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ABSTRACT. Significance: Motion artifacts are a notorious challenge in the functional near-infra-
red spectroscopy (fNIRS) field. However, little is known about how to deal with them
in resting-state data.

Aim: We assessed the impact of motion artifact correction approaches on assess-
ing functional connectivity, using semi-simulated datasets with different percentages
and types of motion artifact contamination.

Approach: Thirty-five healthy adults underwent a 15-min resting-state acquisition.
Semi-simulated datasets were generated by adding spike-like and/or baseline-shift
motion artifacts to the real dataset. Fifteen pipelines, employing various correction
approaches, were applied to each dataset, and the group correlation matrix was
computed. Three metrics were used to test the performance of each approach.

Results: When motion artifact contamination was low, various correction
approaches were effective. However, with increased contamination, only a few pipe-
lines were reliable. For datasets mostly free of baseline-shift artifacts, discarding
contaminated frames after pre-processing was optimal. Conversely, when both
spike and baseline-shift artifacts were present, discarding contaminated frames
before pre-processing yielded the best results.

Conclusions: This study emphasizes the need for customized motion correction
approaches as the effectiveness varies with the specific type and amount of motion
artifacts present.
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1 Introduction
Resting-state functional connectivity (RSFC) is largely studied in the field of neuroscience.
RSFC investigates the correlation of slow signal changes (<0.1 Hz) among different brain areas
in the absence of any stimulus or task.1 The correlation structure of spontaneous activity in RSFC
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maps can provide insight into the intrinsic functional architecture of the human brain. Moreover,
RSFC has been found altered in some pathological conditions (e.g., stroke, autism, and multiple
sclerosis) and could thus be considered a potential biomarker of a healthy brain.2–5

Biswal and colleagues6 first reported the correlation between the left and right somatosen-
sory motor cortices at rest using functional magnetic resonance imaging (fMRI). Afterward,
other resting-state networks were discovered (e.g., visual, attention, and default mode networks)
using fMRI.7–9 Although fMRI could be considered the gold standard technique to study RSFC,
given its high spatial and depth resolution, there are some populations (e.g., infants or particular
clinical populations) who can be hardly acquired in the MRI scanner.

A promising alternative to fMRI for studying RSFC is functional near-infrared spectroscopy
(fNIRS). fNIRS monitors non-invasively cortical hemodynamic variations using red and near-
infrared light. fNIRS has been shown to be reproducible,10 feasible,11 and reliable12,13 in char-
acterizing functional connectivity at rest. Compared with fMRI, it is more participant friendly,
i.e., it is quieter; has more tolerance to motion artifacts (MAs); and allows participants to sit or
stand instead of lying down in the MRI scanner, thus resulting in more ecological acquisitions.
fNIRS can be used in any population (from newborns to the elderly, both healthy or pathological)
and can be easily applied multiple times to study RSFC replicability, given its lower cost com-
pared with fMRI. Importantly, typical fNIRS systems have a sampling rate of ∼10 Hz, which
decreases the risk of aliasing between high [e.g., heart rate (∼1 Hz)] and low frequencies
(<0.1 Hz) compared with fMRI.1 There are some limitations when using fNIRS instead of
fMRI. First, with fNIRS, only cortical activity can be mapped, and no information on deeper
brain areas can be measured. Second, most fNIRS systems do not have a high enough number of
sources and detectors to cover the whole head, thus further limiting the brain areas for which
RSFC could be computed. Recent advances in hardware development, however, have demon-
strated the feasibility to reach high-density coverage of the whole cortex in the near future, thus
increasing the spatial resolution of the RSFC mapping.14,15

The standard pre-processing steps for fNIRS signals involve removing noisy channels, cor-
recting for motion artifacts and physiological noise contamination, and band-pass filtering. The
most challenging and important steps are physiological noise regression and motion correction.

Several studies have demonstrated the importance of correcting for physiological noise con-
tamination, which could bias the results.16–18 Physiological noise contamination is mostly due to
blood pressure, respiration, and heartbeat changes, as well as the strong contribution in fNIRS
signals of extra-cerebral (skin and skull) layers, which are highly vascularized. Extra-cerebral
physiological noise contribution is usually reduced by regressing, from standard channel signals,
the signals acquired from short-separation channels,19,20 which preponderantly measure the
extra-cerebral contributions. In the resting-state field, it has been shown that systemic physiology
can overestimate RSFC.21 Recently, Abdalmalak et al.22 used the regression of short-separation
channels to overcome this problem of systemic physiology, obtaining reduced inter-subject and
intra-subject variability. Lanka and colleagues23 further investigated this problem in a fully
simulated scenario by testing different analysis pipelines and evaluating their sensitivity and
specificity in estimating statistically valid connectivity matrices. Their results suggested that
incorporating short-separation channels in partial correlation models reduced spurious correla-
tions due to synchronous physiological fluctuations. Furthermore, they also demonstrated that
robust statistical methods and pre-whitening seem to be effective in mitigating motion artifacts
and autocorrelation.

Although several studies have demonstrated the importance of correcting motion artifacts in
task-based fNIRS acquisitions and provided guidelines for choosing the best motion correction
technique for the available dataset,24–28 very little has been done to tackle this problem in RSFC
studies. Resting-state acquisitions do not involve participants’ movements, as several task-based
experiments do; nevertheless, resting-state acquisitions are not immune from motion artifacts.
Motion artifacts are mainly caused by a decoupling between the skin and the optode, which can
cause a sudden change in the measured light intensity. Optode-skin decoupling can be caused by
facial movements, particularly movements involving the jaw, but also by a simple eyebrow-
raising.29 Motion artifacts can be classified into spikes, baseline shifts, and low-frequency var-
iations. Motion artifact categories differ in amplitude and frequency content of the artifact. Spikes
generally have high frequency and amplitude and are more easily detected than low-frequency
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variations. Baseline shifts cause a variation in the signal baseline and are mostly due to changes
in the detected light intensity due to the optode-skin decoupling.

To the best of our knowledge, the first and only paper trying to tackle the motion artifact
issue in resting-state fNIRS was the one published in 2015 by Selb and colleagues.30 They stud-
ied the effect of MAs on resting-state data using the interhemispheric correlation (IHC) (i.e., the
correlation coefficient between symmetrical time series of oxyhemoglobin oscillations) as a met-
ric of interest. Stroke patients and healthy adults were recruited for the study, and they were asked
to stay still for 10 min in a supine position. First, the authors computed the IHC using the whole
acquired data, which contained motion artifacts, and they found a significantly higher IHC in
healthy adults than in patients. However, the healthy group dataset had less MAs than the patient
one. Therefore, the authors increased the number of MAs in the heathy adult dataset to achieve a
similar amount of artifact in the two groups, with the aim to understand whether the presence of
MAs could have biased the comparison. MAs were extracted from the patient dataset and then
added to the healthy adult one. Comparing the patient dataset with the newly created healthy
adult dataset, no significant differences were found, revealing an important impact of MAs on
IHC computation. The authors further investigated the impact of MAs on IHC by pre-processing
the healthy adult dataset with high contamination of MAs with several pipelines, which differed
only for the motion correction step. Their results revealed that the best motion correction
approach was to discard segments of data contaminated by MAs.

A limitation of this study was that they investigated only the impact of motion artifacts on
the correlation between symmetric channels, one on the right and one on the left hemisphere.
Furthermore, short-separation channel regression was not performed, thus increasing the chance
that the data could be highly contaminated by physiological noise, which could further bias the
results.

Despite the insights of this article, in the following years, researchers publishing papers on
RSFC used several different approaches to deal with motion artifacts. Some papers followed the
suggestion of Selb and colleagues and discarded segments of signals contaminated by motion
artifacts.31,32 Several others decided to opt for a no motion correction approach.14,15,33–36 Another
subset of papers applied various motion correction techniques to reduce motion artifacts before
computing RSFC, overlooking the impact and possible bias of the correction (spline interpola-
tion technique;37–41 wavelet filtering technique42–45).

Spline interpolation is a technique widely used to correct motion artifacts in task-based
studies.46 Its great advantage is that it extracts and corrects only the segments of data identified
as MAs, leaving the remaining time series untouched. The spline interpolation technique is sim-
ple and fast; however, it requires a reliable technique to pre-identify MAs and may leave some
residual high-frequency noise after the correction. Wavelet filtering47 is another widely employed
technique for MA correction. It does not require a previous step to identify motion artifacts, and it
is ideal for removing high-frequency content; however, it is computationally expensive and
modifies the entire time series, not only the contaminated segments.

A few RSFC studies have applied the combination of spline and wavelet,22,48 under the
hypothesis that this combination should work better when several motion artifacts of different
types (e.g., spikes, baseline shifts) are present, as demonstrated in task-based activation
studies.25,49 Other researchers have employed a combination of the temporal derivative distribu-
tion repair (TDDR)50 method followed by the wavelet filtering one.51

This high variability in the choice of the motion correction step in RSFC pipelines and the
scarcity of comparison papers demonstrating the impact of motion correction techniques on the
connectivity results suggests the need for user guidelines on how to best correct motion artifacts
in resting-state data. Importantly, these guidelines are probably different from the one for task-
based data and could be modulated by the degree of motion artifact contamination in the data, as
demonstrated for task-based studies by Di Lorenzo et al.25

One important requirement of some motion correction techniques [i.e., spline interpolation
and target principal component analysis (tPCA)52] is the pre-identification of the motion artifacts
in the signals. The performance of the technique relies on the optimal identification of motion
artifacts. In the literature, the most common approach for identifying motion artifacts is the one
developed in Homer2/Homer3,53 which identifies as motion artifacts the segments of data around
time points that exhibit a signal change greater than a standard deviation or an amplitude
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threshold (see Sec. 2.2.1). The performance of this approach might depend on the degree of
motion artifact contamination in the signal. When the signal is highly contaminated, as might
be in newborn acquisition, the method might fail in accurately detecting motion artifacts.
Recently, Yang and colleagues54 proposed a new motion detection approach. Whereas
Homer computed the standard deviation threshold considering the standard deviation of the
entire signal, Yang and colleagues considered the standard deviation of the noise-free portion
of the signal only. They demonstrated that their approach outperformed the Homer one when the
dataset is highly contaminated by MAs. The comparison was performed on a newborn dataset
that contained a fixed percentage of MAs in the range of 25% to 35%. Moreover, Sherafati and
colleagues55 proposed a new artifact identification technique to deal with the challenge of
motion-induced artifacts in both task-based and RSFC high-density diffuse optical tomography
(HD-DOT): the global variance of temporal derivatives (GVTD). GVTD evaluates motion by
analyzing spatial patterns across measurement channels and demonstrates a strong correlation
with external measures of motion. It exhibits high sensitivity and specificity in detecting
instructed motion. When applied to the RSFC HD-DOT data, GVTD-based motion correction
improves spatial similarity to fMRI mapping, showing a better performance than other com-
monly used fNIRS motion correction methods, such as TDDR, wavelet filtering, and tPCA.
What is missing in the literature is a comparison of the three approaches dependent on the degree
of motion artifact contamination.

The aim of this paper is to evaluate the impact of discarding, not correcting, or correcting
motion artifacts on RSFC as a function of the degree and the type of motion artifact contami-
nation in the signals and provide guidelines to users for this important pre-processing step. We
acquired resting-state data from a population of compliant healthy adults, which resulted in a
dataset with less than 5% contamination by motion artifacts. We extracted the available motion
artifacts from this dataset, simulated types of motion artifacts not present in the dataset (e.g.,
baseline shifts), and created a Motion Artifact Database. Several new datasets with different
contaminations and typologies of motion artifacts were then created by randomly extracting
MAs from the database and adding them to the original dataset. First, we compared for each
dataset the three different motion identification approaches to evaluate their performance
as a function of the amount of motion artifact contamination. Second, we tested several
pre-processing pipelines using different approaches for motion correction (discard, no motion
correction, spline, spline Savitzy-Golay, wavelet, a combination of spline and wavelet, TDDR,
and tPCA). Differences between the functional connectivity, measured with the correlation
matrix and obtained after motion correction, and the functional connectivity considered to be
the ground truth (the discard pipeline) were estimated to evaluate the performance of each
pipeline as a function of motion artifact contamination.

2 Methods
Figure 1 summarizes the steps undertaken to create the semi-simulated scenario and to
pre-process the data with different pipelines before computing the correlation matrixes used
in the comparison.

2.1 Datasets

2.1.1 Real dataset

Thirty-five healthy adults (mean age = 32.5 years, SD = 13.7, 22 females, age range [21, 74]
years) participated in the experiment after providing written informed consent. The work was
carried out in accordance with the Code of Ethics of the World Medical Association (Declaration
of Helsinki). The study was approved by the Regional Ethics Committee of Azienda Ospedaliera
“San Martino,” Genoa, Italy (P.R. 271REG2017).

The experiment consisted of 15 min of resting state. Participants were seated in a dimly lit
room, and they were asked to keep their eyes closed and remain as still as possible for the entire
duration of the resting-state acquisition.

The fNIRS data was acquired with the NIRSport2 system (NIRSport, NIRx Medical
Technologies, Berlin, Germany) equipped with 16 sources (at 760 and 850 nm) and 16 detectors.
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Optodes were arranged in 50 standard channels with a source-detector distance of 3 cm and eight
short-separation (SS) channels with a source-detector distance of 8 mm, covering frontal, pari-
etal, premotor, motor, and sensory brain areas (see Fig. 2). The sampling frequency was set
at 8.7 Hz.

The real dataset acquired during this resting-state condition is defined in the following as the
Perc0 dataset, as for all participants, the percentage of motion artifacts in each channel was <5%
of the total acquisition time.

2.1.2 Semi-simulated datasets

To create new semi-simulated datasets with different percentages of MAs, MAs from “Perc0”
dataset were extracted, and a Motion Artifact Database was created. All steps were performed in
MATLAB (R2021b, MathWorks, Natick, Massachusetts, United States). MAs were identified by
applying the Homer3 function hmrR_MotionArtifactByChannel on changes in optical density
data. This function detects the signal exceeding a threshold in a change of amplitude

Fig. 2 Probe layout and locations of the optodes (positions in the 10–10 EEG system) and chan-
nels. Red dots represent sources, blue dots indicate detectors, and lines represent channels.

Fig. 1 Block diagram of the analysis procedure. Several correlation matrixes were computed on
different datasets and after specific pipelines.
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(AMPthresh) or/and a threshold in a change of standard deviation (STDEVthresh) within a pre-
defined time-window (tMotion) and marks as artifacts the data points around the detected motion
(± tMask). Here, we used AMPthresh = 0.5; STDEVthresh = 0.5; tMotion = 0.5; and tMask = 1.
MAs were defined and identified as artifactual parts of the signal with at least four samples of
good signal preceding and following the artifact. Each detected MA was saved in the Motion
Artifact Database after removing its mean. Furthermore, each artifact was coupled in the database
with another parameter called Alpha, which characterizes the channel from where the MA came
and keeps track of the amplitude range of the original signal. The Alpha parameter was computed
on the signal free of MAs with a sliding window approach (2 min, overlapping) and taking the
median of the amplitude of all sliding windows. The amplitude was computed as the difference
between the maximum and minimum signal values in the sliding window. Both the average-free
MA and its Alpha parameter were required to properly add scaled motion artifacts in the
semi-simulated datasets.

In the original dataset, spike-type motion artifacts were predominantly detected. As a result,
multiple datasets were generated: each contained a different percentage of exclusively spike-type
MAs (Only Spikes datasets). Because another type of motion artifact common in fNIRS
acquisition and hard to deal with is baseline shifts, additional datasets were created to encompass
both simulated baseline shifts and real spikes MAs (BS + Spike datasets). This approach aimed to
provide insights into the optimal pipeline, considering not only the quantity but also the specific
types of MAs present.

Eight semi-simulated Only Spikes datasets were created adding MAs from the Motion
Artifact Database to changes in optical density data of the Perc0 dataset. Datasets differed for
the percentage of added MAs over the total duration (10%, 15%, 20%, or 25% of the total dura-
tion time) and for the position of MAs (in random R or fixed F positions among channels of the
same participant): Perc10R, Perc15R, Perc20R, Perc25R, Perc10F, Perc15F, Perc20F, and
Perc25F. For each channel of the Perc0 dataset, the Alpha parameter was computed as previ-
ously done when creating the Motion Artifact Database. The ratio between the Alpha of the
selected channel and the Alpha of the database channel resulted in the scale parameter.
Before adding each MA in the channel, the artifact was multiplied by the scale parameter.
For each channel, MAs were randomly extracted from the Motion Artifact Database until the
imposed percentage of MAs was achieved. Then, the extracted MAs were either inserted in ran-
domly selected frames in each channel (random dataset, see Fig. 3) or they were randomly
inserted only in the first channel of each participant, whereas in all other channels of that par-
ticipant, MAs were inserted in the same temporal frames of the first channel, to mimic actual
movement artifacts (fixed dataset, see Fig. S1 in the Supplementary Material). In both dataset
types (random and fixed), possible overlapping of MAs was prevented.

Fig. 3 Representative channel for each dataset for the dataset built adding MAs randomly in each
channel (random dataset). Perc0 is displayed at the top of the figure, followed by the semi-
simulated datasets at 10%, 15%, 20%, and 25%, for both the Only Spikes and BS+Spikes
datasets.
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An additional eight semi-simulated datasets were generated by introducing both baseline
shifts and spike motion artifacts (MAs) into the signal. Specifically, baseline shifts were simu-
lated by applying modifications to the optical intensity data of the Perc0 dataset, and spikes
extracted from the Motion Artifact Database were incorporated into changes in optical density
data obtained after introducing baseline shifts. Similar to the Only Spikes datasets, the BS
+Spikes datasets varied based on the percentage of added MAs over the total duration and the
position of MAs: Perc10R, Perc15R, Perc20R, Perc25R, Perc10F, Perc15F, Perc20F, and
Perc25F. First, baseline shifts were introduced in the intensity data. The proportion of added
baseline shifts ranged from 0% to 10% of the total MA percentage within the dataset.
Baseline shifts led to alterations in the signal baseline, achieved by adding or subtracting a con-
stant value. This manipulation involved modifying the baseline signal by increasing or decreas-
ing it by 5% to 15% (random selection) of the original baseline. The transition of the signal was
gradual rather than instantaneous, spanning a few seconds (from 0.6 to 1.7 s, random selection)
corresponding to the length of the motion artifact. The sum of all BS lengths was adjusted to
account for 0% to 10% of the total artifacts in that dataset. This length value was saved to deter-
mine the subsequent requirement of spike-type artifacts. Notably, in each dataset, the sum of the
two types of MAs (BS and Spikes) equaled the total specified percentage. When introducing BS
MAs, two essential constraints were observed: optical intensity data could not become negative
and the overall signal change should be smaller than 0.4 (intensity value). These constraints were
essential to accurately replicating real-world conditions. Following the incorporation of baseline
shift artifacts, optical intensity values were converted into optical density, and the same steps
elucidated in the Only Spikes datasets were executed to introduce spike artifacts to this dataset
(see Fig. 3).

2.2 Motion Identification Techniques
In the semi-simulated datasets, the position of MAs is known, providing a ground truth to evalu-
ate the performance of motion identification techniques, which is essential for motion correction
techniques relying on previous MA identification. We compared the performance of three differ-
ent approaches: (a) the standard and widely employed identification approach implemented in
Homer2 and Homer3,53 (b) a newly proposed approach,54 and (c) the GVTD approach.55

2.2.1 Fixed standard deviation identification approach

The motion artifact detection technique implemented in Homer2/3 identifies as a motion artifact
a segment of data around a time point (tMask) that exhibits a signal change greater than a stan-
dard deviation threshold (STDthresh times the standard deviation of the entire signal) or greater
than an amplitude threshold (AMPthresh) within a time window of length tMotion. These thresh-
olds are subjective and dataset-dependent and are usually chosen with a trial-and-error approach
based on visual inspection. After visually inspecting our data using varying STDthresh
(STDthresh = 7 to 15), we selected STDthresh = 12 as the best compromise for this dataset, with
AMPthresh = 0.5, tMotion = 0.5, and tMask = 1. We used STDthresh values within the range of 7
to 15 because these are the values that are predominantly and most frequently used in the
literature.25,30,54 Starting from this range, we identified the best one for our data, as standard
practice in the fNIRS field.

2.2.2 Adaptable standard deviation identification approach

The approach developed by Yang and colleagues54 is based on the Homer2/3 approach, but the
computation of the threshold on the standard deviation is different. This method aims to slightly
overcome the subjectivity of the Homer2/3 approach and to overcome its poor performance when
the dataset is severely contaminated by motion artifacts. In Yang’s approach, the AMPthresh is
computed and used as in Homer2/3, whereas the threshold for the standard deviation is computed
only on the noise-free physiology of the signal. The entire signal is divided into small segments
of 4 s as suggested in Yang’s paper.54 Hypothetically, segments could include both noiseless data
and data with artifacts. For each segment, the standard deviation is computed and then all
obtained values are sorted (from the smallest to the highest). Under the hypothesis that motion
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artifacts should induce higher standard deviations, to compute the actual standard deviation of the
motion-free segments, only the standard deviations of the first 30% of segments (the ones with
the smallest standard deviations) are averaged to obtain a measure of the standard deviation of the
signal.54 Therefore, the standard deviation was calculated only from the physiological oscilla-
tions of motion-free segments. The new standard deviation value was multiplied by a fixed
STDthresh = 7. AMPthresh and tMotion were set as for the Homer2/3 approach, and tMask
was set to 0.5. Figure S2 in the Supplementary Material reports an example of MA identification
using the adaptable standard deviation identification approach. The code is available on GitHub
(https://github.com/sbrigadoi/motionDetection).

2.2.3 Global variance of temporal derivatives approach

The GVTD55 serves as an indicator of the overall instantaneous alterations within optical tem-
poral profiles. At each time point, GVTD is determined by calculating the root mean square
(RMS) of the temporal derivatives across a collection of measurements (i.e., channels) or voxels.
A straightforward analytical formula for computing GVTD is

EQ-TARGET;temp:intralink-;sec2.2.3;114;543g ¼

2
6664

g1
:
:
gM

3
7775; gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðyji − yji−1Þ2
vuut ; gi ∈ R > 0:

In the equation, g represents the GVTD vector, where yji ∈ R denotes either the change in
optical density or the change in molar concentrations of HbO or HbR at channel j. The index i
refers to the time points, N represents the total number of channels, and M indicates the number
of time points. To censor data using the GVTD time-course, good data were separated from
motion artifacts using an outlier detection strategy. A noise threshold was computed considering
both the GVTD distribution mode and nStd times the standard deviation on the left side of the
mode. The right tail of the GVTD distribution corresponds to motion artifacts. The value of nStd
controls the trade-off between the exclusion of artifacts versus data loss. Here, we set the nStd
value to 3 as suggested by Sherafati and colleagues 55

2.2.4 Evaluation of performance for motion identification techniques

To evaluate and compare the performance of the three identification techniques, two metrics were
employed. First, the percentage of MAs detected in each channel by the three techniques was
compared with the percentage of MAs that had been added to that channel (ground truth). The
percentage of MAs detected was computed as the percent ratio of the number of frames identified
as MAs to the total number of frames. This metric, however, does not provide any information on
the accuracy of the detection, i.e., whether the detected MAs are exactly in the temporal positions
where they had been added. The second metric employed yields this information by performing a
sensitivity analysis. Comparing ground truth MA positions and identified MA positions, it was
possible to classify temporal frames as MAs correctly identified (true positive - TP) and no-MAs
correctly not identified (true negative - TN). The accuracy metric is computed as

EQ-TARGET;temp:intralink-;e001;114;210Accuracy ð%Þ ¼ TPþTN

Ntot
x 100%; (1)

where Ntot corresponds to the total number of frames. The higher the accuracy is, the better the
performance is.

2.3 Motion Correction Techniques
The performance of spline interpolation, spline and Savitzky-Golay filtering, wavelet filtering,
the combination of spline and wavelet, TDDR, and tPCA was evaluated on real and semi-
simulated datasets. Wavelet filtering and the combination of spline interpolation and wavelet
filtering were tested using different iqr parameters to evaluate its impact on the connectivity
results. Two other approaches were used in the comparison: no motion correction
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(not performing any correction of the data) and discard, based on the removal of the segments of
data identified as motion artifacts from the signal. Two distinct methods for discarding artifacts
were evaluated. The first approach, commonly encountered in existing literature,31,56,57 involved
identifying motion artifacts and segregating motion-free segments. Subsequently, motion-free
segments exceeding a duration of 20 s were individually analyzed and combined at the end
of the pre-processing, before computing the correlation (discard-before approach). By contrast,
the second method involved identifying motion artifacts but analyzing the whole signal, leaving
the artifacts inside. At the end of the pre-processing, before computing the correlation matrix,
frames recognized as artifacts were removed (discard-after approach).

Given the best performance of the adaptable standard deviation identification approach
(see Sec. 3.1), this latter approach was used before all motion correction techniques relying
on previous MA identification.

2.3.1 Spline interpolation

The spline interpolation method was proposed by Scholkmann et al.46 This method models
motion artifacts via cubic spline interpolation; the resulting spline interpolation is then subtracted
from the original signal. Because this subtraction creates differences in the signal levels, every
MA segment should be shifted to ensure a continuous signal. The spline interpolation method
corrects only previously detected motion artifacts and therefore relies on motion identification
techniques. The degree of the spline function is determined by the spline interpolation parameter
(p-Spline). This parameter is designed so that, when it is equal to zero, the motion artifact is
represented with a least-squares straight-line fit. On the other hand, when it is equal to one, the
motion artifact is modeled using a natural cubic spline interpolation. Therefore, utilizing motion
correction with p_Spline = 0 only removes the straight-line component of the artifact, whereas a
model with p_Spline = 1 closely approximates the artifact, resulting in a nearly constant residual
signal after subtraction. Here, the parameter was set to 0.99 as in the previous work by
Scholkmann et al.46

2.3.2 Spline interpolation and Savitzky-Golay filtering

Jahani et al.58 introduced a novel approach that combines spline interpolation with Savitzky-
Golay (SG) filtering to address various types of motion artifacts, with the idea of correcting the
residual high-frequency noise that is usually left after the spline interpolation approach. Spline
interpolation is effective for correcting baseline shifts, whereas SG filtering is suitable for cor-
recting high-frequency spikes. The authors recommended using this combined approach when
the signal-to-noise ratio (SNR) of the data is greater than 3. However, they suggested employing
only the SG filtering part of the algorithm when the SNR < 3. The algorithm works first by
correcting baseline shifts with the spline interpolation (see Sec. 2.3.1) and then smoothing out
the remaining spikes using the Savitzky-Golay filter, which is a digital filter designed for smooth-
ing data. This filter replaces each data point in the signal series with a new value determined by
fitting a cubic curve to a subset of neighboring data points. The size of this subset is determined
by the parameter FrameSize_sec. Here, the parameter was set to 10 s.

2.3.3 Wavelet filtering

The wavelet-based motion artifact removal method was proposed by Molavi and Dumont.47 It
decomposes the time-course of the signal into the wavelet domain using the general discrete
wavelet transformation. The model assumes that the measured signal is a linear combination
of the physiological signal of interest and the artifacts, the wavelet coefficients have a
Gaussian probability distribution, and the hemodynamic response is smoother and slower than
motion artifacts. Thus, coefficients accounting for the evoked response are centered around zero,
whereas the outliers of the Gaussian distribution are the coefficients accounting for the motion
artifacts. Therefore, to remove motion artifacts in the temporal time series, outlying coefficients
are set to zero before reconstructing the signal with the inverse discrete wavelet transform. The
threshold to define outliers is computed by multiplying the inter-quartile range by a tuning
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parameter iqr and adding/subtracting the obtained value to the third/first quartile. In this study,
iqr was set to either 1.5, 1.2, 0.8, or 0.5, for a total of four wavelet approaches (wavelet 15,
wavelet 12, wavelet 08, and wavelet 05). Concerning the choice of the iqr range tested, an iqr
of 1.5 is the default value used in Homer, whereas 0.8 and 0.5 are values employed in various
methodological works found in the literature.25,30 Finally, we introduced 1.2 to fill the gap
between 0.8 and 1.5. The higher the iqr is, the fewer coefficients are deleted.

2.3.4 Temporal derivative distribution repair

The TDDR approach works on the derivative of activity (fluctuations) assuming that, if motion
artifacts are absent, fluctuations are normally distributed; most fluctuations are free of MAs, and
MA fluctuations have a greater magnitude than non-motion fluctuation. This means that the MA
contribution is large and infrequent. To delete the contribution of MA fluctuations, the TDDR
method reduces the weights of abnormally large fluctuations through a robust regression. This
method is advantageous because it does not require user-supplied parameters and performs well
both in removing spike and baseline shift artifacts.

2.3.5 Targeted principle component analysis

The targeted principal component analysis (tPCA) method was proposed by Yücel et al.52 tPCA
applies the PCA techniques only on the frames identified as motion artifacts, therefore relying on
an MA identification technique. The spline interpolation technique works on a channel-by-
channel basis, whereas the tPCA technique is a multi-channel approach. Therefore, a time point
is identified as MA for all channels if it is identified as MA in at least one channel. All segments
identified as MAs from all channels are merged in a matrix and submitted to PCA. The principal
components are then ranked in decreasing order of explained percent variance. The first N com-
ponents that allow for removing up to 97% of the variance in the data are removed before reas-
sembling the data. These corrected segments are then inserted back into the original time-series
data with the same shifting procedure of the spline interpolation method. This procedure is
repeated multiple times, re-identifying any residual motion artifacts, and stopped either when
no more motion artifacts are identified or when reaching the maximum number of allowed
iterations (maxIter = 5).

2.4 Data Pre-processing and Analysis
For each participant, the fNIRS signals were pre-processed with fifteen different pipelines
(Fig. 4), which differed only in how they dealt with motion artifacts. In all pipelines, channels
with a signal-to-noise ratio lower than two (SNR < 2) or with a very low optical intensity were
discarded. The remaining channels were converted into optical density changes. Afterward, each
pipeline applied a different motion correction approach. The signal was band-pass filtered (0.009
to 0.08 Hz) and then converted into concentration changes using a subject-specific differential
path-length factor.59 Physiological noise regression was performed to regress out the most cor-
related SS channel from each standard channel. At the end of each processing pipeline, the
Pearson correlation between each couple of standard channels was computed for each subject,
thus yielding the individual correlation matrices (50 × 50 matrix). The calculation of the corre-
lation matrix was performed using only 14 out of 15 min of acquisition to use only the stable
signal (the first minute was removed). The group correlation matrix was computed by averaging
the individual correlation matrices.

All pipelines were applied to the Perc0 dataset. no correction, discard-before, discard-after,
spline, SplineSG, wavelet, spline + wavelet, and TDDR pipelines were applied to the Perc10R,
Perc15R, Perc20R, and Perc25R datasets. The discard-before, discard-after, and tPCA pipelines
were applied to the Perc10F, Perc15F, Perc20F, and Perc25F datasets. tPCAwas applied only to
the fixed dataset because its main assumption is that MAs should be coherent across channels,
and this hypothesis was not verified on the random dataset. The discard approaches were applied
also to the fixed dataset because we expected its performance to be unreliable on the random
dataset due to the removal of too many segments of data.
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The discard-before pipeline applied to the Perc0 dataset was considered to be the ground
truth (GT), whereas all other combinations of pipelines and datasets previously described were
considered to be testing pipelines.

2.5 Metrics of Comparison
To compare the different pipelines, three metrics were assessed: the absolute error, the slope
coefficient, and the similarity of group correlation matrices. All of the metrics were computed
on the group correlation matrices. Each group correlation matrix was symmetrical, and each
matrix cell contained the Pearson correlation value (r-value) of the two channels associated with
that cell.

The individual absolute error for each couple of channels was computed as absðCGT
x;y − Cx;yÞ,

where CGT
x;y is the Pearson correlation coefficient between channels x and y in the ground truth

dataset and Cx;y is the Pearson correlation coefficient between the same channels for the tested
dataset and pipeline. The overall absolute error was obtained by taking the median of the
absolute errors of all couples of channels. Absolute errors were submitted to a repeated-measures
ANOVA with the method (15 levels: discard-before, discard-after, no correction, spline,
SplineSG, Wavelet15, Wavelet12, Wavelet08, Wavelet05, SplineWavelet15, SplineWavelet12,
SplineWavelet08, SplineWavelet05, TDDR, and tPCA) as within the channel pair factor.

The slope coefficient was computed for each comparison of GT versus tested pipeline/data-
set by performing a linear regression between the r-values of the GTand the r-values of the tested
pipeline. A slope coefficient closer to one means a better match between matrices. To test the

Fig. 4 Signal processing steps for all pipelines. Each pipeline is represented by colored arrows:
orange for discard-before, pink for discard-after, red for no motion correction, yellow for spline, light
blue for spline SG, green for wavelet, blue for spline + wavelet, brown for TDDR, and violet for
tPCA.
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linearity between r-values, a Pearson correlation was performed. The higher the coefficient is, the
more linear the relation is.

The similarity of group correlation matrices was computed by performing a non-parametric
test (Wilcoxon rank-sum test, p < 0.05) to evaluate statistical differences between the correlation
matrices of the ground truth and the tested pipeline/dataset.

3 Results

3.1 Performance of Motion Artifact Identification Techniques
The average percentage of detected versus added MAs for the approach with adaptable standard
deviation revealed the best performance, identifying a percentage of MAs comparable to the
percentage of added MAs (10.8%, 15.8%, 20.7%, and 24.9% for Perc10, Perc15, Perc20, and
Perc25, respectively), whereas the other two approaches failed in detecting the correct amount of
MAs. In the fixed standard deviation approach, despite an increase in MA percentage in the
different datasets, the percentage of detected MAs remained almost unchanged (7.8%, 8.3%,
8.2%, and 7.7% for Perc10, Perc15, Perc20, and Perc25, respectively), whereas for the GVTD
approach, the estimation of MAs was consistently underestimated (4.2%, 4.9%, 5.6%, and 6.3%
for Perc10, Perc15, Perc20, and Perc25, respectively). Figure 5 shows the accuracy of the three
different motion detection approaches. The GVTD technique had the worst performance on all
datasets (max value: 71.8%). For the other two approaches, increasing the percentage of added
motion artifacts decreased the accuracy, with a steeper decrease for the detection technique with
fixed standard deviation compared with the adaptable standard deviation one. Overall, accuracy
values were higher for the adaptable standard deviation approach for all percentages of added
MAs.

3.2 Performance of Motion Correction Techniques

3.2.1 Perc0 dataset

For the Perc0 dataset, the smallest median absolute error was obtained with the spline pipeline
(0.0144), followed by tPCA (0.0147), discard-after (0.0157), wavelet with iqr ¼ 1.5, 1.2, and
0.8 (0.0167, 0.0161, and 0.0166, respectively) (Fig. 6). For the combination of spline and wavelet
(SW), decreasing the iqr parameter increased the absolute error. The worst performance was
scored by the combination of SW with iqr ¼ 0.5 (0.023). Statistically, a significant main effect
was observed for the method factor. Post hoc analysis revealed that the combination of SW with
iqr ¼ 0.5 differed from all other pipelines, revealing the highest absolute error. There was no
statistical difference among the combination of SW with iqr ¼ 0.8, SplineSG, and wavelet with
iqr ¼ 0.5. Finally, discard-after, no correction, spline, wavelet with iqr ¼ 1.5, 1.2, and 0.8, the
combination of SW with iqr ¼ 1.5 and 1.2, TDDR and tPCA were found not to be statistically
different.

Fig. 5 Accuracy percentage values for each detection approach increasing the level of motion
artifact contamination. (a) Fixed standard deviation approach. (b) Adaptable standard deviation
approach. (c) GVTD.
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All motion correction approaches obtained a high slope coefficient (min slope coefficient =
0.99), demonstrating good agreement between the Pearson correlation coefficients of the ground
truth and the ones obtained after correction. Furthermore, the linearity was achieved by all
techniques (min value = 0.98). The performance of the different pipelines for Perc0 is shown
in Fig. S3 in the Supplementary Material.

Statistically comparing the similarity of the group correlation matrices resulted in two out of
thirteen testing pipelines with a correlation matrix statistically different from the ground truth:
the combination of SW with iqr ¼ 0.5 (p ¼ 0.003) and TDDR (p ¼ 0.0249).

3.2.2 Only spike datasets

When applied to the random dataset, the discard pipelines removed too many temporal frames, as
expected, and did not allow for further analysis. Therefore, the discard pipelines were evaluated
only on the fixed dataset.

For all semi-simulated datasets, the smallest median absolute error was obtained with the
discard-after (Perc10F, 0.0146, Perc15F, 0.0148, Perc20F, 0.0144, and Perc25F, 0.0145) and
wavelet with iqr ¼ 1.5 (Perc10R, 0.0145, Perc15R, 0.0158, Perc20R, 0.0202, and Perc25R,
0.0286) pipelines. The wavelet pipeline increased the absolute error as the degree of MA con-
tamination increased and with the decrease of the iqr parameter, but the highest absolute error
remained less than 0.039 (see Fig. 6). The no correction performance was in line with the wavelet
performance, whereas discard-before (Perc10F, 0.047, Perc15F, 0.047, Perc20F, 0.087,
Perc25F, 0.072), SplineSG (Perc10F, 0.050, Perc15F, 0.067, Perc20F, 0.083, Perc25F,
0.091), and tPCA (Perc10F, 0.036, Perc15F, 0.056, Perc20F, 0.084, Perc25F, 0.107) increased
the error. For the TDDR, the spline and the combination of SW the median absolute error
increased dramatically. The worst performance was scored by the combination of SW with iqr ¼
0.5 (PercR10, 0.178; PercR15, 0.206; PercR20, 0.248; PercR25, 0.261). For all datasets,
ANOVA showed a significant main effect. A similar pattern of results was observed across all
datasets, allowing us to identify four distinct groups of data processing pipelines: discard-after,
no correction, and wavelet differed from all other pipelines; tPCA, SplineSG, and discard-before
differed from all other pipelines; TDDR differed from all other pipelines; and spline and the
combination of SW differed from all other pipelines. Within groups, in the Perc10 and
Perc15 datasets, post hoc analysis showed no statistically significant differences among the
discard-after, no correction, and wavelet pipelines. However, in the Perc20 dataset, discard-after
statistically differed from wavelet with an iqr of 0.5, and in the Perc25 dataset, discard-after
statistically differed from no correction and wavelet with iqr values of 1.2, 0.8, and
0.5. Additionally, tPCA and discard-before showed differences from all other methods in the

Fig. 6 Boxplots of the individual absolute error for each dataset and pipeline. X -labels are speci-
fied in the legend box. For the techniques tested with different iqr values (wavelet and the combi-
nation of spline and wavelet), only the one with the best-performing iqr is reported.
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Perc15, Perc20, and Perc25 datasets and from SplineSG in all datasets. Finally, in the Perc10
dataset, spline statistically differed from the combination of SW with iqr values of 0.8 and 0.5. In
the Perc15 and Perc20 datasets, spline statistically differed only from the combination of SW
with an iqr of 0.5. However, in the Perc25 dataset, spline did not exhibit any significant
differences from the combination of SW.

For the Perc10 dataset, the discard-after, no correction, and wavelet pipelines obtained
a high slope coefficient (min slope coefficient = 1.04, min linearity coefficient = 0.98) (Fig.
S4 in the Supplementary Material). The best-performing pipeline was the wavelet with iqr ¼
1.5 pipeline, which achieved a perfect matching with the ground truth (slope coefficient = 1).
Discard-before, SplineSG, and tPCA obtained a good slope coefficient (0.87, 0.82, and 0.73,
respectively), TDDR was less performant (0.46), and spline and the combination of SWobtained
the worst slope coefficients (min slope coefficient = 0.33; max slope coefficient = 0.37)
(see Fig. S12 in the Supplementary Material).

For Perc15, Perc20, and Perc25, the main pattern remained the same as the Perc10 dataset:
the best performance was achieved by discard-after pipeline followed by wavelet and no cor-
rection pipelines; a good performance was also obtained by the discard-before pipeline followed
by the SplineSG pipeline, which had a fair slope coefficient. The tPCA pipeline exhibited a
reasonable slope coefficient only for the Perc15 dataset, whereas the worst performance was
obtained by the combination of SW pipeline with iqr ¼ 0.5 followed by the combination of
SW with higher iqr, spline, and TDDR pipelines (see Fig. 6, see Figs. S5–S7 and S13–S15
in the Supplementary Material).

The linearity coefficient remained high for all technique datasets except for Perc25, which
lost linearity for spline and the combination of SW pipeline (min linearity coefficient value:
Perc10, 0.84; Perc15, 0.82; Perc20, 0.81; Perc25, 0.39). Overall, although the slope coefficient
decreased, the main pattern remained similar. However, when the slope coefficient decreased
under 0.3, the main pattern was lost. It should be noted that we reported only positive r-values
because all negative values were approximately equal to zero. Looking at the group correlation
matrices obtained from the fifteen pipelines applied to the nine different datasets, less than
0.001% of the r-values had negative values, and none of them were lower than –0.05.

In the Perc10 dataset, nine out of fifteen testing pipelines showed a statistical difference
from the ground truth: discard-before (p < 0.001), spline (p < 0.001), SplineSG (p < 0.001),
wavelet with iqr ¼ 0.5 (p ¼ 0.013), the combination of SW with iqr ¼ 1.5, 1.2, 0.8 and
0.5 (p < 0.001), and TDDR (p < 0.001). The correlation matrix obtained after applying the other
pipelines did not statistically differ from the ground truth correlation matrix. In the Perc15 data-
set, twelve out of fifteen testing pipelines showed a statistical difference from the ground truth:
discard-before (p < 0.001); spline (p < 0.001); SplineSG (p < 0.001); wavelet with iqr ¼ 0.8

and 0.5 (p ¼ 0.007 and p < 0.001); the combination of SW with iqr ¼ 1.5, 1.2, 0.8, and 0.5
(p < 0.001); TDDR (p < 0.001); and tPCA (p < 0.001). The correlation matrix obtained after
applying the other pipelines did not statistically differ from the ground truth correlation matrix.
Finally, in the Perc20 and Perc25 datasets, all pipelines except for discard-after differed from the
ground truth (p < 0.01).

3.2.3 BS+Spikes datasets

For all semi-simulated datasets, the smallest median absolute error was obtained with the discard-
before (Perc10F, 0.032, Perc15F, 0.053, Perc20F, 0.046, and Perc25F, 0.054) pipeline followed
by tPCA (Perc10F, 0.046, Perc15F, 0.084, Perc20F, 0.089, and Perc25F, 0.108) and discard-
after (Perc10F, 0.048, Perc15F, 0.093, Perc20F, 0.099 and Perc25F, 0.132). The wavelet pipe-
line increased the absolute error as the degree of MA contamination increased and with the
decrease of the iqr parameter (min value: 0.105; max value: 0.203). No correction and
TDDR performance was in line with wavelet with iqr ¼ 0.8 and 0.5, whereas spline and the
combination of SW increased the median absolute error. The worst performance was scored
by the combination of SW with iqr ¼ 0.5 (PercR10, 0.165; PercR15, 0.208; PercR20,
0.239; PercR25, 0.258) (see Fig. 6). For all datasets, ANOVA showed a significant main effect
of the method factor. Post hoc analysis revealed that discard-after, discard-before, and tPCA
statistically differed from all other pipelines in each dataset. Furthermore, discard-before
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significantly differed from tPCA in all datasets and from discard-after in the Perc15, Perc20, and
Perc25 datasets, whereas discard-after and tPCA did not differ in any dataset. All statistical
results are reported in Supplementary Material (see Table S1 in the Supplementary Material).

For all datasets, the highest slope coefficient was obtained by the discard-before pipeline
(Perc10, 0.86; Perc15, 0.77; Perc20, 0.81; Perc25, 0.75). Discard-after and tPCA obtained a fair
slope coefficient. Spline, SplineSG, TDDR, Wavelet, and the combination of SW decreased the
slope coefficient, and the combination of SW with iqr ¼ 0.5 obtained the worst slope coeffi-
cients (PercR10: 0.30; PercR15, 0.22; PercR20, 0.14; PercR25, 0.10) (see Figs. S8–S15 in the
Supplementary Material).

In all datasets, all testing pipelines showed a statistical difference from the ground
truth (p < 0.001).

Figure 7 provides a summary of both the absolute error and the slope coefficient for the Only
Spikes and BS+Spikes datasets.

Optical Density signals before and after different motion correction techniques are shown in
Supplementary Material (see Fig. S16 in the Supplementary Material).

4 Discussion
Several papers have been published in the past years comparing motion correction techniques on
task-based data, but little is known about their performance on resting-state data. In this work, we
pursued what could be the best approach to clean resting-state data from motion artifacts to
provide guidelines for users depending on the degree and typology of motion artifact contami-
nation of their data. We found that the optimal strategy for addressing motion artifacts (MAs) in
resting-state data is contingent upon the specific nature of the artifacts present in the dataset. As a
general rule, the most effective solution entailed the removal of frames affected by motion arti-
facts. Additionally, when the dataset predominantly contained spike-type artifacts, if discarding
segments of artifacts would not be a suitable method for the users’ aim (e.g., too short acquisition
or dynamic functional connectivity analysis), the preferred correction method resulted in wavelet
filtering with a suitable iqr. Instead, in cases in which both spike-type and baseline shift-type
MAs were prevalent, the most suitable alternative to the discard approach was tPCA. These

Fig. 7 Summary of the absolute errors (at the top) and the slope coefficients (at the bottom) as a
function of the percentage of motion artifacts is presented for both the Only Spikes dataset (on the
left) and the BS+Spikes dataset (on the right).
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findings are not in line with the guidelines suggested for task-based data, thus enhancing the
importance of treating these two data types differently.

To provide guidelines as a function of the degree of motion artifact contamination, in addi-
tion to the real dataset, four other different datasets were created with a semi-simulated process:
the random and the fixed datasets for the Only Spikes and BS+Spikes datasets. The spline and
wavelet techniques work on a single-channel basis (meaning that artifacts could be temporally
independent in each channel), whereas tPCA relies on the simultaneity of MAs in most of the
channels. The fixed dataset was created to provide tPCAwith a sound framework to evaluate its
performance and to properly evaluate the discard pipelines, for in the random dataset, too many
frames had to be removed as the degree of contamination increased (being the artifacts tempo-
rally independent). Overall, an advantage of all datasets was that most of the introduced MAs
were real and not modeled. We created both the Only Spikes and the BS+Spikes datasets to
provide a better understanding of how to deal with different types of motion artifacts.

In the semi-simulated datasets, the amount and location of artifacts are known. Thus, we
were able to test the performance of three MA identification techniques. Optimal MA identi-
fication is essential because some motion correction techniques are applied only to the frames
identified as motion artifacts. If the motion artifact is not correctly identified, then the perfor-
mance of that motion correction technique could be biased. To put forth a fair comparison
between different methods, a reliable identification technique was required. Yang et al. intro-
duced a novel motion identification technique that is suitable for datasets highly contaminated
by motion artifacts. The percentage of MAs in their dataset was around 25% to 35%. Yang and
colleagues demonstrated a higher detection efficiency with an adaptable standard deviation
compared to the standard Homer approach, which has a fixed standard deviation. Sherafati
et al.55 proposed a new motion detection method for multi-channel optical imaging systems that
leverages spatial patterns across measurement channels. Here, we compared the performance of
the three motion detection techniques on datasets with different percentages of MAs (10%, 15%,
20%, and 25%). Results showed that the percentage of added MAs and MAs detected in each
channel by the fixed standard deviation technique was not comparable in three out of four per-
centage conditions. Regardless of the added percentage, the fixed standard deviation approach
always detected a percentage of around 10%. The adaptable standard deviation approach,
instead, always approached the correct inserted percentage regardless of the contamination
degree. The GVTD approach failed in detecting MAs in all datasets, always identifying an
MA percentage of less than 10%. It is worth emphasizing that the performance of the
GVTD approach is likely underestimated, given that the dataset, with artifacts inserted in random
positions within each channel, is not ideal for the GVTD approach.

Moreover, the accuracy value suggested a better performance for the adaptable than the fixed
standard deviation and GVTD approaches. Yang and colleagues tested their approach on infant
datasets that are heavily contaminated by MAs. In our work, we ranged from 10% to 25% of
contamination, under the hypothesis that the number of motion artifacts is expected to be smaller
if data come from an adult population. Our comparison demonstrated that the adaptable standard
deviation approach is suitable and ideal with datasets with different contamination of MAs. The
innovative approach avoids the computation of a biased standard deviation, which is essential for
motion artifact identification. When the number of artifacts in the signal increases, the standard
deviation computed over the entire signal (fixed standard deviation approach) moves further
away from the true value. Instead, extracting the least noisy frames from each signal time window
leads to calculating the standard deviation only on the part of the signal free of motion artifacts,
approaching the true standard deviation of the signal. Because motion correction functions,
which require a previous motion identification step, are highly dependent on the motion
identification performance, an increasingly precise technique is required. Considering our
results, which confirm Yang’s results, the actual standard deviation threshold implemented in
Homer2/3 should be updated to make it adaptable.

The main aim of this paper was to find the best solutions to pre-process resting-state fNIRS
data as a function of the degree and typology of MA contamination. To achieve this aim, three
different metrics were evaluated: the absolute error (the lower the value is, the higher the match
between r-values of GT and the tested pipeline is), the slope coefficient (the higher the value is,
the better the performance is), and the similarity coefficient, a statistical parameter.
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The discard-before approach applied to the Perc0 dataset was used as the ground truth. In the
Only Spikes datasets, the discard-after approach resulted in the best solution with the lowest
absolute error, the highest slope coefficient, and no statistical difference from the GT. For the
BS+Spikes datasets, instead, the discard-before approach proved to be the most effective, show-
casing the lowest absolute error and the highest slope coefficient. It is worth noting that, in this
work, the highest percentage of MAs in the dataset was 25% and the acquisition lasted 15 min.
Thus, removing 25% of the signal still leaves a reasonable number of frames (about 10 min),
which has been shown to be sufficient for a reliable correlation matrix computation. In a study by
Wang et al.,60 they employed graph theory metrics to determine that achieving accurate and stable
functional connectivity (FC) required a minimum fNIRS imaging duration of 7.0 min at high
network thresholds, whereas at low network thresholds, the necessary scanning time was reduced
to a minimum of 2.5 min. Because the minimum duration for valid resting-state parameters is
around 5 min, the discard method could be valid when the removal of artifactual frames still
leaves a trace of at least 5 min.61 These results are in line with the results by Selb and col-
leagues,30 which suggested the discard approach as the best approach to deal with motion arti-
facts in IHC analysis. Although the discard method is suitable for studying functional
connectivity (if enough data are kept after the discard approach), it is not ideal when the aim
is to study dynamic functional connectivity. The discard approach is not a valid method because
removing frames, independently in each channel, creates temporal holes, generating discontinu-
ities in the signal.

In this situation, in the Spike Only dataset, applying motion correction with wavelet with
high iqr (1.2 to 1.5) could be a good alternative. Wavelet maintains all temporal frames, and the
error achieved after applying wavelet in our dataset was the lowest among the motion correction
pipelines. The wavelet method is applied to the entire time series; therefore, the choice of the iqr
parameter has a significant impact on the results. If the iqr is too low, the function may delete
wavelet detail coefficients associated with lower frequency content, which might be essential
components for the computation of the correlation matrix. These results highlight the importance
of reporting all parameters employed in the analysis because the same procedure with different
parameters can yield very different results.

Surprisingly, the no correction pipeline yielded a good performance. The band-pass filter
was applied in the [0.008 to 0.09] Hz range, which is lower than the typical range used in task-
based studies ([0.01 to 1.5] Hz). Most motion artifacts have a high-frequency content, and there-
fore, their contribution to the data can likely be completely removed by the filter itself. This is not
occurring in task-based studies because the higher frequency range of the filter is not enough for
their removal. Another reason that the no correction pipeline performance was good could be due
to the presence of short separation channels in our study. Regressing short separation channels,
where motion artifacts were present as well, could have actually not only reduced physiological
oscillations but also inherently corrected the motion artifacts. However, we deem this second
hypothesis less likely because the no correction pipeline was tested on the random dataset, for
which motion artifacts were not temporally correlated among channels. In most fNIRS systems,
the number of available SS channels is limited; therefore, it is highly likely that motion artifacts
present in standard channels might not be present in SS channels, above all when these are far
away from each other, and vice versa. In novel high-density systems that encompass several SS
channels widely spread over the head, it is highly likely instead that SS channels and standard
channels share the same motion artifacts, thus making it possible to use the no correction
approach with SS regression as a likely valid solution for motion correction.

In the BS+Spikes dataset, when the discard-before approach is not suitable, the best alter-
native is the tPCA approach. The discard-after approach is as good as the tPCA one, but it does
not allow for the study of dynamic functional connectivity. It is noteworthy that the tPCA method
exhibits a nearly identical behavior across the two distinct dataset types (with and without base-
line shift artifacts). However, in the case of the Only Spikes datasets, other motion correction
approaches performed better than tPCA, which is therefore not considered the ideal approach.
Generally speaking, baseline shift artifacts seem therefore to be more challenging to correct, with
results that diverge further from the ground truth independently of the applied technique. Their
presence, therefore, poses increased challenges for achieving robust signal decontamination.
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In the BS+Spikes dataset, tPCA resulted in the best motion correction approach, whereas in
the Only Spikes dataset, tPCA yielded a worse performance than Wavelet, but a better one than
spline and the combination between spline and wavelet. We acknowledge that, although the fixed
dataset adheres to the assumptions of tPCA by ensuring temporally correlated motion artifacts
composing the majority of signal variation, it represents an idealistic scenario. In real-world data,
motion artifacts may not be present in all channels and could exhibit slight temporal delays across
different channels. This deviation from real data characteristics may impact the performance of
multivariate methods that rely on spatial filtering. Therefore, tPCA performance might have been
overestimated in this work. It is also worth noting that, even in an ideal situation, for both Only
Spikes and Spikes+BS datasets, the tPCA approach yielded group correlation matrixes sta-
tistically different from the GT. It is likely that the variance removed with this technique was
not only due to motion artifacts but also to slow oscillations, which might have been important
for RSFC computation. In the BS+Spikes dataset, wavelet and no correction are not achieving the
same good performance obtained in the Only Spikes dataset. For the no correction approach,
baseline shifts might be the most challenging artifacts because, although their high-frequency
contribution might be removed by the filter, they might introduce some low-frequency content
due to the baseline shift not being corrected. Furthermore, wavelet is known to be unable to
correct baseline shifts.

In both Spike Only and BS+Spikes datasets, our results show that spline and the combination
of spline and wavelet are not a good choice to pre-process resting-state data. It is likely that the
spline interpolation introduced low-frequency components in the signal, which created a bias
when the functional correlation matrix was computed. The impact of these spurious components
is higher as the number of artifacts increases, with spline worsening its performance as the degree
of motion artifact contamination increases. The negative performance of the combination of spline
and wavelet is a direct consequence of the biased performance of the spline approach.

The Spline-SG approach achieved the worst performance among methods in the BS+Spikes
dataset, whereas it had a performance similar to tPCA and discard-before in the Only Spikes
dataset. Increasing the motion artifact contamination in the datasets decreases the SNR of the
signal. In the Spline-SG approach, the spline interpolation step is applied only when the SNR <
3, which is almost never the case with data highly contaminated by MAs. Therefore, most of the
time, only the SG part of the approach was applied. This is probably why Spline-SG showed the
worst performance in the BS+Spikes dataset as smoothing out the baseline shifts caused the
introduction of low-frequency biases in the signal. The average performance in the Spikes
Only dataset is due to the good performance of the smoothing approach on high-frequency
spikes, introducing less biases than in the dataset with baseline shifts as well.

TDDR performance is similar across datasets. In the Only Spike dataset, TDDR perfor-
mance is one of the worst, performing a bit better than spline and the combination of spline
and wavelet but worse than all other pipelines. In the BS+Spikes dataset, TDDR performance
is similar to the wavelet approaches. These results highlight that the TDDR performance is stable
and reliable independently of the typology of MAs but that the TDDR correction might introduce
some low-frequency biases that could be problematic when computing RSFC.

Although the error metric demonstrated a detrimental effect of motion correction tech-
niques on the correlation values between channel pairs, the slope coefficient and the similarity
index showed that, for most techniques, this is only reflected in a linear and homogeneous
decrease in the computed r-values, maintaining the original spatial pattern of correlations.
This highlights that, in most of the cases, qualitatively looking at the group correlation
matrixes, researchers would have drawn the same conclusions. From a statistical perspective,
though, reducing the correlation values and increasing the variance (i.e., the variability among
channel pairs and subjects) could lead to different quantitative results when comparing, for
example, correlation matrixes from different populations or acquisitions. The higher the vari-
ance is and the smaller the values are, the lower the probability of obtaining statistically sig-
nificant results is. For the worst-performing motion correction techniques at a high degree of
motion artifact contamination, the main spatial pattern of correlation was completely lost. This
result was supported by the slope coefficient. The lower the coefficient is, the narrower the
interval is. Thus, the lower the slope coefficient is, the higher the probability of losing the main
spatial pattern is.
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Selb and colleagues30 reported that the best approach to pre-processing motion artifact for
resting state measurements is the one that discards temporal frames. These results are in line with
our work. However, they proposed the spline interpolation as a good alternative, but we found
this to be not recommended. A possible explanation is that they applied the identification method
implemented in Homer2/3, which we have shown to be less performant than the one that we used
(adaptable standard deviation identification approach). The motion identification technique used
by Selb et al. might have biased the spline interpolation performance. In fact, if MAs were not
correctly identified, then the spline interpolation was not adequately evaluated. Moreover, wave-
let and no correction are not advised in their conclusions as in our BS+Spikes dataset. It is likely
that their dataset also contained baseline-shift motion artifacts. Moreover, two other possible
reasons could explain the different results from our Only Spikes dataset. First, Selb and col-
leagues did not use the same band-pass filter; second, they did not perform the SS channel regres-
sion. No correction and wavelet may have been diverted by physiological noise that was not
correctly removed due to the lack of short-separation channel regression. Moreover, the filter could
have impacted the no correction approach. Selb and colleagues used four different band-pass
filters; we compared our results only with the very low-frequency oscillations one, which ranged
between 0.01 and 0.07 Hz because it was closest to ours (0.008 to 0.09 Hz). However, the lower
limit of the very low-frequency oscillations range was higher than the one that we used, probably
leaving residual motion artifacts within the signal. This evidence underlines the relevance of choos-
ing the band-pass filter setting when performing the no correction approach.

This study has a few limitations. Here, we investigated RSFC in a compliant healthy adult
population. However, fNIRS may be a valuable tool for depicting RSFC in people with neuro-
logical diseases. This is the main reason that we semi-simulated datasets with higher percentages
of MA contamination. One limitation of our study might be that the type of MAs in patients’ data
might differ from the type of MAs that we extracted from the healthy adult dataset. Thus, further
studies may evaluate whether MA types differ among populations. The final aim of RSFC analy-
sis, furthermore, is usually to evaluate the presence of networks. Here, we only investigated the
impact of motion correction on the estimation of the correlation matrices. It would be valuable for
future research to explore the impact of correction methods on the detectability of the networks.
Another limitation of this work is that the newly proposed multivariate approaches for motion
correction,62 which have been tested on task-based data and require additional measures (e.g.,
accelerometers), have not been considered in the comparison. It would be interesting in the future
to assess their impact on RSFC analysis compared with standard approaches.

5 Conclusion
Guidelines for motion correction in task-based studies suggest that correcting for motion artifacts
is always the best choice. In these studies, wavelet and the combination of spline and wavelet
when the degree of motion artifact contamination is substantial were found to be promising
approaches. Our results suggest different guidelines for motion correction in resting-state studies,
with particular attention to the type and amount of artifacts present in the dataset. Specifically,
when the dataset predominantly contains spike artifacts, the optimal solution is to discard con-
taminated segments of data at the end of the pre-processing. As a second option, the best motion
correction approach is wavelet with an iqr ≥ 1.2 or leaving the data as they are (no correction).
However, if baseline shifts are also present in the dataset, discarding contaminated segments of
data at the beginning of the pre-processing is preferable. As possible alternatives, the tPCA pipe-
line or discarding motion artifacts at the end of the pre-processing is suitable, keeping in mind
that the error introduced with the correction when baseline shifts are present is higher than when
only spikes are present in the dataset. A similarity between task-based and resting-state guide-
lines for motion correction is that, in both cases, the impact of the technique on the recovery of
the underlying data might be dependent on the degree of motion artifact contamination. When
few motion artifacts are present, our results show that the impact of motion correction techniques
on RSFC computation is limited, with all pipelines yielding very similar results. Thus, we rec-
ommend, as the first important step, to inspect the acquired data to be aware of the type, quantity,
and temporal distribution of MAs, to select the best pipeline to be applied and whether the choice
of the pipeline would be impactful or not on the results.
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