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ABSTRACT. The continuous exchange between the neuroscience and neuroengineering com-
munities that took place over the past decades has uncovered a multitude of
technological solutions to interface with the brain. In this framework, a fascinating
approach relies on the integration of multiple activation and monitoring capabilities in
the same implantable neural probe to better study the multifaceted nature of neural
signaling and related functions in the deep brain regions. We highlight current
challenges and perspectives on technological developments that could potentially
enable the integration of multiple functionalities on optical fiber-based non-planar
implantable neurophotonics probes.
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1 Introduction
Deciphering how complex neural processes are organized into neural functions that involve
elaborate signal exchanges across multiple neurons has always been the mission of neuroscien-
tific research.1,2 This ambitious goal has driven the neurotechnology community to provide
increasingly advanced technologies so that neuroscientists can interface with the multifaceted
nature of neural signals. Although the recording of electrophysiological signals has been the
best channel for interfacing with the brain for decades, the advent of optical cell-specific inter-
facing methods has overwhelmingly pushed toward the study of optical implantable probes.3–5

Prominent among these are optical fibers, due to their simplicity of use, ease of implantation,
low cost, and the ability to modify the employed wavelength in situ. Immediately thereafter, the
union of electrophysiological and optical interface channels was proposed as the first example
of a multifunctional neural interface,6–8 with the goal of integrating activation and recording
channels on a single probe, thus expanding the possibilities of designing increasingly elaborate
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neuroscientific experiments. The objective of this perspective article is to identify emerging tech-
nologies that have the potential to increase the integration of electrical and electrochemical detec-
tion sites on implantable fiber-optic-based probes, toward high-density electrode integration and
high scalability of the manufacturing. After a brief overview of how the key features of purely
high-density electrophysiological probes and those of fiber-optic-based probes complement
each other, the hallmarks of some promising technologies will be introduced, along with some
limitations that, if overcome, could prospectively lead to wider and more reliable use. Although
special emphasis is given here to the integration of electrophysiological and optical capabilities,
it will become evident how these technologies may lead to the enrichment of other features such
as drug delivery from microfluidic channels, light collection for photometry or Raman spectros-
copy, and exploitation of plasmonic effects.

2 Electrophysiology and Optical Neural Interfaces
Building on the first pioneering experiments9 in the 1950s, extracellular electrophysiology can
now benefit from a plethora of probe designs to adapt to the experimental requirements such
as micro-electrocorticography arrays,10 microneedle-shaped probes,11 Michigan-style microelec-
trode arrays,12 and Utah arrays,13 to name a few, which have been employed in rodents, non-
human primates, and humans. Unprecedented microelectrodes recording density14–16 brought
closer the goal of measuring all neurons at the same time,17 which would require an electrode
density of approximately 2.6 × 105 channels∕mm2, but the consequent and inevitable shrinkage
of the electrode size reflects on increased impedance, hence reducing the signal-to-noise ratio
(SNR) and resilience to thermal noise.18 These aspects drove a complementary effort in the study
of built-in preamplification/processing systems, to increase the SNR through local amplifiers
such as transistors. In this respect, a particularly interesting configuration is the electrochemical
field-effect transistor (eFET), which in turn includes the wide family of organic electrochemical
transistors (OECT).19,20 Those novel probes allowed for high SNR21,22 and spatiotemporal
resolution,23 as well as high-density recordings of extracellular action potentials,24 and could
be easily functionalized for the detection of specific biochemical species.25 However, almost
the totality of examples is limited to planar geometries, fitted for shallower cortical investiga-
tions, but not allowing for deep-brain interfacing.

Although electrophysiological interfacing with the brain remains the prevalent choice in
neuroscience research,26 the experimental possibilities that arose after the introduction of optical
neural interfacing methods27–31 have complementarily turned the spotlight on implantable optical
devices, such as micro-LED (μLED) arrays,32 ridge waveguides,33 and fiber optics.34–37 Those
latter allow accessing and interfacing with deep-brain regions, hardly accessible even for
advanced microscopy techniques,38,39 while offering cell-type specificity thanks to the genetic
encoding of optical actuators/reporters, as opposed to the lack of specificity of electrical
measurements. Still, electrophysiological and optical techniques should be considered comple-
mentary to each other. If optogenetics allows for cell-type–specific neural stimulation, optical
readout of neural activity mainly focuses on high-resolution imaging of calcium dynamics40 or
membrane voltage,41 and it is far from the possibility of catching local field potentials.
Furthermore, genetically encoded fluorescent reporters are still limited to a few molecular spe-
cies,42 while the perspective of electrochemical detection performed by implantable OECTarrays
could extend from neurotransmitters43 to gaseous species such as nitric oxide.44 These consid-
erations are pushing the scientific community to strongly advance the field of multifunctional
probes that combine optical and electrical access to brain signals,7,45–47 with the perspective of
building multifunctional closed-loop systems48 and offering a better understanding of the com-
plexity of neural signaling. In this framework, multimode optical fibers have seen a strong
research focus thanks to the wealth of information that can be carried by the propagation of the
electromagnetic field, while keeping a small implant cross-section. To add multiple functional-
ities together with the optical channels, the scientific community is dealing with the fact that
traditional micro-electromechanical systems (MEMS) fabrication techniques49 may be inad-
equate to pattern the non-planar surface or the bulk of the core/cladding structure of optical
fibers. In this respect, several promising ad hoc techniques have been proposed by the commu-
nity to tackle, even partially, those limits and realize increasingly advanced fiber-based probes.
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3 Advanced Micro- and Nano-Fabrication Methods
for Multifunctional Fiber-Based Interfaces

3.1 Fiber Drawing
Among the emerging technologies conceived for the achievement of advanced fiber-based multi-
functional interfaces, a notable role is played by fiber drawing, which allows for combining
an optical interface, electrodes for electrophysiology, and drug delivery capillaries in a single
thermally drawn polymeric optical fiber. For example, Canales et al. did extensive work46,50

proposing a thermal drawing process (TDP) that simultaneously combines polymers, metals,
and composite materials to obtain a probe that achieved simultaneous optogenetic stimulation,
long-term neural recordings, as well as drug delivery in freely moving animals [Figs. 1(a)–1(b)].
An alternative approach is to twist together multiple channels that have been previously drawn
singularly, as proposed by Tabet et al.,51 which demonstrated simultaneous optogenetics and
electrophysiology and showed cellular cargo delivery with high viability from a modular probe
encased in a hydrogel matrix [Figs. 1(c)–1(d)]. In other cases, thermally drawn fibers have been
combined with phase masking techniques to integrate fiber Bragg grating (FBG) sensor52 to add
thermometric capabilities to the implantable probe, which have been used to measure the cor-
relation between the brain and body core temperature of a rat with a <0.2°C accuracy in vivo,
as demonstrated by Sui et al.53 [Figs. 1(e)–1(f)]. TDP fibers also benefit from a reduced Young’s
modulus, exhibiting mechanical properties more similar to the brain tissue with respect to silicon
or silica implantable devices, thus allowing for reduced tissue damage during the implantation
phase. TDP allows the integration of multiple functionalities into minimally invasive probes;
however, they still present some disadvantages compared with conventional fiber-optic devices:
due to the higher-decibel loss characteristics of polymeric fibers with respect to conventional
silica fibers, these latter are still preferred for bidirectional fiber photometry and/or Raman spec-
troscopy applications. In addition, the choice of the polymer employed during the drawing may
constrain further micro-/nano-structuration of the probes. These include high-vacuum metal dep-
osition or patterning processing, as well as high-temperature dewetting for metal nano-particle
decoration, which represents one of the most straightforward ways toward surface plasmon
resonances (SPR)- or localized SPR-based chemical sensing applications.54,55 We believe that
upcoming technological developments in material science may offer an opportunity to surpass
those drawbacks, resulting in flexible optical fibers characterized by high transmission and
improved material characteristics.

Fig. 1 Fiber drawing. (a) Schematic representation of the thermal drawing process. Adapted from
Ref. 50. (b) Cross-sectional optical images of different designs of multi-modality thermally drawn
fibers. Adapted from Ref. 46. (c) Graphical representation and (d) cross-sectional optical images of
a twisted polymeric multifunctional probe. Each channel is individually drawn and then assembled
in the final probe. Adapted from Ref. 51. (e) Optical image and scanning electron micrograph of
an FBG inscribed in a polymeric optical fiber through the phase-mask technique. Reproduced from
Ref. 52. (f) Normalized Bragg reflection at different temperatures, showing a blueshift as the tem-
perature increases. Reproduced from Ref. 53.
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3.2 Transfer Printing
An alternative approach with great potential in multifunctionality integration on optical fibers is
transfer printing. It may conceivably find extended adoption, especially in integrating a relatively
high number of microelectrodes around a non-planar implantable probe. This method dodges
the challenges of integrating multiple recording sites on a small, curved surface by fabricating
relatively complex arrays through planar MEMS fabrication techniques on a flexible membrane,
which is then wrapped around an existing rigid, non-planar probe. In this way, Zhao et al.56

enhanced different non-electrical implants with a diameter that ranged between 30 and
200 μm with electrical recording capabilities thanks to a flexible SU-8 electrode array
[Figs. 2(a)–2(b)], wrapped around the probes through surface tension-assisted wrapping, also
optimizing the relation between the flexible device thickness and the wrapped probe to ensure
optimal wrapping. Furthermore, the membrane can be wrapped around a rigid optical fiber, to
achieve optrode functionalities ready for deep-brain regions. Zou et al. further engineered the
flexible wrapping realizing a viral vector-delivery optrode, by wrapping an array of flexible
microelectrode filaments embedded in an adeno-associated virus (AAV) vector and poly(ethyl-
ene glycol) (PEG) matrix around an optical fiber [Figs. 2(c)–2(d)].57 After implantation, the
PEG dissolves, releasing the AAV for localized transduction of nearby neurons. The optrodes
allowed simultaneous optogenetic stimulation and multi-channel recording for three months.
Aiming to a widespread utilization, it would be beneficial to optimize two main aspects of the
processing: (i) being based on a sort of self-assembly mechanism, workarounds for precise
relative positioning of the fiber and the flexible mesh must be implemented, since uncontrolled
wrapping could result in misplacement of the active elements along the probe axis and (ii) the same
mechanism may also result in sub-optimal adhesion of the mesh on the fiber, especially when
extended flexible membranes are to be wrapped, thus undermining the implantation of the probe
in the tissue.

3.3 Two-Photon Lithography
A solution that is gaining momentum consists of the two-photon lithography approach (TPL).
Thanks to its high spatial resolution, TPL offers the possibility to precisely microstructure a non-
planar surface with custom metallic and/or dielectric patterns, in combination with isotropic
chemical wet etching routines. TPL has been used to integrate multiple electrodes and different
dielectric aperture geometries on a tapered optical fiber [Figs. 3(a)–3(b), which donated the site-
selective light delivery—and, potentially, collection—capability28,60,61 to a multielectrode
optrode (fibertrode).58 As a result of the versatility of this approach, it is not difficult to envision
the integration of further microcircuitry elements (resistors, transistors, etc.), paving the way to
unconventional multifunctional devices, equipped with micro-resistors for local temperature
probing, or OECTs for neurotransmitter release chemical sensing. Furthermore, TPL can also

Fig. 2 Transfer printing. (a) Optical images of released flexible microelectrode arrays and a sketch
of the wrapping process facilitated by surface tension. (b) Optical images and scanning electron
micrographs of multifunctional probes obtained by transfer printing. Panels (a) and (b) are repro-
duced from Ref. 56. (c) Schematics of the self-assembly of a flexible microelectrode array around
an optical fiber. (d) Optical images of the final device, with and without blue light illumination, and
a false-color micro-CT image of the probe. Panels (c) and (d) are reproduced from Ref. 57.
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be combined with transfer printing to obtain high-resolution three-dimensional transferable
wrappings. As a proof of concept, den Hoed et al.59 demonstrated the possibility of transferring
an array of complex 3-μm-wide micro-cones all around a 25-μm-diameter tungsten wire using a
sacrificial nanometer-thick PVF film, which was successively removed using plasma oxygen
[Figs. 3(c)–3(d)]. Despite these promises, TPL remains a serial and, overall, a low-throughput
process, especially if compared with the aforementioned MEMS techniques. However, the com-
bination of TPL and holography62,63 can effectively mitigate the low-throughput issue, enabling
the parallel fabrication of complex structures, even on multiple fibers at once.

4 Discussion and Perspectives
While electrophysiology has historically been considered the gold standard protocol to detect
neural signals, the advantages of optogenetic techniques that emerged in the last two decades
shifted the paradigm for neuroscience, pushing toward the development of advanced bi-directional
optical probes. These two techniques are far from representing the totality of the possibilities that
implantable neurophotonics probes could offer, given the great effort of the neurotechnology
community to design devices that exploit a growing range of physical phenomena.

The fiber optics platform, compared with competing optical technologies, stands out for
several advantages, including cost-effectiveness, ease of use, and bi-directional light delivery
and collection. The latter enables unique brain interface methods, such as fiber photometry
to monitor neuron state or neurotransmitter release,64 as well as to quantify the presence of
markers linked to the onset of disease, such as amyloid plaques related to the insurgence of
Alzheimer’s disease.65 Optical fibers also feature prominently in recent developments in holo-
graphic fluorescence imaging endoscopes39 and in time-correlated single-photon counting tech-
niques such as fluorescence lifetime photometry (FLiP) to monitor the fluorescence lifetime of
specific bioreporters.66 Also, the capability to switch the excitation wavelength on the go opens a
wide set of experimental possibilities. Infrared light can be employed to perform Raman spec-
troscopy, to distinguish tissue abnormalities at the molecular level to determine the presence of
tumors,64,67 or to monitor biomarkers linked to the insurgence of neurodegenerative pathologies
such as Parkinson’s and Alzheimer’s disease.68 Other fabrication technologies (i.e., focused ion
beam milling,69 repeated dewetting54), although not discussed in detail in this paper, proved their
utility in the integration of plasmonic nano-structures on optical fibers. This allows the exploi-
tation of alternative light-matter interactions such as surface-enhanced Raman spectroscopy
(SERS) to increase the Raman response by several orders of magnitude, enabling for instance,
the detection of low-concentration neurotransmitters.70 Plasmonic nano-structures would also be
beneficial for the exploitation of thermoplasmonic effects71 to induce localized heating in the
brain. Indeed, hyperthermia has been proven to be an effective technique for the treatment
of ischemic strokes or certain types of brain tumors.72 It has also been proposed to increase the

Fig. 3 Two-photon lithography. (a) Schematics of the TPL system that allows patterning a TF all
around its optical axis and representative optical image. (b) Schematic and scanning electron
micrograph of a spiral electrode distribution around a TF. Panels (a) and (b) are reproduced from
Ref. 58. (c) Schematics of the fabrication technique that combines TPL and transfer printing.
(d) Scanning electron micrograph of a TPL-printed array of 3-μm-size cones wrapped around
a ∼20-μm-diameter metal wire. Panels (c) and (d) are adapted from Ref. 59.
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permeability of the blood-brain barrier,73 to facilitate the crossing of chemotherapeutic drugs,
potentially delivered in situ by the same implantable probe, or to thermally trigger capacitance
change of the cell membrane.74,75 Alongside it, the capability to locally detect the brain temper-
ature variations in real time with an integrated temperature sensor would be necessary to define
a closed-loop heating/sensing system to ensure the positive outcome of these therapies while
avoiding cells’ death.

Given the abundance of detection or actuation methods, in some cases already integrated
into optical fibers, it is complicated to imagine what a definitive design for a multifunctional
implantable probe might be. This wealth is potentially beneficial to the field of neuroscience
and gives neurotechnology the opportunity to develop probes driven by research demands.
Thus, the point is not so much to envision the ultimate probe as to find the design that best
fits the required use. In any case, it is possible to identify certain characteristics that a versatile
fiber optics-based multifunctional probe must possess: (i) multisite delivery of light, fully
exploiting the large interface area, as in the case of holographic endoscopes, or the extended
axial length, as for tapered fibers; (ii) compatibility with optical collection techniques
(Raman spectroscopy, fiber photometry, FLiP) for bi-directional interfacing with neural tissue
without the need of an additional probe implant; and (iii) high-density electrophysiological
recording sites, whether passive (microelectrodes) or active (OECTs), since the electrical channel
still remains a feedback of primary importance, even from the perspective of a closed-loop sys-
tem. Equally important is that the technologies and materials used must be compatible with the
possible integration of a multitude of physical channels, as could be temperature sensors, plas-
monic structures, or nano-particles to exploit plasmonic light-matter interaction (SERS, hyper-
thermia), or even microfluidic channels for localized drug delivery. Obviously, integrating even
some of these functionalities on a single, minimally invasive device is not an easy task and rep-
resents one of the main challenges of the field.

In our opinion, the promising micro-fabrication techniques discussed in this article outline
the direction in which the research will head in the coming years although they are often not
compatible with each other or require multiple steps that would further complicate the manu-
facturing and/or its scalability. Fiber drawing remains a very versatile and scalable method, espe-
cially for light or drug delivery since multiple cores or channels can be drawn simultaneously.
However, optical collection remains a challenge, especially in Raman spectroscopy due to the
background signal of the polymers that could completely mask the tissue signal. On the other
hand, TPL can be paired with thermal dewetting to combine the excellent optical properties of
silica with microelectrodes, temperature sensors, and plasmonic nano-structures; however, its
serial nature and the limited space available on the fiber surface puts strong constraints on the
scalability. In this context, transfer printing could largely increase the number of electrical ele-
ments around the implant, with the tradeoff of less precision in positioning the elements along
the probe.

Regardless of the methods and techniques that will take hold in the future, a common chal-
lenge for the community will be to face the limited physical space available on implantable
optical fibers, setting an upper bound to integration capacity, especially when multiple features
should coexist. A bigger fiber cross-section may facilitate the integration of multiple function-
alities, albeit at the expense of the overall invasiveness of the implant. Nevertheless, in such a
fervent and fast-moving research scenario,76–78 it is easy to imagine that these developments
could be combined in innovative hybrid approaches that would allow the advantages and
disadvantages of each technique to counterbalance each other.
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