detection performance, except for differences in texture details.
RsNet and PSPNet suffer from detail loss and edge smearing. MafanNet suffers from the adhe-
sion of segmentation areas. CDNetv2 and BoundaryNet experience varying degrees of thin cloud
and detail information loss. STCNet performs the best, reducing cloud omissions and producing
clearer edges compared with other models.

In regions covered by thin clouds, as depicted in Figs. 8(c) and 8(d), DB-Net outperforms
other models in detecting thin clouds and exhibits fewer instances of mistaking the background
for clouds. BoundaryNet shows numerous cloud omissions, whereas CDNet and PSPNet not
only have cloud omissions but also suffer from false cloud detections.

In addition, in regions covered by small clouds, as shown in Figs. 8(e) and 8(f), DB-Net
exhibits better segmentation results and closer alignment with the ground truth in terms of details.
BoundaryNet suffers from the loss of small clouds, whereas other models experience more severe
omissions.

To further validate the effectiveness of DB-Net, we conducted quantitative analysis in differ-
ent scenes. Table 1 presents the quantitative comparison results for thick, thin, and small cloud
scenes. Figures 9 and 10 display the accuracy and F1_score for different scenes, respectively. In
the three scenes, our model achieves the highest accuracy. In the thick cloud scene, the accuracy
is 97.48%. In the thin cloud scene, the accuracy is 94.68%. In the small cloud scene, the accuracy
is 96.55%. Compared with the highest accuracy, the accuracy improved by ∼0.53%, 2.7%, and
0.46% in the above scenes.

Due to the distinct features of thick clouds and the reduced likelihood of foreground-
background confusion, all metrics in the thick cloud scene are the highest among the three
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Fig. 8 Comparison of three scene images using different methods. The types of three scenes are
as follows: panels (a) and (b) represent scenes with thick clouds, panels (c) and (d) represent
scenes with thin clouds, and panels (e) and (f) represent scenes with small clouds.

Table 1 Accuracy, precision, recall, and F1 scores for each testing method in the thick, thin, and
small cloud regions.

Method Accuracy Precision Recall F1

The thick cloud region

DB-Net 0.9748 0.9676 0.9737 0.9706

BoundaryNet 0.9695 0.9545 0.9724 0.9633

CDNetv2 0.9609 0.9781 0.9277 0.9522

MafanNet 0.9539 0.9317 0.9607 0.9460

PspNet 0.9523 0.9203 0.9705 0.9447

RsNet 0.9498 0.9408 0.9395 0.9402

The thin cloud region

DB-Net 0.9468 0.6790 0.8018 0.7353

MafanNet 0.9447 0.7194 0.6521 0.6841

BoundaryNet 0.9198 0.5425 0.7966 0.6454

CDNetv2 0.9138 0.5180 0.8654 0.6481

PspNet 0.8882 0.4452 0.8847 0.5923

RsNet 0.8868 0.4427 0.9017 0.5938

The small cloud region

DB-Net 0.9655 0.8405 0.8942 0.8665

BoundaryNet 0.9609 0.8061 0.8847 0.8436

CDNetv2 0.9568 0.9164 0.7098 0.7999

PspNet 0.9546 0.8129 0.8147 0.8138

MafanNet 0.9466 0.7750 0.7915 0.7831

RsNet 0.9425 0.7773 0.7395 0.7579

Note: bold values indicate that the model performs the best on that metric.

Zhou et al.: DB-Net: dual-branch deep learning network for cloud detection utilizing. . .

Journal of Applied Remote Sensing 034524-10 Jul–Sep 2024 • Vol. 18(3)



scenes. In the thick cloud scene, CDNetv2 achieves the highest precision, albeit at the cost of
sacrificing recall. This trade-off reduces false positive detections of non-cloud pixels but also
decreases the accurate detection of cloud pixels.

Compared with thick clouds, thin clouds have lower reflectance and less obvious features.
Thin clouds also exhibit translucency and are easily confused with background features. These
factors make it difficult to differentiate between foreground and background information. As a
result, all metrics in the thin cloud scene are the lowest among the three scenes. In the thin cloud
scene, RsNet achieves the highest recall, but this comes at the cost of increased detection of
background information as clouds. ManfanNet achieves the highest precision rate, reducing the
background information while also diminishing the effectiveness of cloud detection.

Small clouds occupy very few pixels and are easily overlooked during the feature extraction
process. The metrics in the small cloud scene lie between those of the thin and thick cloud scenes.
In the small cloud scene, although DB-Net has lower precision compared with CDNetv2, it

Fig. 9 Accuracy comparison for thick, thin, and small clouds under different models.

Fig. 10 F1_score comparison for thick, thin, and small clouds under different models.
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achieves a balance between precision and recall, resulting in an overall improvement in the detec-
tion of small clouds.

Table 2 presents the quantitative evaluation results for all scenes, and it can be observed that
the proposed DB-Net outperforms other methods in all metrics. DB-Net achieves an accuracy of
96.27%, a precision of 89.80%, a recall of 93.48%, and an F1 score of 91.60%. BoundaryNet
exhibits a similar recall to DB-Net, but its performance in other metrics is significantly lower
compared with DB-Net. DB-Net effectively suppresses non-cloud background information while
preserving the information of thin and small clouds, achieving a balance between precision and
recall. The metrics of other models are considerably lower compared with DB-Net.

Overall, it can be observed that DB-Net performs the best in terms of results, effectively
preserving small and thin cloud information while suppressing background information, thus
achieving the best detection performance. BoundaryNet achieves detection performance that
is close to DB-Net, but it has some shortcomings in terms of missing thin and small clouds.
CDNetv2 and PspNet exhibit good detection performance in thick cloud scenes; however, they
have significant instances of missed and false detections of clouds. MafanNet’s detection per-
formance in thin cloud areas is second only to DBNet, but there is regional adhesion in thick
cloud areas, and a large amount of detail is lost in small cloud areas. In contrast, RsNet performs
the worst, exhibiting significant cloud omissions, false detections, and unclear edges.

5.3 Ablation Experiments
To investigate the contributions of the three key modules in our proposed network, we conducted
ablation experiments on the GF1-WHU dataset using Swin Transformer as the baseline. The
results are shown in Table 3.

From Table 3, it is evident that different schemes result in improvements in model perfor-
mance. Scheme 1 is based on baseline and incorporates the CFEM module, which aims to
capture multi-scale information of clouds and focus on important channel information. Taking
into account the local feature extraction capability of CNNs, we further add the CNN branch
to scheme 1, forming scheme 2, which enhances local details and texture features. The FFM
is added to scheme 2, forming scheme 3, known as DB-Net. DB-Net adaptively focuses on the
semantic information of small and thin clouds while ignoring the background information of
non-cloud objects.

Table 2 Comparative experimental results of different methods.

Method Accuracy (%) Precision Recall F1

DB-Net 0.9627 0.8980 0.9348 0.9160

BoundaryNet 0.9507 0.8499 0.9314 0.8903

MafanNet 0.9485 0.8751 0.8857 0.8803

CDNetv2 0.9445 0.8654 0.8969 0.8711

PspNet 0.9327 0.7925 0.9286 0.8851

RsNet 0.9268 0.8079 0.8629 0.8345

Table 3 Quantitative analysis results of the ablation experiments.

Method FEM CFEM FFM Accuracy Precision Recall F1

Baseline — — — 0.9485 0.8764 0.9347 0.9046

Scheme 1 —
p

— 0.9532 0.8575 0.9366 0.8953

Scheme 2
p p

— 0.9549 0.8579 0.9458 0.8997

Scheme 3
p p p

0.9627 0.8980 0.9348 0.9160
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6 Conclusion
The accurate detection of clouds is essential in the field of weather forecasting and satellite
images. In addition, cloud cover significantly affects the Earth’s energy balance, and in the field
of climate change monitoring, by more precisely monitoring cloud layers, scientists can better
understand the impact of climate change on the global climate system. In this paper, we propose a
deep learning model called DB-Net. It effectively extracts the global contextual information and
local texture details of clouds, improving the accuracy of cloud detection and enhancing its
ability to detect small and thin clouds. Furthermore, DB-Net mitigates the interference of back-
ground information and reduces the occurrence of false detections of certain regions as clouds.
We conducted experiments on the GF1-WHU dataset and compared our results with existing
cloud detection methods. The following conclusions were drawn.

1. Compared with, BoundaryNet and MafanNet, the proposed method has improved the
accuracy by 1.2% and 1.42%, respectively, and the F1 score by 2.57% and 3.57%, respec-
tively, demonstrating the effectiveness of our approach.

2. To address the issue of global or local information loss when using CNN or transformer
individually, the FEM module is designed to extract global information while avoiding the
loss of local information. To mitigate the problem of information loss in conventional
multi-scale feature extraction, the CFEM module is designed to reduce the loss of
multi-scale cloud information. To tackle the issue of missing thin and small clouds during
the cloud detection process, the FFM module is designed to fuse dual-branch information
and employs attention mechanisms to distinguish background information, focusing on
small and thin cloud information.

The limitation of this research is that the proposed DB-Net adopts the dual-branch structure,
which leads to a higher number of parameters and increased model complexity. This issue will be
addressed in our future work.
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